Version 186.1 by Dilisi S on 2024/11/11 02:43

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52 == 1.2 Specifications ==
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * STM32L072xxxx MCU
57 * SX1276/78 Wireless Chip 
58 * Power Consumption:
59 ** Idle: 4mA@12v
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 Mhz
76 ** Band 2 (LF): 410 ~~ 528 Mhz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol
96 * Optional Customized LoRa Protocol
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
98 * AT Commands to change parameters
99 * Remotely configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Counting
102
103 == 1.4 Applications ==
104
105 * Smart Buildings & Home Automation
106 * Logistics and Supply Chain Management
107 * Smart Metering
108 * Smart Agriculture
109 * Smart Cities
110 * Smart Factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
117 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
118 (% style="text-align:center" %)
119 [[image:image-20230424115112-1.png||height="106" width="58"]]
120 )))|(% style="width:334px" %)(((
121 * 2 x Digital Input (Bi-direction)
122 * 2 x Digital Output
123 * 2 x Relay Output (5A@250VAC / 30VDC)
124 * 2 x 0~~20mA Analog Input (res:0.01mA)
125 * 2 x 0~~30V Analog Input (res:0.01v)
126 * 1 x Counting Port
127 )))
128
129 = 2. Assembling =
130
131 Attach the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
132
133 == 2.2 Terminals ==
134
135 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
136
137 Upper screw terminal block (from left to right):
138
139 (% style="width:634px" %)
140 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
141 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
142 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
143 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
144 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
145 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
146 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
147
148 Lower screw terminal block (from left to right):
149
150 (% style="width:633px" %)
151 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
152 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
153 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
154 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
155 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
156 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
157 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
158 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
159 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
160 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
161 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
162
163 == 2.3 Powering the device ==
164
165 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
166
167 Powering on the device
168
169 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
170
171 {{warning}}
172 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
173 {{/warning}}
174
175
176 [[image:1653297104069-180.png]]
177
178
179 = 3. Registering with a LoRaWAN Network Server =
180
181 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
182
183 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
184
185 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
186
187 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
188
189 [[image:image-20220523172350-1.png||height="266" width="864"]]
190
191 === 3.2.1 Prerequisites ===
192
193 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 [[image:image-20230425173427-2.png||height="246" width="530"]]
196
197 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
198
199 === 3.2.2 The Things Stack Sandbox (TTSS) ===
200
201 The Things Stack Sandbox was formally called The Things Stack Community Edition.
202
203 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
204 * Create an application with The Things Stack if you do not have one yet.
205 * Go to your application page and click on the **End devices** in the left menu.
206 * On the End devices page, click on **+ Register end device**. Two registration options are available:
207
208 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
209
210 * On the **Register end device** page:
211 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
212 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
213 *** **End device brand**: Dragino Technology Co., Limited
214 *** **Model**: LT22222-L I/O Controller
215 *** **Hardware ver**: Unknown
216 *** **Firmware ver**: 1.6.0
217 *** **Profile (Region)**: Select the region that matches your device.
218 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
219
220 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
221
222
223 * Register end device page continued...
224 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
225 ** In the **DevEUI** field, enter the **DevEUI**.
226 ** In the **AppKey** field, enter the **AppKey.**
227 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
228 ** Under **After registration**, select the **View registered end device** option.
229
230 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
231
232 ==== ====
233
234 ==== 3.2.2.2 Adding device manually ====
235
236 * On the **Register end device** page:
237 ** Select the option **Enter end device specifies manually** under **Input method**.
238 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
239 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
240 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
241 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
242 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
243 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
244
245 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
246
247
248 * Register end device page continued...
249 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
250 ** In the **DevEUI** field, enter the **DevEUI**.
251 ** In the **AppKey** field, enter the **AppKey**.
252 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
253 ** Under **After registration**, select the **View registered end device** option.
254 ** Click the **Register end device** button.
255
256 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
257
258
259 You will be navigated to the **Device overview** page.
260
261
262 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
263
264
265 ==== 3.2.2.3 Joining ====
266
267 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
268
269 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
270
271
272 [[image:lt-22222-join-network.png||height="625" width="1000"]]
273
274
275 By default, you will receive an uplink data message from the device every 10 minutes.
276
277 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
278
279 [[image:lt-22222-ul-payload-decoded.png]]
280
281
282 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
283
284 {{info}}
285 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
286 {{/info}}
287
288 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
289
290
291 == 3.3 Work Modes and their Uplink Payload formats ==
292
293
294 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
295
296 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
297
298 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
299
300 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
301
302 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
303
304 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
305
306 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
307
308 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
309
310 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
311
312 (((
313 This is the default mode.
314
315 The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
316
317 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
319 |Value|(((
320 AVI1 voltage
321 )))|(((
322 AVI2 voltage
323 )))|(((
324 ACI1 Current
325 )))|(((
326 ACI2 Current
327 )))|**DIDORO***|(((
328 Reserve
329 )))|MOD
330 )))
331
332 (((
333 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
334
335 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
336 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
337 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
338 )))
339
340 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
341 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
342 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
343
344 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
345
346 For example, if the payload is: [[image:image-20220523175847-2.png]]
347
348
349 **The interface values can be calculated as follows:  **
350
351 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
352
353 AVI2 channel voltage is 0x04AC/1000=1.196V
354
355 ACI1 channel current is 0x1310/1000=4.880mA
356
357 ACI2 channel current is 0x1300/1000=4.864mA
358
359 The last byte 0xAA= **10101010**(b) means,
360
361 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
362 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
363 * **[1] DI3 - not used for LT-22222-L.**
364 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
365 * [1] DI1 channel input state:
366 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
367 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
368 ** DI1 LED is ON in both cases.
369 * **[0] DO3 - not used for LT-22222-L.**
370 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
371 * [0] DO1 channel output state:
372 ** DO1 is FLOATING when there is no load between DO1 and V+.
373 ** DO1 is HIGH when there is a load between DO1 and V+.
374 ** DO1 LED is OFF in both cases.
375
376 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377
378
379 (((
380 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
381 )))
382
383 (((
384 The uplink payload is 11 bytes long.
385
386 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
387 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
388 |Value|COUNT1|COUNT2 |DIDORO*|(((
389 Reserve
390 )))|MOD
391 )))
392
393 (((
394 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
395
396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
397 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
398 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
399
400 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
401 )))
402
403 * FIRST: Indicates that this is the first packet after joining the network.
404 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
405
406 (((
407 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
408
409
410 )))
411
412 (((
413 **To activate this mode, run the following AT commands:**
414 )))
415
416 (((
417 (% class="box infomessage" %)
418 (((
419 **AT+MOD=2**
420
421 **ATZ**
422 )))
423 )))
424
425 (((
426
427
428 (% style="color:#4f81bd" %)**AT Commands for counting:**
429 )))
430
431 (((
432 **For LT22222-L:**
433
434 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
435
436 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
437
438 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
439
440 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
441
442 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
443
444 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
445 )))
446
447
448 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
449
450
451 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
455 |Value|COUNT1|(((
456 ACI1 Current
457 )))|(((
458 ACI2 Current
459 )))|DIDORO*|Reserve|MOD
460
461 (((
462 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
465 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
466 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
467 )))
468
469 * RO is for the relay. ROx=1: closed, ROx=0 always open.
470 * FIRST: Indicates that this is the first packet after joining the network.
471 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
472
473 (((
474 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
475 )))
476
477
478 (((
479 **To activate this mode, run the following AT commands:**
480 )))
481
482 (((
483 (% class="box infomessage" %)
484 (((
485 **AT+MOD=3**
486
487 **ATZ**
488 )))
489 )))
490
491 (((
492 AT Commands for counting:
493
494 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
495 )))
496
497
498 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
499
500
501 (((
502 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
503 )))
504
505 (((
506 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
507
508 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
509 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
510 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
511 Reserve
512 )))|MOD
513 )))
514
515 (((
516 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
519 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
520 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
521 )))
522
523 * RO is for the relay. ROx=1: closed, ROx=0 always open.
524 * FIRST: Indicates that this is the first packet after joining the network.
525 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
526
527 (((
528 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
529
530
531 )))
532
533 (((
534 **To activate this mode, run the following AT commands:**
535 )))
536
537 (((
538 (% class="box infomessage" %)
539 (((
540 **AT+MOD=4**
541
542 **ATZ**
543 )))
544 )))
545
546 (((
547 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
548 )))
549
550 (((
551 **In addition to that, below are the commands for AVI1 Counting:**
552
553 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
554
555 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
556
557 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560 )))
561
562
563 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
564
565
566 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
567
568 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
569 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
570 |Value|(((
571 AVI1 voltage
572 )))|(((
573 AVI2 voltage
574 )))|(((
575 ACI1 Current
576 )))|COUNT1|DIDORO*|(((
577 Reserve
578 )))|MOD
579
580 (((
581 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
582
583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
584 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
585 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
586 )))
587
588 * RO is for the relay. ROx=1: closed, ROx=0 always open.
589 * FIRST: Indicates that this is the first packet after joining the network.
590 * (((
591 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
592 )))
593
594 (((
595 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
596 )))
597
598 (((
599 **To activate this mode, run the following AT commands:**
600 )))
601
602 (((
603 (% class="box infomessage" %)
604 (((
605 **AT+MOD=5**
606
607 **ATZ**
608 )))
609 )))
610
611 (((
612 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
613 )))
614
615
616 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
617
618
619 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
620
621 For example, if you configured the following commands:
622
623 * **AT+MOD=1 ** **~-~->**  The default work mode
624 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
625
626 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
627
628 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
629 1. (((
630 Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
631 )))
632
633 (% style="color:#037691" %)**AT Commands to set Trigger Condition**:
634
635 (% style="color:#4f81bd" %)**Trigger based on voltage**:
636
637 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
638
639
640 **Example:**
641
642 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
643
644 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
645
646
647 (% style="color:#4f81bd" %)**Trigger based on current**:
648
649 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
650
651
652 **Example:**
653
654 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
655
656
657 (% style="color:#4f81bd" %)**Trigger based on DI status**:
658
659 DI status triggers Flag.
660
661 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
662
663
664 **Example:**
665
666 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
667
668
669 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
670
671 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
672
673 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
674
675 AA: Type Code for this downlink Command:
676
677 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
678
679 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
680
681 yy2 yy2: AC1 or AV1 HIGH limit.
682
683 yy3 yy3: AC2 or AV2 LOW limit.
684
685 Yy4 yy4: AC2 or AV2 HIGH limit.
686
687
688 **Example 1**: AA 00 13 88 00 00 00 00 00 00
689
690 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
691
692
693 **Example 2**: AA 02 01 00
694
695 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
696
697
698 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
699
700 MOD6 Payload: total of 11 bytes
701
702 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
703 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
704 |Value|(((
705 TRI_A FLAG
706 )))|(((
707 TRI_A Status
708 )))|(((
709 TRI_DI FLAG+STA
710 )))|Reserve|Enable/Disable MOD6|(((
711 MOD(6)
712 )))
713
714 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
715
716 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
717 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
718 |(((
719 AV1_LOW
720 )))|(((
721 AV1_HIGH
722 )))|(((
723 AV2_LOW
724 )))|(((
725 AV2_HIGH
726 )))|(((
727 AC1_LOW
728 )))|(((
729 AC1_HIGH
730 )))|(((
731 AC2_LOW
732 )))|(((
733 AC2_HIGH
734 )))
735
736 * Each bit shows if the corresponding trigger has been configured.
737
738 **Example:**
739
740 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
741
742
743 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
744
745 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
746 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
747 |(((
748 AV1_LOW
749 )))|(((
750 AV1_HIGH
751 )))|(((
752 AV2_LOW
753 )))|(((
754 AV2_HIGH
755 )))|(((
756 AC1_LOW
757 )))|(((
758 AC1_HIGH
759 )))|(((
760 AC2_LOW
761 )))|(((
762 AC2_HIGH
763 )))
764
765 * Each bit shows which status has been triggered on this uplink.
766
767 **Example:**
768
769 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
770
771
772 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
775 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
776 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
777
778 * Each bits shows which status has been triggered on this uplink.
779
780 **Example:**
781
782 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
783
784 00000101: Means both DI1 and DI2 trigger are enabled.
785
786
787 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
788
789 Downlink command to poll MOD6 status:
790
791 **AB 06**
792
793 When device got this command, it will send the MOD6 payload.
794
795
796 === 3.3.7 Payload Decoder ===
797
798 (((
799
800
801 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
802 )))
803
804
805 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
806
807 (((
808 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
809 )))
810
811 (((
812 (((
813 There are two tytes of commands:
814 )))
815 )))
816
817 * (% style="color:blue" %)**Common commands**(%%):
818
819 * (% style="color:blue" %)**Sensor-related commands**(%%):
820
821 === 3.4.1 Common commands ===
822
823 (((
824 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
825 )))
826
827 === 3.4.2 Sensor-related commands ===
828
829 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
830
831 ==== 3.4.2.1 Set Transmit Interval ====
832
833 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
834
835 (% style="color:#037691" %)**AT command**
836
837 (% style="width:500px" %)
838 |Command|AT+TDC<time>
839 |Response|
840 |Parameters|<time> uplink interval is in milliseconds
841 |Example|(((
842 AT+TDC=30000
843
844 Sets the uplink interval to 30,000 milliseconds (30 seconds)
845 )))
846
847 (% style="color:#037691" %)**Downlink payload**
848
849 (% style="width:500px" %)
850 |Payload|(((
851 <prefix><time>
852 )))
853 |Parameters|(((
854 <prefix> 0x01
855
856 <time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
857 )))
858 |Example|(((
859 01 **00 75 30**
860
861 Sets the uplink interval to 30,000 milliseconds (30 seconds)
862
863 Note: 00 75 30 (hex) = 30000 (dec)
864 )))
865
866 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
867
868
869 Sets the work mode.
870
871 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
872
873 Where N is the work mode.
874
875 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
876
877
878 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
879
880 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
881
882
883
884 ==== 3.4.2.3 Poll an uplink ====
885
886 Requests the device to send an uplink.
887
888
889 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
890
891 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
892
893 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
894
895 **Example**: 0x08FF, ask device to send an Uplink
896
897
898
899 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
900
901 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
902
903 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
904
905 (% style="color:red" %)**1:** (%%)Enable the trigger mode
906
907 (% style="color:red" %)**0: **(%%)Disable the trigger mode
908
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
911
912 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
913
914
915
916 ==== 3.4.2.5 Poll trigger settings ====
917
918 Polls the trigger settings.
919
920 * (% style="color:#037691" %)**AT Command:**
921
922 There is no AT Command for this feature.
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
925
926 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
927
928
929
930 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
931
932 Enable or disable DI1/DI2/DI2 as a trigger.
933
934 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
935
936 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
937
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
940
941 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
942
943
944
945 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
946
947 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
948
949 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
950
951 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
952
953 (% style="color:red" %)**b :** (%%)delay timing.
954
955 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
959
960 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
961
962
963 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
964
965 Sets DI2 as a trigger.
966
967 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
968
969 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
970
971 (% style="color:red" %)**b :** (%%)delay timing.
972
973 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
974
975
976 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
977
978 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
979
980
981 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
982
983 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
984
985 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
988
989 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
990
991
992
993 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
994
995 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
996
997 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
998
999 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1000
1001 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1002
1003
1004 ==== 3.4.2.11 Trigger – Set minimum interval ====
1005
1006 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1007
1008 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1009
1010 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1011
1012 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1013
1014 (((
1015 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1016 )))
1017
1018
1019
1020 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1021
1022 Controls the digital outputs DO1, DO2, and DO3
1023
1024 * (% style="color:#037691" %)**AT Command**
1025
1026 There is no AT Command to control Digital Output
1027
1028
1029 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1030
1031 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1032
1033 (((
1034 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1035 )))
1036
1037 (((
1038 01: Low,  00: High ,  11: No action
1039
1040 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1041 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1042 |02  01  00  11|Low|High|No Action
1043 |02  00  11  01|High|No Action|Low
1044 |02  11  01  00|No Action|Low|High
1045 )))
1046
1047 (((
1048 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1049 )))
1050
1051 (((
1052 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1053 )))
1054
1055
1056
1057 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1058
1059
1060 * (% style="color:#037691" %)**AT Command**
1061
1062 There is no AT Command to control Digital Output
1063
1064
1065 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1066
1067 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1068
1069
1070 This is to control the digital output time of DO pin. Include four bytes:
1071
1072 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1073
1074 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1075
1076 01: DO pins will change back to original state after timeout.
1077
1078 00: DO pins will change to an inverter state after timeout 
1079
1080
1081 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1082
1083 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1084 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1085 |0x01|DO1 set to low
1086 |0x00|DO1 set to high
1087 |0x11|DO1 NO Action
1088
1089 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1092 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1093 |0x01|DO2 set to low
1094 |0x00|DO2 set to high
1095 |0x11|DO2 NO Action
1096
1097 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1098
1099 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1100 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1101 |0x01|DO3 set to low
1102 |0x00|DO3 set to high
1103 |0x11|DO3 NO Action
1104
1105 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1106
1107
1108 (% style="color:red" %)**Note: **
1109
1110 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1111
1112 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1113
1114 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1115
1116
1117 **Example payload:**
1118
1119 **~1. A9 01 01 01 01 07 D0**
1120
1121 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1122
1123 **2. A9 01 00 01 11 07 D0**
1124
1125 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1126
1127 **3. A9 00 00 00 00 07 D0**
1128
1129 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1130
1131 **4. A9 00 11 01 00 07 D0**
1132
1133 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1134
1135
1136
1137 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1138
1139
1140 * (% style="color:#037691" %)**AT Command:**
1141
1142 There is no AT Command to control Relay Output
1143
1144
1145 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1146
1147 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1148
1149
1150 (((
1151 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1152 )))
1153
1154 (((
1155 00: Closed ,  01: Open , 11: No action
1156
1157 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1158 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1159 |03  00  11|Open|No Action
1160 |03  01  11|Close|No Action
1161 |03  11  00|No Action|Open
1162 |03  11  01|No Action|Close
1163 |03  00  00|Open|Open
1164 |03  01  01|Close|Close
1165 |03  01  00|Close|Open
1166 |03  00  01|Open|Close
1167 )))
1168
1169 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1170
1171
1172
1173 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1174
1175
1176 * (% style="color:#037691" %)**AT Command:**
1177
1178 There is no AT Command to control Relay Output
1179
1180
1181 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1182
1183 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1184
1185
1186 This is to control the relay output time of relay. Include four bytes:
1187
1188 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1189
1190 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1191
1192 01: Relays will change back to original state after timeout.
1193
1194 00: Relays will change to an inverter state after timeout
1195
1196
1197 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1198
1199 [[image:image-20221008095908-1.png||height="364" width="564"]]
1200
1201
1202 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1203
1204
1205 (% style="color:red" %)**Note:**
1206
1207 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1208
1209 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1210
1211
1212 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1213
1214
1215 **Example payload:**
1216
1217 **~1. 05 01 11 07 D0**
1218
1219 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1220
1221 **2. 05 01 10 07 D0**
1222
1223 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1224
1225 **3. 05 00 01 07 D0**
1226
1227 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1228
1229 **4. 05 00 00 07 D0**
1230
1231 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1232
1233
1234
1235 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1236
1237
1238 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1239
1240 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1241
1242 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1243
1244 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1245
1246
1247
1248 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1249
1250
1251 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1252
1253 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1254
1255 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1256
1257
1258 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1259
1260 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1261
1262
1263
1264 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1265
1266
1267 Clear counting for counting mode
1268
1269 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1272
1273 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1274
1275
1276
1277 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**
1281
1282 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1283
1284
1285 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1286
1287 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1288
1289 (((
1290 range: aa bb cc:0 to 16777215,  (unit:second)
1291 )))
1292
1293
1294
1295 ==== 3.4.2.20 Reset save RO DO state ====
1296
1297
1298 * (% style="color:#037691" %)**AT Command:**
1299
1300 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1301
1302 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1303
1304
1305 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1306
1307 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1308
1309
1310
1311 ==== 3.4.2.21 Encrypted payload ====
1312
1313
1314 * (% style="color:#037691" %)**AT Command:**
1315
1316 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1317
1318 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1319
1320
1321
1322 ==== 3.4.2.22 Get sensor value ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1328
1329 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1330
1331
1332
1333 ==== 3.4.2.23 Resets the downlink packet count ====
1334
1335
1336 * (% style="color:#037691" %)**AT Command:**
1337
1338 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1339
1340 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1341
1342
1343
1344 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1345
1346
1347 * (% style="color:#037691" %)**AT Command:**
1348
1349 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1350
1351 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1352
1353
1354 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1355
1356 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1357
1358
1359
1360 ==== 3.4.2.25 Copy downlink to uplink ====
1361
1362
1363 * (% style="color:#037691" %)**AT Command**(%%)**:**
1364
1365 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1366
1367 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1368
1369
1370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1371
1372 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1373
1374
1375
1376 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1377
1378 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1379
1380
1381
1382 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1383
1384
1385 * (((
1386 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1387
1388 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1389
1390
1391 )))
1392
1393 **Example:**
1394
1395 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1396
1397
1398 == 3.5 Integrating with ThingsEye.io ==
1399
1400 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1401
1402 === 3.5.1 Configuring The Things Stack ===
1403
1404 We use The Things Stack Sandbox in this example:
1405
1406 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1407 * Select **MQTT** under **Integrations** in the left menu.
1408 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1409 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1410
1411 {{info}}
1412 The username and  password (API key) you created here are required in the next section.
1413 {{/info}}
1414
1415 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1416
1417 === 3.5.2 Configuring ThingsEye.io ===
1418
1419 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1420 * Under the **Integrations center**, click **Integrations**.
1421 * Click the **Add integration** button (the button with the **+** symbol).
1422
1423 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1424
1425
1426 On the **Add integration** window, configure the following:
1427
1428 **Basic settings:**
1429
1430 * Select **The Things Stack Community** from the **Integration type** list.
1431 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1432 * Ensure the following options are turned on.
1433 ** Enable integration
1434 ** Debug mode
1435 ** Allow create devices or assets
1436 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1437
1438 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1439
1440
1441 **Uplink data converter:**
1442
1443 * Click the **Create new** button if it is not selected by default.
1444 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1445 * Click the **JavaScript** button.
1446 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1447 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1448
1449 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1450
1451
1452 **Downlink data converter (this is an optional step):**
1453
1454 * Click the **Create new** button if it is not selected by default.
1455 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1456 * Click the **JavaScript** button.
1457 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1458 * Click the **Next** button. You will be navigated to the **Connection** tab.
1459
1460 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1461
1462
1463 **Connection:**
1464
1465 * Choose **Region** from the **Host type**.
1466 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1467 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1468 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1469
1470 [[image:message-1.png]]
1471
1472
1473 * Click the **Add** button.
1474
1475 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1476
1477
1478 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1479
1480
1481 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1482
1483
1484 **Viewing integration details**:
1485
1486 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1487
1488 [[image:integration-details.png||height="686" width="1000"]]
1489
1490
1491 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1492
1493 {{info}}
1494 See also ThingsEye documentation.
1495 {{/info}}
1496
1497 **Viewing events:**
1498
1499 The **Events **tab displays all the uplink messages from the LT-22222-L.
1500
1501 * Select **Debug **from the **Event type** dropdown.
1502 * Select the** time frame** from the **time window**.
1503
1504 [[image:thingseye-events.png||height="686" width="1000"]]
1505
1506
1507 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1508
1509 [[image:thingseye-json.png||width="1000"]]
1510
1511
1512 **Deleting the integration**:
1513
1514 If you want to delete this integration, click the **Delete integratio**n button.
1515
1516
1517 == 3.6 Interface Details ==
1518
1519 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1520
1521
1522 Support NPN-type sensor
1523
1524 [[image:1653356991268-289.png]]
1525
1526
1527 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1528
1529
1530 (((
1531 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1532 )))
1533
1534 (((
1535 (((
1536 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1537
1538
1539 )))
1540 )))
1541
1542 [[image:1653357170703-587.png]]
1543
1544 (((
1545 (((
1546 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1547 )))
1548 )))
1549
1550 (((
1551
1552 )))
1553
1554 (((
1555 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1556 )))
1557
1558 (((
1559 This type of sensor outputs a low (GND) signal when active.
1560 )))
1561
1562 * (((
1563 Connect the sensor's output to DI1-
1564 )))
1565 * (((
1566 Connect the sensor's VCC to DI1+.
1567 )))
1568
1569 (((
1570 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1571 )))
1572
1573 (((
1574 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1575 )))
1576
1577 (((
1578 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1579 )))
1580
1581 (((
1582
1583 )))
1584
1585 (((
1586 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1587 )))
1588
1589 (((
1590 This type of sensor outputs a high signal (e.g., 24V) when active.
1591 )))
1592
1593 * (((
1594 Connect the sensor's output to DI1+
1595 )))
1596 * (((
1597 Connect the sensor's GND DI1-.
1598 )))
1599
1600 (((
1601 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1602 )))
1603
1604 (((
1605 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1606 )))
1607
1608 (((
1609 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1610 )))
1611
1612 (((
1613
1614 )))
1615
1616 (((
1617 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1618 )))
1619
1620 (((
1621 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1622 )))
1623
1624 * (((
1625 Connect the sensor's output to DI1+ with a 50K resistor in series.
1626 )))
1627 * (((
1628 Connect the sensor's GND DI1-.
1629 )))
1630
1631 (((
1632 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1633 )))
1634
1635 (((
1636 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1637 )))
1638
1639 (((
1640 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1641 )))
1642
1643
1644 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1645
1646 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1647
1648 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1649
1650 [[image:image-20230616235145-1.png]]
1651
1652 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1653
1654 [[image:image-20240219115718-1.png]]
1655
1656
1657 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1658
1659
1660 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1661
1662 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1663
1664 [[image:1653357531600-905.png]]
1665
1666
1667 === 3.6.4 Analog Input Interfaces ===
1668
1669
1670 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1671
1672
1673 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1674
1675 [[image:1653357592296-182.png]]
1676
1677 Example: Connecting a 4~~20mA sensor
1678
1679 We will use the wind speed sensor as an example for reference only.
1680
1681
1682 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1683
1684 (% style="color:red" %)**Red:  12~~24V**
1685
1686 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1687
1688 **Black:  GND**
1689
1690 **Connection diagram:**
1691
1692 [[image:1653357640609-758.png]]
1693
1694 [[image:1653357648330-671.png||height="155" width="733"]]
1695
1696
1697 Example: Connecting to a regulated power supply to measure voltage
1698
1699 [[image:image-20230608101532-1.png||height="606" width="447"]]
1700
1701 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1702
1703 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1704
1705
1706 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1707
1708 (% style="color:red" %)**Red:  12~~24v**
1709
1710 **Black:  GND**
1711
1712
1713 === 3.6.5 Relay Output ===
1714
1715
1716 (((
1717 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1718
1719 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1720 )))
1721
1722 [[image:image-20220524100215-9.png]]
1723
1724
1725 [[image:image-20220524100215-10.png||height="382" width="723"]]
1726
1727
1728 == 3.7 LEDs Indicators ==
1729
1730
1731 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1732 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1733 |**PWR**|Always on if there is power
1734 |**TX**|(((
1735 (((
1736 Device boot: TX blinks 5 times.
1737 )))
1738
1739 (((
1740 Successful join network: TX ON for 5 seconds.
1741 )))
1742
1743 (((
1744 Transmit a LoRa packet: TX blinks once
1745 )))
1746 )))
1747 |**RX**|RX blinks once when receiving a packet.
1748 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1749 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1750 |**DI1**|(((
1751 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1752 )))
1753 |**DI2**|(((
1754 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1755 )))
1756 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1757 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1758
1759 = 4. Using AT Commands =
1760
1761 The LT-22222-L supports programming using AT Commands.
1762
1763 == 4.1 Connecting the LT-22222-L to a PC ==
1764
1765 (((
1766 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1767 )))
1768
1769 [[image:1653358238933-385.png]]
1770
1771
1772 (((
1773 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1774 )))
1775
1776 [[image:1653358355238-883.png]]
1777
1778
1779 (((
1780 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1781
1782 == 4.2 LT-22222-L related AT commands ==
1783 )))
1784
1785 (((
1786 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1787
1788 * AT+<CMD>? : Help on <CMD>
1789 * AT+<CMD> : Run <CMD>
1790 * AT+<CMD>=<value> : Set the value
1791 * AT+<CMD>=? : Get the value
1792 * ATZ: Trigger a reset of the MCU
1793 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1794 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1795 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1796 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1797 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1798 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1799 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1800 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1801 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1802 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1803 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1804 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1805 * AT+RX2FQ: Get or set the Rx2 window frequency
1806 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1807 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1808 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1809 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1810 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1811 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1812 * AT+NWKID: Get or set the Network ID
1813 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1814 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1815 * AT+CLASS: Get or set the Device Class
1816 * AT+JOIN: Join network
1817 * AT+NJS: Get OTAA Join Status
1818 * AT+SENDB: Send hexadecimal data along with the application port
1819 * AT+SEND: Send text data along with the application port
1820 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1821 * AT+RECV: Print last received data in raw format
1822 * AT+VER: Get current image version and Frequency Band
1823 * AT+CFM: Get or Set the confirmation mode (0-1)
1824 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1825 * AT+SNR: Get the SNR of the last received packet
1826 * AT+RSSI: Get the RSSI of the last received packet
1827 * AT+TDC: Get or set the application data transmission interval in ms
1828 * AT+PORT: Get or set the application port
1829 * AT+DISAT: Disable AT commands
1830 * AT+PWORD: Set password, max 9 digits
1831 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1832 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1833 * AT+CFG: Print all settings
1834 )))
1835
1836
1837 == 4.2 Common AT Command Sequence ==
1838
1839 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1840
1841 (((
1842
1843
1844 (((
1845 (% style="color:blue" %)**If the device has not joined the network yet:**
1846 )))
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1867 )))
1868
1869
1870 (((
1871 (% style="color:blue" %)**If the device has already joined the network:**
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)##**ATZ**##
1880 )))
1881
1882
1883 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1884
1885 (((
1886
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1890 )))
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1911 )))
1912
1913 (((
1914 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1915 )))
1916
1917 (((
1918 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1919 )))
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1939
1940
1941 )))
1942
1943 (((
1944 (% style="color:red" %)**Note:**
1945 )))
1946
1947 (((
1948 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1949
1950 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1951
1952 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1953 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1954
1955 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1956 )))
1957
1958 (((
1959 [[image:1653359097980-169.png||height="188" width="729"]]
1960 )))
1961
1962
1963 === 4.2.3 Change to Class A ===
1964
1965
1966 (((
1967 (% style="color:blue" %)**If sensor JOINED:**
1968
1969 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1970
1971 (% style="background-color:#dcdcdc" %)**ATZ**
1972 )))
1973
1974
1975 = 5. Case Study =
1976
1977 == 5.1 Counting how many objects pass through the flow Line ==
1978
1979
1980 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1981
1982
1983 = 6. FAQ =
1984
1985 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1986
1987 == 6.1 How to update the firmware? ==
1988
1989 Dragino frequently releases firmware updates for the LT-22222-L.
1990
1991 Updating your LT-22222-L with the latest firmware version helps to:
1992
1993 * Support new features
1994 * Fix bugs
1995 * Change LoRaWAN frequency bands
1996
1997 You will need the following things before proceeding:
1998
1999 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2000 * USB to TTL adapter
2001 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2002 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2003
2004 {{info}}
2005 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2006 {{/info}}
2007
2008 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2009
2010
2011 [[image:1653359603330-121.png]]
2012
2013
2014 Start the STM32 Flash Loader and choose the correct COM port to update.
2015
2016 (((
2017 (((
2018 (% style="color:blue" %)**For LT-22222-L**(%%):
2019
2020 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2021 )))
2022
2023
2024 )))
2025
2026 [[image:image-20220524103407-12.png]]
2027
2028
2029 [[image:image-20220524103429-13.png]]
2030
2031
2032 [[image:image-20220524104033-15.png]]
2033
2034
2035 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2036
2037 [[image:1653360054704-518.png||height="186" width="745"]]
2038
2039
2040 (((
2041 (((
2042 == 6.2 How to change the LoRaWAN frequency band/region? ==
2043
2044
2045 )))
2046 )))
2047
2048 (((
2049 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2050 )))
2051
2052 (((
2053
2054
2055 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2056
2057
2058 )))
2059
2060 (((
2061 (((
2062 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2063 )))
2064 )))
2065
2066 (((
2067 (((
2068 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2069
2070
2071 )))
2072 )))
2073
2074 (((
2075 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2076
2077
2078 )))
2079
2080 (((
2081 [[image:1653360231087-571.png||height="401" width="727"]]
2082
2083
2084 )))
2085
2086 (((
2087 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2088 )))
2089
2090
2091
2092 (((
2093 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2094
2095
2096 )))
2097
2098 (((
2099 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2100
2101 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2102
2103 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2104
2105 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2106
2107 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2108
2109 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2110
2111 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2112
2113 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2114
2115 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2116 )))
2117
2118
2119 (((
2120 As shown in below:
2121 )))
2122
2123 [[image:1653360498588-932.png||height="485" width="726"]]
2124
2125
2126 == 6.4 How to change the uplink interval? ==
2127
2128
2129 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2130
2131
2132 == 6.5 Can I see the counting event in the serial output? ==
2133
2134
2135 (((
2136 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2137
2138
2139 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2140
2141
2142 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2143 )))
2144
2145 (((
2146 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2147
2148
2149 * If the device is not properly shut down and is directly powered off.
2150 * It will default to a power-off state.
2151 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2152 * After a restart, the status before the power failure will be read from flash.
2153
2154 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2155
2156
2157 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2158
2159
2160 [[image:image-20221006170630-1.png||height="610" width="945"]]
2161
2162
2163 == 6.9 Can the LT-22222-L save the RO state? ==
2164
2165
2166 The firmware version must be at least 1.6.0.
2167
2168
2169 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2170
2171
2172 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2173
2174
2175 = 7. Troubleshooting =
2176 )))
2177
2178 (((
2179 (((
2180 == 7.1 Downlink isn't working. How can I solve this? ==
2181
2182
2183 )))
2184 )))
2185
2186 (((
2187 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2188 )))
2189
2190 (((
2191
2192
2193 == 7.2 Having trouble uploading an image? ==
2194
2195
2196 )))
2197
2198 (((
2199 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2200 )))
2201
2202 (((
2203
2204
2205 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2206
2207
2208 )))
2209
2210 (((
2211 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2212 )))
2213
2214
2215 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2216
2217
2218 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2219 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2220
2221
2222 = 8. Ordering information =
2223
2224
2225 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2226
2227 (% style="color:#4f81bd" %)**XXX:**
2228
2229 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2230 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2231 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2232 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2233 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2234 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2235 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2236 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2237 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2238
2239 = 9. Packing information =
2240
2241
2242 **Package includes**:
2243
2244 * 1 x LT-22222-L I/O Controller
2245 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2246 * 1 x bracket for DIN rail mounting
2247 * 1 x 3.5mm programming cable
2248
2249 **Dimension and weight**:
2250
2251 * Device Size: 13.5 x 7 x 3 cm
2252 * Device Weight: 105 g
2253 * Package Size / pcs : 14.5 x 8 x 5 cm
2254 * Weight / pcs : 170 g
2255
2256 = 10. Support =
2257
2258
2259 * (((
2260 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2261 )))
2262 * (((
2263 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2264
2265
2266 )))
2267
2268 = 11. Reference​​​​​ =
2269
2270
2271 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2272 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2273 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0