Version 187.1 by Dilisi S on 2024/11/11 05:23

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 {{info}}
44 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 {{/info}}
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12V
62 ** 20dB Transmit: 34mA@12V
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01V)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 MHz
78 ** Band 2 (LF): 410 ~~ 528 MHz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C modes
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the device =
132
133 == 2.1 Connecting the antenna ==
134
135 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
136
137 {{warning}}
138 Warning! Do not power on the device without connecting the antenna.
139 {{/warning}}
140
141 == 2.2 Terminals ==
142
143 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
144
145 Upper screw terminal block (from left to right):
146
147 (% style="width:634px" %)
148 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
149 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
150 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
151 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
152 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
153 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
154 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
155
156 Lower screw terminal block (from left to right):
157
158 (% style="width:633px" %)
159 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
160 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
161 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
163 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
165 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
167 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
169 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
170
171 == 2.3 Powering the device ==
172
173 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
174
175 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
176
177 {{warning}}
178 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
179 {{/warning}}
180
181
182 [[image:1653297104069-180.png]]
183
184
185 = 3. Registering with a LoRaWAN Network Server =
186
187 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
188
189 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
190
191 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
192
193 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
194
195 [[image:image-20220523172350-1.png||height="266" width="864"]]
196
197 === 3.2.1 Prerequisites ===
198
199 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
200
201 [[image:image-20230425173427-2.png||height="246" width="530"]]
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack Sandbox (TTSS) ===
206
207 The Things Stack Sandbox was formally called The Things Stack Community Edition.
208
209 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
210 * Create an application with The Things Stack if you do not have one yet.
211 * Go to your application page and click on the **End devices** in the left menu.
212 * On the End devices page, click on **+ Register end device**. Two registration options are available:
213
214 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
215
216 * On the **Register end device** page:
217 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
218 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
219 *** **End device brand**: Dragino Technology Co., Limited
220 *** **Model**: LT22222-L I/O Controller
221 *** **Hardware ver**: Unknown
222 *** **Firmware ver**: 1.6.0
223 *** **Profile (Region)**: Select the region that matches your device.
224 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
225
226 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
227
228
229 * Register end device page continued...
230 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
231 ** In the **DevEUI** field, enter the **DevEUI**.
232 ** In the **AppKey** field, enter the **AppKey.**
233 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
234 ** Under **After registration**, select the **View registered end device** option.
235
236 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
237
238 ==== ====
239
240 ==== 3.2.2.2 Adding device manually ====
241
242 * On the **Register end device** page:
243 ** Select the option **Enter end device specifies manually** under **Input method**.
244 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
246 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
247 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
248 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
249 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
250
251 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
252
253
254 * Register end device page continued...
255 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
256 ** In the **DevEUI** field, enter the **DevEUI**.
257 ** In the **AppKey** field, enter the **AppKey**.
258 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
259 ** Under **After registration**, select the **View registered end device** option.
260 ** Click the **Register end device** button.
261
262 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
263
264
265 You will be navigated to the **Device overview** page.
266
267
268 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
269
270
271 ==== 3.2.2.3 Joining ====
272
273 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
274
275 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
276
277
278 [[image:lt-22222-join-network.png||height="625" width="1000"]]
279
280
281 By default, you will receive an uplink data message from the device every 10 minutes.
282
283 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
284
285 [[image:lt-22222-ul-payload-decoded.png]]
286
287
288 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
289
290 {{info}}
291 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
292 {{/info}}
293
294 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
295
296
297 == 3.3 Work Modes and Uplink Payload formats ==
298
299
300 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
301
302 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
303
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305
306 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
307
308 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
309
310 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
311
312 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
313
314 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
315
316 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
317
318 (((
319 This is the default mode.
320
321 The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
324 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
325 |Value|(((
326 AVI1 voltage
327 )))|(((
328 AVI2 voltage
329 )))|(((
330 ACI1 Current
331 )))|(((
332 ACI2 Current
333 )))|**DIDORO***|(((
334 Reserve
335 )))|MOD
336 )))
337
338 (((
339 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
340
341 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
342 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
343 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
344 )))
345
346 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
347 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
348 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
349
350 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
351
352 For example, if the payload is: [[image:image-20220523175847-2.png]]
353
354
355 **The interface values can be calculated as follows:  **
356
357 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
358
359 AVI2 channel voltage is 0x04AC/1000=1.196V
360
361 ACI1 channel current is 0x1310/1000=4.880mA
362
363 ACI2 channel current is 0x1300/1000=4.864mA
364
365 The last byte 0xAA= **10101010**(b) means,
366
367 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
368 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
369 * **[1] DI3 - not used for LT-22222-L.**
370 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
371 * [1] DI1 channel input state:
372 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
373 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
374 ** DI1 LED is ON in both cases.
375 * **[0] DO3 - not used for LT-22222-L.**
376 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
377 * [0] DO1 channel output state:
378 ** DO1 is FLOATING when there is no load between DO1 and V+.
379 ** DO1 is HIGH when there is a load between DO1 and V+.
380 ** DO1 LED is OFF in both cases.
381
382 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
383
384
385 (((
386 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
387 )))
388
389 (((
390 The uplink payload is 11 bytes long.
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
393 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
394 |Value|COUNT1|COUNT2 |DIDORO*|(((
395 Reserve
396 )))|MOD
397 )))
398
399 (((
400 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
401
402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
404 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
405
406 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
407 )))
408
409 * FIRST: Indicates that this is the first packet after joining the network.
410 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
411
412 (((
413 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
414
415
416 )))
417
418 (((
419 **To activate this mode, run the following AT commands:**
420 )))
421
422 (((
423 (% class="box infomessage" %)
424 (((
425 **AT+MOD=2**
426
427 **ATZ**
428 )))
429 )))
430
431 (((
432
433
434 (% style="color:#4f81bd" %)**AT Commands for counting:**
435 )))
436
437 (((
438 **For LT22222-L:**
439
440 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
441
442 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
443
444 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
445
446 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
447
448 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
449
450 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
451 )))
452
453
454 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
455
456
457 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
458
459 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
460 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
461 |Value|COUNT1|(((
462 ACI1 Current
463 )))|(((
464 ACI2 Current
465 )))|DIDORO*|Reserve|MOD
466
467 (((
468 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
469
470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
472 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
473 )))
474
475 * RO is for the relay. ROx=1: closed, ROx=0 always open.
476 * FIRST: Indicates that this is the first packet after joining the network.
477 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
478
479 (((
480 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
481 )))
482
483
484 (((
485 **To activate this mode, run the following AT commands:**
486 )))
487
488 (((
489 (% class="box infomessage" %)
490 (((
491 **AT+MOD=3**
492
493 **ATZ**
494 )))
495 )))
496
497 (((
498 AT Commands for counting:
499
500 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
501 )))
502
503
504 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
505
506
507 (((
508 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
509 )))
510
511 (((
512 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
513
514 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
515 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
516 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
517 Reserve
518 )))|MOD
519 )))
520
521 (((
522 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
523
524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
526 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
527 )))
528
529 * RO is for the relay. ROx=1: closed, ROx=0 always open.
530 * FIRST: Indicates that this is the first packet after joining the network.
531 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
532
533 (((
534 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
535
536
537 )))
538
539 (((
540 **To activate this mode, run the following AT commands:**
541 )))
542
543 (((
544 (% class="box infomessage" %)
545 (((
546 **AT+MOD=4**
547
548 **ATZ**
549 )))
550 )))
551
552 (((
553 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
554 )))
555
556 (((
557 **In addition to that, below are the commands for AVI1 Counting:**
558
559 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
560
561 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
562
563 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
564
565 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
566 )))
567
568
569 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
570
571
572 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
573
574 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
575 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
576 |Value|(((
577 AVI1 voltage
578 )))|(((
579 AVI2 voltage
580 )))|(((
581 ACI1 Current
582 )))|COUNT1|DIDORO*|(((
583 Reserve
584 )))|MOD
585
586 (((
587 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
588
589 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
590 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
591 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
592 )))
593
594 * RO is for the relay. ROx=1: closed, ROx=0 always open.
595 * FIRST: Indicates that this is the first packet after joining the network.
596 * (((
597 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
598 )))
599
600 (((
601 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
602 )))
603
604 (((
605 **To activate this mode, run the following AT commands:**
606 )))
607
608 (((
609 (% class="box infomessage" %)
610 (((
611 **AT+MOD=5**
612
613 **ATZ**
614 )))
615 )))
616
617 (((
618 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
619 )))
620
621
622 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
623
624
625 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
626
627 For example, if you configured the following commands:
628
629 * **AT+MOD=1 ** **~-~->**  The default work mode
630 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
631
632 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
633
634 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
635 1. (((
636 Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
637 )))
638
639 (% style="color:#037691" %)**AT Commands to set Trigger Condition**:
640
641 (% style="color:#4f81bd" %)**Trigger based on voltage**:
642
643 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
644
645
646 **Example:**
647
648 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
649
650 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
651
652
653 (% style="color:#4f81bd" %)**Trigger based on current**:
654
655 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
656
657
658 **Example:**
659
660 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
661
662
663 (% style="color:#4f81bd" %)**Trigger based on DI status**:
664
665 DI status triggers Flag.
666
667 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
668
669
670 **Example:**
671
672 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
673
674
675 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
676
677 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
678
679 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
680
681 AA: Type Code for this downlink Command:
682
683 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
684
685 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
686
687 yy2 yy2: AC1 or AV1 HIGH limit.
688
689 yy3 yy3: AC2 or AV2 LOW limit.
690
691 Yy4 yy4: AC2 or AV2 HIGH limit.
692
693
694 **Example 1**: AA 00 13 88 00 00 00 00 00 00
695
696 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
697
698
699 **Example 2**: AA 02 01 00
700
701 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
702
703
704 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
705
706 MOD6 Payload: total of 11 bytes
707
708 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
710 |Value|(((
711 TRI_A FLAG
712 )))|(((
713 TRI_A Status
714 )))|(((
715 TRI_DI FLAG+STA
716 )))|Reserve|Enable/Disable MOD6|(((
717 MOD(6)
718 )))
719
720 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
721
722 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
723 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
724 |(((
725 AV1_LOW
726 )))|(((
727 AV1_HIGH
728 )))|(((
729 AV2_LOW
730 )))|(((
731 AV2_HIGH
732 )))|(((
733 AC1_LOW
734 )))|(((
735 AC1_HIGH
736 )))|(((
737 AC2_LOW
738 )))|(((
739 AC2_HIGH
740 )))
741
742 * Each bit shows if the corresponding trigger has been configured.
743
744 **Example:**
745
746 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
747
748
749 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
750
751 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
752 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
753 |(((
754 AV1_LOW
755 )))|(((
756 AV1_HIGH
757 )))|(((
758 AV2_LOW
759 )))|(((
760 AV2_HIGH
761 )))|(((
762 AC1_LOW
763 )))|(((
764 AC1_HIGH
765 )))|(((
766 AC2_LOW
767 )))|(((
768 AC2_HIGH
769 )))
770
771 * Each bit shows which status has been triggered on this uplink.
772
773 **Example:**
774
775 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
776
777
778 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
781 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
782 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
783
784 * Each bits shows which status has been triggered on this uplink.
785
786 **Example:**
787
788 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
789
790 00000101: Means both DI1 and DI2 trigger are enabled.
791
792
793 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
794
795 Downlink command to poll MOD6 status:
796
797 **AB 06**
798
799 When device got this command, it will send the MOD6 payload.
800
801
802 === 3.3.7 Payload Decoder ===
803
804 (((
805
806
807 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
808 )))
809
810
811 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
812
813 (((
814 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
815 )))
816
817 (((
818 (((
819 There are two tytes of commands:
820 )))
821 )))
822
823 * (% style="color:blue" %)**Common commands**(%%):
824
825 * (% style="color:blue" %)**Sensor-related commands**(%%):
826
827 === 3.4.1 Common commands ===
828
829 (((
830 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
831 )))
832
833 === 3.4.2 Sensor-related commands ===
834
835 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
836
837 ==== 3.4.2.1 Set Transmit Interval ====
838
839 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
840
841 (% style="color:#037691" %)**AT command**
842
843 (% style="width:500px" %)
844 |**Command**|AT+TDC<time>
845 |**Response**|
846 |**Parameters**|<time> uplink interval is in milliseconds
847 |**Example**|(((
848 AT+TDC=30000
849
850 Sets the uplink interval to 30,000 milliseconds (30 seconds)
851 )))
852
853 (% style="color:#037691" %)**Downlink payload**
854
855 (% style="width:500px" %)
856 |**Payload**|(((
857 <prefix><time>
858 )))
859 |**Parameters**|(((
860 <prefix> 0x01
861
862 <time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
863 )))
864 |**Example**|(((
865 01 **00 75 30**
866
867 Sets the uplink interval to 30,000 milliseconds (30 seconds)
868
869 Conversion: 30000 (dec) = 00 75 30 (hex)
870
871 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
872 )))
873
874 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
875
876
877 Sets the work mode.
878
879 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
880
881 Where N is the work mode.
882
883 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
884
885
886 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
887
888 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
889
890
891
892 ==== 3.4.2.3 Poll an uplink ====
893
894 Requests the device to send an uplink.
895
896
897 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
898
899 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
900
901 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
902
903 **Example**: 0x08FF, ask device to send an Uplink
904
905
906
907 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
908
909 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
910
911 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
912
913 (% style="color:red" %)**1:** (%%)Enable the trigger mode
914
915 (% style="color:red" %)**0: **(%%)Disable the trigger mode
916
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
919
920 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
921
922
923
924 ==== 3.4.2.5 Poll trigger settings ====
925
926 Polls the trigger settings.
927
928 * (% style="color:#037691" %)**AT Command:**
929
930 There is no AT Command for this feature.
931
932 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
933
934 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
935
936
937
938 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
939
940 Enable or disable DI1/DI2/DI2 as a trigger.
941
942 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
943
944 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
945
946
947 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
948
949 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
950
951
952
953 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
954
955 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
956
957 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
958
959 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
960
961 (% style="color:red" %)**b :** (%%)delay timing.
962
963 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
967
968 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
969
970
971 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
972
973 Sets DI2 as a trigger.
974
975 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
976
977 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
978
979 (% style="color:red" %)**b :** (%%)delay timing.
980
981 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
982
983
984 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
985
986 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
987
988
989 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
990
991 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
992
993 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
994
995 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
996
997 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
998
999
1000
1001 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1002
1003 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1004
1005 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1006
1007 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1008
1009 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1010
1011
1012 ==== 3.4.2.11 Trigger – Set minimum interval ====
1013
1014 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1015
1016 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1019
1020 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1021
1022 (((
1023 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1024 )))
1025
1026
1027
1028 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1029
1030 Controls the digital outputs DO1, DO2, and DO3
1031
1032 * (% style="color:#037691" %)**AT Command**
1033
1034 There is no AT Command to control Digital Output
1035
1036
1037 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1038
1039 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1040
1041 (((
1042 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1043 )))
1044
1045 (((
1046 01: Low,  00: High ,  11: No action
1047
1048 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1049 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1050 |02  01  00  11|Low|High|No Action
1051 |02  00  11  01|High|No Action|Low
1052 |02  11  01  00|No Action|Low|High
1053 )))
1054
1055 (((
1056 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1057 )))
1058
1059 (((
1060 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1061 )))
1062
1063
1064
1065 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1066
1067
1068 * (% style="color:#037691" %)**AT Command**
1069
1070 There is no AT Command to control Digital Output
1071
1072
1073 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1074
1075 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1076
1077
1078 This is to control the digital output time of DO pin. Include four bytes:
1079
1080 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1081
1082 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1083
1084 01: DO pins will change back to original state after timeout.
1085
1086 00: DO pins will change to an inverter state after timeout 
1087
1088
1089 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1092 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1093 |0x01|DO1 set to low
1094 |0x00|DO1 set to high
1095 |0x11|DO1 NO Action
1096
1097 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1098
1099 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1100 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1101 |0x01|DO2 set to low
1102 |0x00|DO2 set to high
1103 |0x11|DO2 NO Action
1104
1105 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1106
1107 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1108 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1109 |0x01|DO3 set to low
1110 |0x00|DO3 set to high
1111 |0x11|DO3 NO Action
1112
1113 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1114
1115
1116 (% style="color:red" %)**Note: **
1117
1118 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1119
1120 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1121
1122 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1123
1124
1125 **Example payload:**
1126
1127 **~1. A9 01 01 01 01 07 D0**
1128
1129 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1130
1131 **2. A9 01 00 01 11 07 D0**
1132
1133 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1134
1135 **3. A9 00 00 00 00 07 D0**
1136
1137 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1138
1139 **4. A9 00 11 01 00 07 D0**
1140
1141 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1142
1143
1144
1145 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1146
1147
1148 * (% style="color:#037691" %)**AT Command:**
1149
1150 There is no AT Command to control Relay Output
1151
1152
1153 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1154
1155 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1156
1157
1158 (((
1159 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1160 )))
1161
1162 (((
1163 00: Closed ,  01: Open , 11: No action
1164
1165 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1166 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1167 |03  00  11|Open|No Action
1168 |03  01  11|Close|No Action
1169 |03  11  00|No Action|Open
1170 |03  11  01|No Action|Close
1171 |03  00  00|Open|Open
1172 |03  01  01|Close|Close
1173 |03  01  00|Close|Open
1174 |03  00  01|Open|Close
1175 )))
1176
1177 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1178
1179
1180
1181 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1182
1183
1184 * (% style="color:#037691" %)**AT Command:**
1185
1186 There is no AT Command to control Relay Output
1187
1188
1189 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1190
1191 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1192
1193
1194 This is to control the relay output time of relay. Include four bytes:
1195
1196 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1197
1198 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1199
1200 01: Relays will change back to original state after timeout.
1201
1202 00: Relays will change to an inverter state after timeout
1203
1204
1205 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1206
1207 [[image:image-20221008095908-1.png||height="364" width="564"]]
1208
1209
1210 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1211
1212
1213 (% style="color:red" %)**Note:**
1214
1215 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1216
1217 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1218
1219
1220 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1221
1222
1223 **Example payload:**
1224
1225 **~1. 05 01 11 07 D0**
1226
1227 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1228
1229 **2. 05 01 10 07 D0**
1230
1231 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1232
1233 **3. 05 00 01 07 D0**
1234
1235 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1236
1237 **4. 05 00 00 07 D0**
1238
1239 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1240
1241
1242
1243 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1244
1245
1246 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1247
1248 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1249
1250 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1251
1252 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1253
1254
1255
1256 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1257
1258
1259 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1260
1261 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1262
1263 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1264
1265
1266 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1267
1268 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1269
1270
1271
1272 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1273
1274
1275 Clear counting for counting mode
1276
1277 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1278
1279 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1280
1281 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1282
1283
1284
1285 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1286
1287
1288 * (% style="color:#037691" %)**AT Command:**
1289
1290 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1291
1292
1293 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1294
1295 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1296
1297 (((
1298 range: aa bb cc:0 to 16777215,  (unit:second)
1299 )))
1300
1301
1302
1303 ==== 3.4.2.20 Reset save RO DO state ====
1304
1305
1306 * (% style="color:#037691" %)**AT Command:**
1307
1308 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1309
1310 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1311
1312
1313 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1314
1315 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1316
1317
1318
1319 ==== 3.4.2.21 Encrypted payload ====
1320
1321
1322 * (% style="color:#037691" %)**AT Command:**
1323
1324 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1325
1326 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1327
1328
1329
1330 ==== 3.4.2.22 Get sensor value ====
1331
1332
1333 * (% style="color:#037691" %)**AT Command:**
1334
1335 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1336
1337 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1338
1339
1340
1341 ==== 3.4.2.23 Resets the downlink packet count ====
1342
1343
1344 * (% style="color:#037691" %)**AT Command:**
1345
1346 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1347
1348 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1349
1350
1351
1352 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1353
1354
1355 * (% style="color:#037691" %)**AT Command:**
1356
1357 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1358
1359 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1360
1361
1362 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1363
1364 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1365
1366
1367
1368 ==== 3.4.2.25 Copy downlink to uplink ====
1369
1370
1371 * (% style="color:#037691" %)**AT Command**(%%)**:**
1372
1373 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1374
1375 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1376
1377
1378 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1379
1380 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1381
1382
1383
1384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1385
1386 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1387
1388
1389
1390 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1391
1392
1393 * (((
1394 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1395
1396 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1397
1398
1399 )))
1400
1401 **Example:**
1402
1403 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1404
1405
1406 == 3.5 Integrating with ThingsEye.io ==
1407
1408 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1409
1410 === 3.5.1 Configuring The Things Stack ===
1411
1412 We use The Things Stack Sandbox in this example:
1413
1414 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1415 * Select **MQTT** under **Integrations** in the left menu.
1416 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1417 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1418
1419 {{info}}
1420 The username and  password (API key) you created here are required in the next section.
1421 {{/info}}
1422
1423 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1424
1425 === 3.5.2 Configuring ThingsEye.io ===
1426
1427 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1428 * Under the **Integrations center**, click **Integrations**.
1429 * Click the **Add integration** button (the button with the **+** symbol).
1430
1431 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1432
1433
1434 On the **Add integration** window, configure the following:
1435
1436 **Basic settings:**
1437
1438 * Select **The Things Stack Community** from the **Integration type** list.
1439 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1440 * Ensure the following options are turned on.
1441 ** Enable integration
1442 ** Debug mode
1443 ** Allow create devices or assets
1444 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1445
1446 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1447
1448
1449 **Uplink data converter:**
1450
1451 * Click the **Create new** button if it is not selected by default.
1452 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1453 * Click the **JavaScript** button.
1454 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1455 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1456
1457 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1458
1459
1460 **Downlink data converter (this is an optional step):**
1461
1462 * Click the **Create new** button if it is not selected by default.
1463 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1464 * Click the **JavaScript** button.
1465 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1466 * Click the **Next** button. You will be navigated to the **Connection** tab.
1467
1468 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1469
1470
1471 **Connection:**
1472
1473 * Choose **Region** from the **Host type**.
1474 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1475 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1476 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1477
1478 [[image:message-1.png]]
1479
1480
1481 * Click the **Add** button.
1482
1483 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1484
1485
1486 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1487
1488
1489 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1490
1491
1492 **Viewing integration details**:
1493
1494 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1495
1496 [[image:integration-details.png||height="686" width="1000"]]
1497
1498
1499 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1500
1501 {{info}}
1502 See also ThingsEye documentation.
1503 {{/info}}
1504
1505 **Viewing events:**
1506
1507 The **Events **tab displays all the uplink messages from the LT-22222-L.
1508
1509 * Select **Debug **from the **Event type** dropdown.
1510 * Select the** time frame** from the **time window**.
1511
1512 [[image:thingseye-events.png||height="686" width="1000"]]
1513
1514
1515 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1516
1517 [[image:thingseye-json.png||width="1000"]]
1518
1519
1520 **Deleting the integration**:
1521
1522 If you want to delete this integration, click the **Delete integratio**n button.
1523
1524
1525 == 3.6 Interface Details ==
1526
1527 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1528
1529
1530 Support NPN-type sensor
1531
1532 [[image:1653356991268-289.png]]
1533
1534
1535 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1536
1537
1538 (((
1539 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1540 )))
1541
1542 (((
1543 (((
1544 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1545
1546
1547 )))
1548 )))
1549
1550 [[image:1653357170703-587.png]]
1551
1552 (((
1553 (((
1554 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1555 )))
1556 )))
1557
1558 (((
1559
1560 )))
1561
1562 (((
1563 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1564 )))
1565
1566 (((
1567 This type of sensor outputs a low (GND) signal when active.
1568 )))
1569
1570 * (((
1571 Connect the sensor's output to DI1-
1572 )))
1573 * (((
1574 Connect the sensor's VCC to DI1+.
1575 )))
1576
1577 (((
1578 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1579 )))
1580
1581 (((
1582 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1583 )))
1584
1585 (((
1586 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1587 )))
1588
1589 (((
1590
1591 )))
1592
1593 (((
1594 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1595 )))
1596
1597 (((
1598 This type of sensor outputs a high signal (e.g., 24V) when active.
1599 )))
1600
1601 * (((
1602 Connect the sensor's output to DI1+
1603 )))
1604 * (((
1605 Connect the sensor's GND DI1-.
1606 )))
1607
1608 (((
1609 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1610 )))
1611
1612 (((
1613 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1614 )))
1615
1616 (((
1617 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1618 )))
1619
1620 (((
1621
1622 )))
1623
1624 (((
1625 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1626 )))
1627
1628 (((
1629 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1630 )))
1631
1632 * (((
1633 Connect the sensor's output to DI1+ with a 50K resistor in series.
1634 )))
1635 * (((
1636 Connect the sensor's GND DI1-.
1637 )))
1638
1639 (((
1640 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1641 )))
1642
1643 (((
1644 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1645 )))
1646
1647 (((
1648 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1649 )))
1650
1651
1652 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1653
1654 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1655
1656 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1657
1658 [[image:image-20230616235145-1.png]]
1659
1660 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1661
1662 [[image:image-20240219115718-1.png]]
1663
1664
1665 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1666
1667
1668 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1669
1670 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1671
1672 [[image:1653357531600-905.png]]
1673
1674
1675 === 3.6.4 Analog Input Interfaces ===
1676
1677
1678 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1679
1680
1681 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1682
1683 [[image:1653357592296-182.png]]
1684
1685 Example: Connecting a 4~~20mA sensor
1686
1687 We will use the wind speed sensor as an example for reference only.
1688
1689
1690 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1691
1692 (% style="color:red" %)**Red:  12~~24V**
1693
1694 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1695
1696 **Black:  GND**
1697
1698 **Connection diagram:**
1699
1700 [[image:1653357640609-758.png]]
1701
1702 [[image:1653357648330-671.png||height="155" width="733"]]
1703
1704
1705 Example: Connecting to a regulated power supply to measure voltage
1706
1707 [[image:image-20230608101532-1.png||height="606" width="447"]]
1708
1709 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1710
1711 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1712
1713
1714 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1715
1716 (% style="color:red" %)**Red:  12~~24v**
1717
1718 **Black:  GND**
1719
1720
1721 === 3.6.5 Relay Output ===
1722
1723
1724 (((
1725 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1726
1727 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1728 )))
1729
1730 [[image:image-20220524100215-9.png]]
1731
1732
1733 [[image:image-20220524100215-10.png||height="382" width="723"]]
1734
1735
1736 == 3.7 LEDs Indicators ==
1737
1738 The table below lists the behavior of LED indicators for each port function.
1739
1740 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1741 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1742 |**PWR**|Always on when there is power
1743 |**TX**|(((
1744 (((
1745 Device boot: TX blinks 5 times.
1746 )))
1747
1748 (((
1749 Successful network join: TX remains ON for 5 seconds.
1750 )))
1751
1752 (((
1753 Transmit a LoRa packet: TX blinks once
1754 )))
1755 )))
1756 |**RX**|RX blinks once when a packet is received.
1757 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1758 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1759 |**DI1**|(((
1760 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1761 )))
1762 |**DI2**|(((
1763 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1764 )))
1765 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1766 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1767
1768 = 4. Using AT Commands =
1769
1770 The LT-22222-L supports programming using AT Commands.
1771
1772 == 4.1 Connecting the LT-22222-L to a PC ==
1773
1774 (((
1775 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1776 )))
1777
1778 [[image:1653358238933-385.png]]
1779
1780
1781 (((
1782 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1783 )))
1784
1785 [[image:1653358355238-883.png]]
1786
1787
1788 (((
1789 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1790
1791 == 4.2 LT-22222-L related AT commands ==
1792 )))
1793
1794 (((
1795 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1796
1797 * AT+<CMD>? : Help on <CMD>
1798 * AT+<CMD> : Run <CMD>
1799 * AT+<CMD>=<value> : Set the value
1800 * AT+<CMD>=? : Get the value
1801 * ATZ: Trigger a reset of the MCU
1802 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1803 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1804 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1805 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1806 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1807 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1808 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1809 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1810 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1811 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1812 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1813 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1814 * AT+RX2FQ: Get or set the Rx2 window frequency
1815 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1816 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1817 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1818 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1819 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1820 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1821 * AT+NWKID: Get or set the Network ID
1822 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1823 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1824 * AT+CLASS: Get or set the Device Class
1825 * AT+JOIN: Join network
1826 * AT+NJS: Get OTAA Join Status
1827 * AT+SENDB: Send hexadecimal data along with the application port
1828 * AT+SEND: Send text data along with the application port
1829 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1830 * AT+RECV: Print last received data in raw format
1831 * AT+VER: Get current image version and Frequency Band
1832 * AT+CFM: Get or Set the confirmation mode (0-1)
1833 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1834 * AT+SNR: Get the SNR of the last received packet
1835 * AT+RSSI: Get the RSSI of the last received packet
1836 * AT+TDC: Get or set the application data transmission interval in ms
1837 * AT+PORT: Get or set the application port
1838 * AT+DISAT: Disable AT commands
1839 * AT+PWORD: Set password, max 9 digits
1840 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1841 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1842 * AT+CFG: Print all settings
1843 )))
1844
1845
1846 == 4.2 Common AT Command Sequence ==
1847
1848 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1849
1850 (((
1851
1852
1853 (((
1854 (% style="color:blue" %)**If the device has not joined the network yet:**
1855 )))
1856 )))
1857
1858 (((
1859 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1860 )))
1861
1862 (((
1863 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1864 )))
1865
1866 (((
1867 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1876 )))
1877
1878
1879 (((
1880 (% style="color:blue" %)**If the device has already joined the network:**
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)##**ATZ**##
1889 )))
1890
1891
1892 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1893
1894 (((
1895
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1899 )))
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1936 )))
1937
1938 (((
1939 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1948
1949
1950 )))
1951
1952 (((
1953 (% style="color:red" %)**Note:**
1954 )))
1955
1956 (((
1957 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1958
1959 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1960
1961 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1962 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1963
1964 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1965 )))
1966
1967 (((
1968 [[image:1653359097980-169.png||height="188" width="729"]]
1969 )))
1970
1971
1972 === 4.2.3 Change to Class A ===
1973
1974
1975 (((
1976 (% style="color:blue" %)**If sensor JOINED:**
1977
1978 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1979
1980 (% style="background-color:#dcdcdc" %)**ATZ**
1981 )))
1982
1983
1984 = 5. Case Study =
1985
1986 == 5.1 Counting how many objects pass through the flow Line ==
1987
1988 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1989
1990
1991 = 6. FAQ =
1992
1993 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1994
1995
1996 == 6.1 How to update the firmware? ==
1997
1998 Dragino frequently releases firmware updates for the LT-22222-L.
1999
2000 Updating your LT-22222-L with the latest firmware version helps to:
2001
2002 * Support new features
2003 * Fix bugs
2004 * Change LoRaWAN frequency bands
2005
2006 You will need the following things before proceeding:
2007
2008 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2009 * USB to TTL adapter
2010 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2011 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2012
2013 {{info}}
2014 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2015 {{/info}}
2016
2017 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2018
2019
2020 [[image:1653359603330-121.png]]
2021
2022
2023 Start the STM32 Flash Loader and choose the correct COM port to update.
2024
2025 (((
2026 (((
2027 (% style="color:blue" %)**For LT-22222-L**(%%):
2028
2029 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2030 )))
2031
2032
2033 )))
2034
2035 [[image:image-20220524103407-12.png]]
2036
2037
2038 [[image:image-20220524103429-13.png]]
2039
2040
2041 [[image:image-20220524104033-15.png]]
2042
2043
2044 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2045
2046 [[image:1653360054704-518.png||height="186" width="745"]]
2047
2048
2049 (((
2050 (((
2051 == 6.2 How to change the LoRaWAN frequency band/region? ==
2052 )))
2053 )))
2054
2055 (((
2056 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2057 )))
2058
2059 (((
2060
2061
2062 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2063 )))
2064
2065 (((
2066 (((
2067 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2068 )))
2069 )))
2070
2071 (((
2072 (((
2073 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2074
2075
2076 )))
2077 )))
2078
2079 (((
2080 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2081
2082
2083 )))
2084
2085 (((
2086 [[image:1653360231087-571.png||height="401" width="727"]]
2087
2088
2089 )))
2090
2091 (((
2092 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2093 )))
2094
2095
2096
2097 (((
2098 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2099
2100
2101 )))
2102
2103 (((
2104 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2105
2106 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2107
2108 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2109
2110 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2111
2112 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2113
2114 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2115
2116 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2117
2118 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2119
2120 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2121 )))
2122
2123
2124 (((
2125 As shown in below:
2126 )))
2127
2128 [[image:1653360498588-932.png||height="485" width="726"]]
2129
2130
2131 == 6.4 How to change the uplink interval? ==
2132
2133 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2134
2135
2136 == 6.5 Can I see the counting event in the serial output? ==
2137
2138 (((
2139 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2140
2141
2142 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2143
2144 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2145
2146
2147 )))
2148
2149 (((
2150 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2151
2152 * If the device is not properly shut down and is directly powered off.
2153 * It will default to a power-off state.
2154 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2155 * After a restart, the status before the power failure will be read from flash.
2156
2157
2158 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2159
2160 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2161
2162
2163 [[image:image-20221006170630-1.png||height="610" width="945"]]
2164
2165
2166 == 6.9 Can the LT-22222-L save the RO state? ==
2167
2168 The firmware version must be at least 1.6.0.
2169
2170
2171 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2172
2173 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2174
2175
2176 = 7. Troubleshooting =
2177
2178 This section provides some known troubleshooting tips.
2179
2180
2181 )))
2182
2183 (((
2184 (((
2185 == 7.1 Downlink isn't working. How can I solve this? ==
2186 )))
2187 )))
2188
2189 (((
2190 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2191 )))
2192
2193 (((
2194
2195
2196 == 7.2 Having trouble uploading an image? ==
2197 )))
2198
2199 (((
2200 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2201 )))
2202
2203 (((
2204
2205
2206 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2207 )))
2208
2209 (((
2210 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2211 )))
2212
2213
2214 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2215
2216 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2217 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2218
2219
2220 = 8. Ordering information =
2221
2222 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2223
2224 (% style="color:#4f81bd" %)**XXX:**
2225
2226 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2227 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2228 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2229 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2230 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2231 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2232 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2233 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2234 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2235
2236
2237 = 9. Packing information =
2238
2239 **Package includes**:
2240
2241 * 1 x LT-22222-L I/O Controller
2242 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2243 * 1 x bracket for DIN rail mounting
2244 * 1 x 3.5mm programming cable
2245
2246 **Dimension and weight**:
2247
2248 * Device Size: 13.5 x 7 x 3 cm
2249 * Device Weight: 105 g
2250 * Package Size / pcs : 14.5 x 8 x 5 cm
2251 * Weight / pcs : 170 g
2252
2253
2254 = 10. Support =
2255
2256 * (((
2257 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2258 )))
2259 * (((
2260 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2261
2262
2263 )))
2264
2265 = 11. Reference​​​​​ =
2266
2267 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2268 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2269 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]