Version 185.1 by Dilisi S on 2024/11/10 05:32

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52 == 1.2 Specifications ==
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * STM32L072xxxx MCU
57 * SX1276/78 Wireless Chip 
58 * Power Consumption:
59 ** Idle: 4mA@12v
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 Mhz
76 ** Band 2 (LF): 410 ~~ 528 Mhz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol
96 * Optional Customized LoRa Protocol
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
98 * AT Commands to change parameters
99 * Remotely configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Counting
102
103 == 1.4 Applications ==
104
105 * Smart Buildings & Home Automation
106 * Logistics and Supply Chain Management
107 * Smart Metering
108 * Smart Agriculture
109 * Smart Cities
110 * Smart Factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
117 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
118 (% style="text-align:center" %)
119 [[image:image-20230424115112-1.png||height="106" width="58"]]
120 )))|(% style="width:334px" %)(((
121 * 2 x Digital Input (Bi-direction)
122 * 2 x Digital Output
123 * 2 x Relay Output (5A@250VAC / 30VDC)
124 * 2 x 0~~20mA Analog Input (res:0.01mA)
125 * 2 x 0~~30V Analog Input (res:0.01v)
126 * 1 x Counting Port
127 )))
128
129 = 2. Assembling =
130
131 Attach the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
132
133 == 2.2 Terminals ==
134
135 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
136
137 Upper screw terminal block (from left to right):
138
139 (% style="width:634px" %)
140 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
141 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
142 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
143 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
144 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
145 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
146 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
147
148 Lower screw terminal block (from left to right):
149
150 (% style="width:633px" %)
151 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
152 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
153 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
154 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
155 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
156 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
157 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
158 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
159 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
160 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
161 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
162
163 == 2.3 Powering the device ==
164
165 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
166
167 Powering on the device
168
169 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
170
171 {{warning}}
172 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
173 {{/warning}}
174
175
176 [[image:1653297104069-180.png]]
177
178
179 = 3. Registering with a LoRaWAN Network Server =
180
181 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
182
183 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
184
185 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
186
187 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
188
189 [[image:image-20220523172350-1.png||height="266" width="864"]]
190
191 === 3.2.1 Prerequisites ===
192
193 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 [[image:image-20230425173427-2.png||height="246" width="530"]]
196
197 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
198
199 === 3.2.2 The Things Stack Sandbox (TTSS) ===
200
201 The Things Stack Sandbox was formally called The Things Stack Community Edition.
202
203 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
204 * Create an application with The Things Stack if you do not have one yet.
205 * Go to your application page and click on the **End devices** in the left menu.
206 * On the End devices page, click on **+ Register end device**. Two registration options are available:
207
208
209 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
210
211 * On the **Register end device** page:
212 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
213 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
214 *** **End device brand**: Dragino Technology Co., Limited
215 *** **Model**: LT22222-L I/O Controller
216 *** **Hardware ver**: Unknown
217 *** **Firmware ver**: 1.6.0
218 *** **Profile (Region)**: Select the region that matches your device.
219 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
220
221 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
222
223
224 * Register end device page continued...
225 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
226 ** In the **DevEUI** field, enter the **DevEUI**.
227 ** In the **AppKey** field, enter the **AppKey.**
228 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
229 ** Under **After registration**, select the **View registered end device** option.
230
231 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
232
233 ==== ====
234
235 ==== 3.2.2.2 Adding device manually ====
236
237 * On the **Register end device** page:
238 ** Select the option **Enter end device specifies manually** under **Input method**.
239 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
240 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
241 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
242 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
243 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
244 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
245
246 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
247
248
249 * Register end device page continued...
250 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
251 ** In the **DevEUI** field, enter the **DevEUI**.
252 ** In the **AppKey** field, enter the **AppKey**.
253 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
254 ** Under **After registration**, select the **View registered end device** option.
255 ** Click the **Register end device** button.
256
257 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
258
259
260 You will be navigated to the **Device overview** page.
261
262
263 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
264
265
266 ==== 3.2.2.3 Joining ====
267
268 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
269
270 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
271
272
273 [[image:lt-22222-join-network.png||height="625" width="1000"]]
274
275
276 By default, you will receive an uplink data message from the device every 10 minutes.
277
278 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
279
280 [[image:lt-22222-ul-payload-decoded.png]]
281
282
283 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
284
285 {{info}}
286 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
287 {{/info}}
288
289 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
290
291
292 == 3.3 Work Modes and their Uplink Payload formats ==
293
294
295 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
296
297 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
298
299 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
300
301 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
302
303 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
304
305 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
306
307 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
308
309 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
310
311 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
312
313 (((
314 This is the default mode.
315
316 The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
319 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
320 |Value|(((
321 AVI1 voltage
322 )))|(((
323 AVI2 voltage
324 )))|(((
325 ACI1 Current
326 )))|(((
327 ACI2 Current
328 )))|**DIDORO***|(((
329 Reserve
330 )))|MOD
331 )))
332
333 (((
334 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
335
336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
337 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
338 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
339 )))
340
341 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
342 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
343 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
344
345 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
346
347 For example, if the payload is: [[image:image-20220523175847-2.png]]
348
349
350 **The interface values can be calculated as follows:  **
351
352 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
353
354 AVI2 channel voltage is 0x04AC/1000=1.196V
355
356 ACI1 channel current is 0x1310/1000=4.880mA
357
358 ACI2 channel current is 0x1300/1000=4.864mA
359
360 The last byte 0xAA= **10101010**(b) means,
361
362 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
363 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
364 * **[1] DI3 - not used for LT-22222-L.**
365 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
366 * [1] DI1 channel input state:
367 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
368 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
369 ** DI1 LED is ON in both cases.
370 * **[0] DO3 - not used for LT-22222-L.**
371 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
372 * [0] DO1 channel output state:
373 ** DO1 is FLOATING when there is no load between DO1 and V+.
374 ** DO1 is HIGH when there is a load between DO1 and V+.
375 ** DO1 LED is OFF in both cases.
376
377 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
378
379
380 (((
381 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
382 )))
383
384 (((
385 The uplink payload is 11 bytes long.
386
387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
388 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
389 |Value|COUNT1|COUNT2 |DIDORO*|(((
390 Reserve
391 )))|MOD
392 )))
393
394 (((
395 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
398 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
399 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
400
401 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
402 )))
403
404 * FIRST: Indicates that this is the first packet after joining the network.
405 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
406
407 (((
408 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
409
410
411 )))
412
413 (((
414 **To activate this mode, run the following AT commands:**
415 )))
416
417 (((
418 (% class="box infomessage" %)
419 (((
420 **AT+MOD=2**
421
422 **ATZ**
423 )))
424 )))
425
426 (((
427
428
429 (% style="color:#4f81bd" %)**AT Commands for counting:**
430 )))
431
432 (((
433 **For LT22222-L:**
434
435 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
438
439 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
440
441 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
442
443 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
444
445 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
446 )))
447
448
449 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
450
451
452 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
456 |Value|COUNT1|(((
457 ACI1 Current
458 )))|(((
459 ACI2 Current
460 )))|DIDORO*|Reserve|MOD
461
462 (((
463 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
464
465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
466 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
467 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
468 )))
469
470 * RO is for the relay. ROx=1: closed, ROx=0 always open.
471 * FIRST: Indicates that this is the first packet after joining the network.
472 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
473
474 (((
475 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
476 )))
477
478
479 (((
480 **To activate this mode, run the following AT commands:**
481 )))
482
483 (((
484 (% class="box infomessage" %)
485 (((
486 **AT+MOD=3**
487
488 **ATZ**
489 )))
490 )))
491
492 (((
493 AT Commands for counting:
494
495 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
496 )))
497
498
499 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
500
501
502 (((
503 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
504 )))
505
506 (((
507 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
508
509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
510 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
511 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
512 Reserve
513 )))|MOD
514 )))
515
516 (((
517 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
521 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
522 )))
523
524 * RO is for the relay. ROx=1: closed, ROx=0 always open.
525 * FIRST: Indicates that this is the first packet after joining the network.
526 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
527
528 (((
529 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
530
531
532 )))
533
534 (((
535 **To activate this mode, run the following AT commands:**
536 )))
537
538 (((
539 (% class="box infomessage" %)
540 (((
541 **AT+MOD=4**
542
543 **ATZ**
544 )))
545 )))
546
547 (((
548 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
549 )))
550
551 (((
552 **In addition to that, below are the commands for AVI1 Counting:**
553
554 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
555
556 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
557
558 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
559
560 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
561 )))
562
563
564 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
565
566
567 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
568
569 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
570 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
571 |Value|(((
572 AVI1 voltage
573 )))|(((
574 AVI2 voltage
575 )))|(((
576 ACI1 Current
577 )))|COUNT1|DIDORO*|(((
578 Reserve
579 )))|MOD
580
581 (((
582 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
583
584 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
585 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
586 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
587 )))
588
589 * RO is for the relay. ROx=1: closed, ROx=0 always open.
590 * FIRST: Indicates that this is the first packet after joining the network.
591 * (((
592 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
593 )))
594
595 (((
596 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
597 )))
598
599 (((
600 **To activate this mode, run the following AT commands:**
601 )))
602
603 (((
604 (% class="box infomessage" %)
605 (((
606 **AT+MOD=5**
607
608 **ATZ**
609 )))
610 )))
611
612 (((
613 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
614 )))
615
616
617 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
618
619
620 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
621
622 For example, if you configured the following commands:
623
624 * **AT+MOD=1 ** **~-~->**  The normal working mode
625 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
626
627 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
628
629 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
630 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
631
632 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
633
634 (% style="color:#4f81bd" %)**Trigger based on voltage**:
635
636 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
637
638
639 **Example:**
640
641 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
642
643 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
644
645
646 (% style="color:#4f81bd" %)**Trigger based on current**:
647
648 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
649
650
651 **Example:**
652
653 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
654
655
656 (% style="color:#4f81bd" %)**Trigger based on DI status**:
657
658 DI status triggers Flag.
659
660 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
661
662
663 **Example:**
664
665 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
666
667
668 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
669
670 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
671
672 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
673
674 AA: Type Code for this downlink Command:
675
676 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
677
678 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
679
680 yy2 yy2: AC1 or AV1 HIGH limit.
681
682 yy3 yy3: AC2 or AV2 LOW limit.
683
684 Yy4 yy4: AC2 or AV2 HIGH limit.
685
686
687 **Example 1**: AA 00 13 88 00 00 00 00 00 00
688
689 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
690
691
692 **Example 2**: AA 02 01 00
693
694 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
695
696
697 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
698
699 MOD6 Payload: total of 11 bytes
700
701 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
702 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
703 |Value|(((
704 TRI_A FLAG
705 )))|(((
706 TRI_A Status
707 )))|(((
708 TRI_DI FLAG+STA
709 )))|Reserve|Enable/Disable MOD6|(((
710 MOD(6)
711 )))
712
713 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
714
715 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
717 |(((
718 AV1_LOW
719 )))|(((
720 AV1_HIGH
721 )))|(((
722 AV2_LOW
723 )))|(((
724 AV2_HIGH
725 )))|(((
726 AC1_LOW
727 )))|(((
728 AC1_HIGH
729 )))|(((
730 AC2_LOW
731 )))|(((
732 AC2_HIGH
733 )))
734
735 * Each bit shows if the corresponding trigger has been configured.
736
737 **Example:**
738
739 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
740
741
742 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
743
744 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
745 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
746 |(((
747 AV1_LOW
748 )))|(((
749 AV1_HIGH
750 )))|(((
751 AV2_LOW
752 )))|(((
753 AV2_HIGH
754 )))|(((
755 AC1_LOW
756 )))|(((
757 AC1_HIGH
758 )))|(((
759 AC2_LOW
760 )))|(((
761 AC2_HIGH
762 )))
763
764 * Each bit shows which status has been triggered on this uplink.
765
766 **Example:**
767
768 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
769
770
771 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
772
773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
774 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
775 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
776
777 * Each bits shows which status has been triggered on this uplink.
778
779 **Example:**
780
781 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
782
783 00000101: Means both DI1 and DI2 trigger are enabled.
784
785
786 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
787
788 Downlink command to poll MOD6 status:
789
790 **AB 06**
791
792 When device got this command, it will send the MOD6 payload.
793
794
795 === 3.3.7 Payload Decoder ===
796
797 (((
798
799
800 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
801 )))
802
803
804 == 3.4 ​Configure LT via AT Commands or Downlinks ==
805
806
807 (((
808 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
809 )))
810
811 (((
812 (((
813 There are two kinds of Commands:
814 )))
815 )))
816
817 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
818
819 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
820
821 === 3.4.1 Common Commands ===
822
823 (((
824 These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
825 )))
826
827
828 === 3.4.2 Sensor related commands ===
829
830 ==== 3.4.2.1 Set Transmit Interval ====
831
832 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
833
834 * (% style="color:#037691" %)**AT command:**
835
836 (% style="color:blue" %)**AT+TDC=N**
837
838 where N is the time in milliseconds.
839
840 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
841
842
843 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
844
845 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
846
847
848
849 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
850
851
852 Sets the work mode.
853
854 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
855
856 Where N is the work mode.
857
858 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
859
860
861 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
862
863 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
864
865
866
867 ==== 3.4.2.3 Poll an uplink ====
868
869
870 Asks the device to send an uplink.
871
872 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
873
874 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
875
876 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
877
878 **Example**: 0x08FF, ask device to send an Uplink
879
880
881
882 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
883
884
885 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
886
887 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
888
889 (% style="color:red" %)**1:** (%%)Enable the trigger mode
890
891 (% style="color:red" %)**0: **(%%)Disable the trigger mode
892
893
894 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
895
896 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
897
898
899
900 ==== 3.4.2.5 Poll trigger settings ====
901
902
903 Polls the trigger settings
904
905 * (% style="color:#037691" %)**AT Command:**
906
907 There is no AT Command for this feature.
908
909 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
910
911 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
912
913
914
915 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
916
917
918 Enable or Disable DI1/DI2/DI2 as trigger,
919
920 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
921
922 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
923
924
925 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
926
927 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
928
929
930
931 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
932
933
934 Set DI1 or DI3(for LT-33222-L) trigger.
935
936 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
937
938 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
939
940 (% style="color:red" %)**b :** (%%)delay timing.
941
942 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
946
947 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
948
949
950
951 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
952
953
954 Sets DI2 trigger.
955
956 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
957
958 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
959
960 (% style="color:red" %)**b :** (%%)delay timing.
961
962 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
963
964
965 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
966
967 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
968
969
970
971 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
972
973
974 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
975
976 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
979
980 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
981
982
983
984 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
985
986
987 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
988
989 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
990
991 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
992
993 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
994
995
996
997 ==== 3.4.2.11 Trigger – Set minimum interval ====
998
999
1000 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1001
1002 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1003
1004 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1005
1006 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1007
1008 (((
1009 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1010 )))
1011
1012
1013
1014 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1015
1016
1017 * (% style="color:#037691" %)**AT Command**
1018
1019 There is no AT Command to control Digital Output
1020
1021
1022 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1023
1024 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1025
1026 (((
1027 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1028 )))
1029
1030 (((
1031 01: Low,  00: High ,  11: No action
1032
1033 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1034 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1035 |02  01  00  11|Low|High|No Action
1036 |02  00  11  01|High|No Action|Low
1037 |02  11  01  00|No Action|Low|High
1038 )))
1039
1040 (((
1041 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1042 )))
1043
1044 (((
1045 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1046 )))
1047
1048
1049
1050 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1051
1052
1053 * (% style="color:#037691" %)**AT Command**
1054
1055 There is no AT Command to control Digital Output
1056
1057
1058 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1059
1060 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1061
1062
1063 This is to control the digital output time of DO pin. Include four bytes:
1064
1065 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1066
1067 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1068
1069 01: DO pins will change back to original state after timeout.
1070
1071 00: DO pins will change to an inverter state after timeout 
1072
1073
1074 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1075
1076 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1077 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1078 |0x01|DO1 set to low
1079 |0x00|DO1 set to high
1080 |0x11|DO1 NO Action
1081
1082 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1083
1084 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1085 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1086 |0x01|DO2 set to low
1087 |0x00|DO2 set to high
1088 |0x11|DO2 NO Action
1089
1090 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1091
1092 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1093 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1094 |0x01|DO3 set to low
1095 |0x00|DO3 set to high
1096 |0x11|DO3 NO Action
1097
1098 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1099
1100
1101 (% style="color:red" %)**Note: **
1102
1103 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1104
1105 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1106
1107 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1108
1109
1110 **Example payload:**
1111
1112 **~1. A9 01 01 01 01 07 D0**
1113
1114 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1115
1116 **2. A9 01 00 01 11 07 D0**
1117
1118 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1119
1120 **3. A9 00 00 00 00 07 D0**
1121
1122 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1123
1124 **4. A9 00 11 01 00 07 D0**
1125
1126 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1127
1128
1129
1130 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1131
1132
1133 * (% style="color:#037691" %)**AT Command:**
1134
1135 There is no AT Command to control Relay Output
1136
1137
1138 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1139
1140 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1141
1142
1143 (((
1144 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1145 )))
1146
1147 (((
1148 00: Closed ,  01: Open , 11: No action
1149
1150 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1151 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1152 |03  00  11|Open|No Action
1153 |03  01  11|Close|No Action
1154 |03  11  00|No Action|Open
1155 |03  11  01|No Action|Close
1156 |03  00  00|Open|Open
1157 |03  01  01|Close|Close
1158 |03  01  00|Close|Open
1159 |03  00  01|Open|Close
1160 )))
1161
1162 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1163
1164
1165
1166 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1167
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 There is no AT Command to control Relay Output
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1175
1176 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1177
1178
1179 This is to control the relay output time of relay. Include four bytes:
1180
1181 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1182
1183 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1184
1185 01: Relays will change back to original state after timeout.
1186
1187 00: Relays will change to an inverter state after timeout
1188
1189
1190 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1191
1192 [[image:image-20221008095908-1.png||height="364" width="564"]]
1193
1194
1195 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1196
1197
1198 (% style="color:red" %)**Note:**
1199
1200 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1201
1202 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1203
1204
1205 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1206
1207
1208 **Example payload:**
1209
1210 **~1. 05 01 11 07 D0**
1211
1212 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1213
1214 **2. 05 01 10 07 D0**
1215
1216 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1217
1218 **3. 05 00 01 07 D0**
1219
1220 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1221
1222 **4. 05 00 00 07 D0**
1223
1224 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1225
1226
1227
1228 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1229
1230
1231 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1232
1233 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1234
1235 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1236
1237 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1238
1239
1240
1241 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1242
1243
1244 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1245
1246 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1247
1248 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1249
1250
1251 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1252
1253 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1254
1255
1256
1257 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1258
1259
1260 Clear counting for counting mode
1261
1262 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1263
1264 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1265
1266 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1267
1268
1269
1270 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1271
1272
1273 * (% style="color:#037691" %)**AT Command:**
1274
1275 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1276
1277
1278 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1279
1280 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1281
1282 (((
1283 range: aa bb cc:0 to 16777215,  (unit:second)
1284 )))
1285
1286
1287
1288 ==== 3.4.2.20 Reset save RO DO state ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1294
1295 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1296
1297
1298 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1299
1300 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1301
1302
1303
1304 ==== 3.4.2.21 Encrypted payload ====
1305
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1310
1311 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1312
1313
1314
1315 ==== 3.4.2.22 Get sensor value ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command:**
1319
1320 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1321
1322 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1323
1324
1325
1326 ==== 3.4.2.23 Resets the downlink packet count ====
1327
1328
1329 * (% style="color:#037691" %)**AT Command:**
1330
1331 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1332
1333 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1334
1335
1336
1337 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1338
1339
1340 * (% style="color:#037691" %)**AT Command:**
1341
1342 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1343
1344 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1345
1346
1347 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1348
1349 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1350
1351
1352
1353 ==== 3.4.2.25 Copy downlink to uplink ====
1354
1355
1356 * (% style="color:#037691" %)**AT Command**(%%)**:**
1357
1358 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1359
1360 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1361
1362
1363 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1364
1365 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1366
1367
1368
1369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1370
1371 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1372
1373
1374
1375 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1376
1377
1378 * (((
1379 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1380
1381 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1382
1383
1384 )))
1385
1386 **Example:**
1387
1388 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1389
1390
1391 == 3.5 Integrating with ThingsEye.io ==
1392
1393 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1394
1395 === 3.5.1 Configuring The Things Stack ===
1396
1397 We use The Things Stack Sandbox in this example:
1398
1399 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1400 * Select **MQTT** under **Integrations** in the left menu.
1401 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1402 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1403
1404 {{info}}
1405 The username and  password (API key) you created here are required in the next section.
1406 {{/info}}
1407
1408 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1409
1410 === 3.5.2 Configuring ThingsEye.io ===
1411
1412 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1413 * Under the **Integrations center**, click **Integrations**.
1414 * Click the **Add integration** button (the button with the **+** symbol).
1415
1416 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1417
1418
1419 On the **Add integration** window, configure the following:
1420
1421 **Basic settings:**
1422
1423 * Select **The Things Stack Community** from the **Integration type** list.
1424 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1425 * Ensure the following options are turned on.
1426 ** Enable integration
1427 ** Debug mode
1428 ** Allow create devices or assets
1429 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1430
1431 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1432
1433
1434 **Uplink data converter:**
1435
1436 * Click the **Create new** button if it is not selected by default.
1437 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1438 * Click the **JavaScript** button.
1439 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1440 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1441
1442 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1443
1444
1445 **Downlink data converter (this is an optional step):**
1446
1447 * Click the **Create new** button if it is not selected by default.
1448 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1449 * Click the **JavaScript** button.
1450 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1451 * Click the **Next** button. You will be navigated to the **Connection** tab.
1452
1453 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1454
1455
1456 **Connection:**
1457
1458 * Choose **Region** from the **Host type**.
1459 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1460 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1461 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1462
1463 [[image:message-1.png]]
1464
1465
1466 * Click the **Add** button.
1467
1468 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1469
1470
1471 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1472
1473
1474 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1475
1476
1477 **Viewing integration details**:
1478
1479 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1480
1481 [[image:integration-details.png||height="686" width="1000"]]
1482
1483
1484 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1485
1486 {{info}}
1487 See also ThingsEye documentation.
1488 {{/info}}
1489
1490 **Viewing events:**
1491
1492 The **Events **tab displays all the uplink messages from the LT-22222-L.
1493
1494 * Select **Debug **from the **Event type** dropdown.
1495 * Select the** time frame** from the **time window**.
1496
1497 [[image:thingseye-events.png||height="686" width="1000"]]
1498
1499
1500 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1501
1502 [[image:thingseye-json.png||width="1000"]]
1503
1504
1505 **Deleting the integration**:
1506
1507 If you want to delete this integration, click the **Delete integratio**n button.
1508
1509
1510 == 3.6 Interface Details ==
1511
1512 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1513
1514
1515 Support NPN-type sensor
1516
1517 [[image:1653356991268-289.png]]
1518
1519
1520 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1521
1522
1523 (((
1524 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1525 )))
1526
1527 (((
1528 (((
1529 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1530
1531
1532 )))
1533 )))
1534
1535 [[image:1653357170703-587.png]]
1536
1537 (((
1538 (((
1539 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1540 )))
1541 )))
1542
1543 (((
1544
1545 )))
1546
1547 (((
1548 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1549 )))
1550
1551 (((
1552 This type of sensor outputs a low (GND) signal when active.
1553 )))
1554
1555 * (((
1556 Connect the sensor's output to DI1-
1557 )))
1558 * (((
1559 Connect the sensor's VCC to DI1+.
1560 )))
1561
1562 (((
1563 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1564 )))
1565
1566 (((
1567 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1568 )))
1569
1570 (((
1571 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1572 )))
1573
1574 (((
1575
1576 )))
1577
1578 (((
1579 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1580 )))
1581
1582 (((
1583 This type of sensor outputs a high signal (e.g., 24V) when active.
1584 )))
1585
1586 * (((
1587 Connect the sensor's output to DI1+
1588 )))
1589 * (((
1590 Connect the sensor's GND DI1-.
1591 )))
1592
1593 (((
1594 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1595 )))
1596
1597 (((
1598 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1599 )))
1600
1601 (((
1602 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1603 )))
1604
1605 (((
1606
1607 )))
1608
1609 (((
1610 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1611 )))
1612
1613 (((
1614 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1615 )))
1616
1617 * (((
1618 Connect the sensor's output to DI1+ with a 50K resistor in series.
1619 )))
1620 * (((
1621 Connect the sensor's GND DI1-.
1622 )))
1623
1624 (((
1625 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1626 )))
1627
1628 (((
1629 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1630 )))
1631
1632 (((
1633 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1634 )))
1635
1636
1637 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1638
1639 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1640
1641 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1642
1643 [[image:image-20230616235145-1.png]]
1644
1645 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1646
1647 [[image:image-20240219115718-1.png]]
1648
1649
1650 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1651
1652
1653 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1654
1655 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1656
1657 [[image:1653357531600-905.png]]
1658
1659
1660 === 3.6.4 Analog Input Interfaces ===
1661
1662
1663 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1664
1665
1666 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1667
1668 [[image:1653357592296-182.png]]
1669
1670 Example: Connecting a 4~~20mA sensor
1671
1672 We will use the wind speed sensor as an example for reference only.
1673
1674
1675 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1676
1677 (% style="color:red" %)**Red:  12~~24V**
1678
1679 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1680
1681 **Black:  GND**
1682
1683 **Connection diagram:**
1684
1685 [[image:1653357640609-758.png]]
1686
1687 [[image:1653357648330-671.png||height="155" width="733"]]
1688
1689
1690 Example: Connecting to a regulated power supply to measure voltage
1691
1692 [[image:image-20230608101532-1.png||height="606" width="447"]]
1693
1694 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1695
1696 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1697
1698
1699 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1700
1701 (% style="color:red" %)**Red:  12~~24v**
1702
1703 **Black:  GND**
1704
1705
1706 === 3.6.5 Relay Output ===
1707
1708
1709 (((
1710 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1711
1712 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1713 )))
1714
1715 [[image:image-20220524100215-9.png]]
1716
1717
1718 [[image:image-20220524100215-10.png||height="382" width="723"]]
1719
1720
1721 == 3.7 LEDs Indicators ==
1722
1723
1724 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1725 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1726 |**PWR**|Always on if there is power
1727 |**TX**|(((
1728 (((
1729 Device boot: TX blinks 5 times.
1730 )))
1731
1732 (((
1733 Successful join network: TX ON for 5 seconds.
1734 )))
1735
1736 (((
1737 Transmit a LoRa packet: TX blinks once
1738 )))
1739 )))
1740 |**RX**|RX blinks once when receiving a packet.
1741 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1742 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1743 |**DI1**|(((
1744 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1745 )))
1746 |**DI2**|(((
1747 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1748 )))
1749 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1750 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1751
1752 = 4. Using AT Commands =
1753
1754 The LT-22222-L supports programming using AT Commands.
1755
1756 == 4.1 Connecting the LT-22222-L to a PC ==
1757
1758 (((
1759 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1760 )))
1761
1762 [[image:1653358238933-385.png]]
1763
1764
1765 (((
1766 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1767 )))
1768
1769 [[image:1653358355238-883.png]]
1770
1771
1772 (((
1773 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1774
1775 == 4.2 LT-22222-L related AT commands ==
1776 )))
1777
1778 (((
1779 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1780
1781 * AT+<CMD>? : Help on <CMD>
1782 * AT+<CMD> : Run <CMD>
1783 * AT+<CMD>=<value> : Set the value
1784 * AT+<CMD>=? : Get the value
1785 * ATZ: Trigger a reset of the MCU
1786 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1787 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1788 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1789 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1790 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1791 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1792 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1793 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1794 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1795 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1796 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1797 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1798 * AT+RX2FQ: Get or set the Rx2 window frequency
1799 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1801 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1802 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1803 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1804 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1805 * AT+NWKID: Get or set the Network ID
1806 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1807 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1808 * AT+CLASS: Get or set the Device Class
1809 * AT+JOIN: Join network
1810 * AT+NJS: Get OTAA Join Status
1811 * AT+SENDB: Send hexadecimal data along with the application port
1812 * AT+SEND: Send text data along with the application port
1813 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1814 * AT+RECV: Print last received data in raw format
1815 * AT+VER: Get current image version and Frequency Band
1816 * AT+CFM: Get or Set the confirmation mode (0-1)
1817 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1818 * AT+SNR: Get the SNR of the last received packet
1819 * AT+RSSI: Get the RSSI of the last received packet
1820 * AT+TDC: Get or set the application data transmission interval in ms
1821 * AT+PORT: Get or set the application port
1822 * AT+DISAT: Disable AT commands
1823 * AT+PWORD: Set password, max 9 digits
1824 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1825 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1826 * AT+CFG: Print all settings
1827 )))
1828
1829
1830 == 4.2 Common AT Command Sequence ==
1831
1832 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1833
1834 (((
1835
1836
1837 (((
1838 (% style="color:blue" %)**If the device has not joined the network yet:**
1839 )))
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1848 )))
1849
1850 (((
1851 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1852 )))
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1856 )))
1857
1858 (((
1859 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1860 )))
1861
1862
1863 (((
1864 (% style="color:blue" %)**If the device has already joined the network:**
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)##**ATZ**##
1873 )))
1874
1875
1876 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1877
1878 (((
1879
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1883 )))
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1932
1933
1934 )))
1935
1936 (((
1937 (% style="color:red" %)**Note:**
1938 )))
1939
1940 (((
1941 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1942
1943 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1944
1945 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1946 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1947
1948 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1949 )))
1950
1951 (((
1952 [[image:1653359097980-169.png||height="188" width="729"]]
1953 )))
1954
1955
1956 === 4.2.3 Change to Class A ===
1957
1958
1959 (((
1960 (% style="color:blue" %)**If sensor JOINED:**
1961
1962 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1963
1964 (% style="background-color:#dcdcdc" %)**ATZ**
1965 )))
1966
1967
1968 = 5. Case Study =
1969
1970 == 5.1 Counting how many objects pass through the flow Line ==
1971
1972
1973 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1974
1975
1976 = 6. FAQ =
1977
1978 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1979
1980 == 6.1 How to update the firmware? ==
1981
1982 Dragino frequently releases firmware updates for the LT-22222-L.
1983
1984 Updating your LT-22222-L with the latest firmware version helps to:
1985
1986 * Support new features
1987 * Fix bugs
1988 * Change LoRaWAN frequency bands
1989
1990 You will need the following things before proceeding:
1991
1992 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1993 * USB to TTL adapter
1994 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1995 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1996
1997 {{info}}
1998 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1999 {{/info}}
2000
2001 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2002
2003
2004 [[image:1653359603330-121.png]]
2005
2006
2007 Start the STM32 Flash Loader and choose the correct COM port to update.
2008
2009 (((
2010 (((
2011 (% style="color:blue" %)**For LT-22222-L**(%%):
2012
2013 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2014 )))
2015
2016
2017 )))
2018
2019 [[image:image-20220524103407-12.png]]
2020
2021
2022 [[image:image-20220524103429-13.png]]
2023
2024
2025 [[image:image-20220524104033-15.png]]
2026
2027
2028 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2029
2030 [[image:1653360054704-518.png||height="186" width="745"]]
2031
2032
2033 (((
2034 (((
2035 == 6.2 How to change the LoRaWAN frequency band/region? ==
2036
2037
2038 )))
2039 )))
2040
2041 (((
2042 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2043 )))
2044
2045 (((
2046
2047
2048 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2049
2050
2051 )))
2052
2053 (((
2054 (((
2055 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2056 )))
2057 )))
2058
2059 (((
2060 (((
2061 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2062
2063
2064 )))
2065 )))
2066
2067 (((
2068 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2069
2070
2071 )))
2072
2073 (((
2074 [[image:1653360231087-571.png||height="401" width="727"]]
2075
2076
2077 )))
2078
2079 (((
2080 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2081 )))
2082
2083
2084
2085 (((
2086 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2087
2088
2089 )))
2090
2091 (((
2092 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2093
2094 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2095
2096 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2097
2098 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2099
2100 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2101
2102 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2103
2104 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2105
2106 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2107
2108 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2109 )))
2110
2111
2112 (((
2113 As shown in below:
2114 )))
2115
2116 [[image:1653360498588-932.png||height="485" width="726"]]
2117
2118
2119 == 6.4 How to change the uplink interval? ==
2120
2121
2122 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2123
2124
2125 == 6.5 Can I see the counting event in the serial output? ==
2126
2127
2128 (((
2129 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2130
2131
2132 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2133
2134
2135 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2136 )))
2137
2138 (((
2139 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2140
2141
2142 * If the device is not properly shut down and is directly powered off.
2143 * It will default to a power-off state.
2144 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2145 * After a restart, the status before the power failure will be read from flash.
2146
2147 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2148
2149
2150 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2151
2152
2153 [[image:image-20221006170630-1.png||height="610" width="945"]]
2154
2155
2156 == 6.9 Can the LT-22222-L save the RO state? ==
2157
2158
2159 The firmware version must be at least 1.6.0.
2160
2161
2162 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2163
2164
2165 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2166
2167
2168 = 7. Troubleshooting =
2169 )))
2170
2171 (((
2172 (((
2173 == 7.1 Downlink isn't working. How can I solve this? ==
2174
2175
2176 )))
2177 )))
2178
2179 (((
2180 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2181 )))
2182
2183 (((
2184
2185
2186 == 7.2 Having trouble uploading an image? ==
2187
2188
2189 )))
2190
2191 (((
2192 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2193 )))
2194
2195 (((
2196
2197
2198 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2199
2200
2201 )))
2202
2203 (((
2204 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2205 )))
2206
2207
2208 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2209
2210
2211 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2212 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2213
2214
2215 = 8. Ordering information =
2216
2217
2218 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2219
2220 (% style="color:#4f81bd" %)**XXX:**
2221
2222 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2223 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2224 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2225 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2226 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2227 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2228 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2229 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2230 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2231
2232 = 9. Packing information =
2233
2234
2235 **Package includes**:
2236
2237 * 1 x LT-22222-L I/O Controller
2238 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2239 * 1 x bracket for DIN rail mounting
2240 * 1 x 3.5mm programming cable
2241
2242 **Dimension and weight**:
2243
2244 * Device Size: 13.5 x 7 x 3 cm
2245 * Device Weight: 105 g
2246 * Package Size / pcs : 14.5 x 8 x 5 cm
2247 * Weight / pcs : 170 g
2248
2249 = 10. Support =
2250
2251
2252 * (((
2253 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2254 )))
2255 * (((
2256 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2257
2258
2259 )))
2260
2261 = 11. Reference​​​​​ =
2262
2263
2264 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2265 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2266 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]