Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52 == 1.2 Specifications ==
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * STM32L072xxxx MCU
57 * SX1276/78 Wireless Chip 
58 * Power Consumption:
59 ** Idle: 4mA@12v
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 Mhz
76 ** Band 2 (LF): 410 ~~ 528 Mhz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol
96 * Optional Customized LoRa Protocol
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
98 * AT Commands to change parameters
99 * Remotely configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Counting
102
103 == 1.4 Applications ==
104
105 * Smart Buildings & Home Automation
106 * Logistics and Supply Chain Management
107 * Smart Metering
108 * Smart Agriculture
109 * Smart Cities
110 * Smart Factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
117 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
118 (% style="text-align:center" %)
119 [[image:image-20230424115112-1.png||height="106" width="58"]]
120 )))|(% style="width:334px" %)(((
121 * 2 x Digital Input (Bi-direction)
122 * 2 x Digital Output
123 * 2 x Relay Output (5A@250VAC / 30VDC)
124 * 2 x 0~~20mA Analog Input (res:0.01mA)
125 * 2 x 0~~30V Analog Input (res:0.01v)
126 * 1 x Counting Port
127 )))
128
129 = 2. Assembling the Device =
130
131 == 2.1 What is included in the package? ==
132
133 The package includes the following items:
134
135 * 1 x LT-22222-L I/O Controller
136 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 * 1 x bracket for DIN rail mounting
138 * 1 x programming cable
139
140 Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
141
142 == 2.2 Terminals ==
143
144 Upper screw terminal block (from left to right):
145
146 (% style="width:634px" %)
147 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154
155 Lower screw terminal block (from left to right):
156
157 (% style="width:633px" %)
158 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169
170 == 2.3 Powering the LT-22222-L ==
171
172 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173
174
175 [[image:1653297104069-180.png]]
176
177
178 = 3. Operation Mode =
179
180 == 3.1 How does it work? ==
181
182 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
183
184 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
185
186 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
187
188 == 3.2 Registering with a LoRaWAN network server ==
189
190 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
191
192 [[image:image-20220523172350-1.png||height="266" width="864"]]
193
194 === 3.2.1 Prerequisites ===
195
196 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
197
198 [[image:image-20230425173427-2.png||height="246" width="530"]]
199
200 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
201
202 === 3.2.2 The Things Stack Sandbox (TTSS) ===
203
204 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 * Create an application if you do not have one yet.
206 * Register LT-22222-L with that application. Two registration options are available:
207
208 ==== ====
209
210 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220
221 * Page continued...
222 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 ** Enter the **DevEUI** in the **DevEUI** field.
224 ** Enter the **AppKey** in the **AppKey** field.
225 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 ** Under **After registration**, select the **View registered end device** option.
227
228 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
229
230 ==== ====
231
232 ==== 3.2.2.2 Entering device information manually ====
233
234 * On the **Register end device** page:
235 ** Select the **Enter end device specifies manually** option as the input method.
236 ** Select the **Frequency plan** that matches your device.
237 ** Select the **LoRaWAN version**.
238 ** Select the **Regional Parameters version**.
239 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
242
243 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
244
245
246 * Page continued...
247 ** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 ** Enter **DevEUI** in the **DevEUI** field.
249 ** Enter **AppKey** in the **AppKey** field.
250 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 ** Under **After registration**, select the **View registered end device** option.
252 ** Click the **Register end device** button.
253
254 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
255
256
257 You will be navigated to the **Device overview** page.
258
259
260 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
261
262
263 ==== 3.2.2.3 Joining ====
264
265 Click on **Live data** in the left navigation. The Live data panel for your application will display.
266
267 Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268
269
270 [[image:lt-22222-join-network.png||height="625" width="1000"]]
271
272
273 By default, you will receive an uplink data message every 10 minutes.
274
275 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276
277 [[image:lt-22222-ul-payload-decoded.png]]
278
279
280 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281
282 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283
284
285 == 3.3 Work Modes and their Uplink Payload formats ==
286
287
288 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289
290 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291
292 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293
294 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
295
296 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297
298 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
299
300 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
301
302 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303
304 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
305
306 (((
307 This is the default mode.
308
309 The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
313 |Value|(((
314 AVI1 voltage
315 )))|(((
316 AVI2 voltage
317 )))|(((
318 ACI1 Current
319 )))|(((
320 ACI2 Current
321 )))|**DIDORO***|(((
322 Reserve
323 )))|MOD
324 )))
325
326 (((
327 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
332 )))
333
334 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
337
338 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
339
340 For example, if the payload is: [[image:image-20220523175847-2.png]]
341
342
343 **The interface values can be calculated as follows:  **
344
345 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
346
347 AVI2 channel voltage is 0x04AC/1000=1.196V
348
349 ACI1 channel current is 0x1310/1000=4.880mA
350
351 ACI2 channel current is 0x1300/1000=4.864mA
352
353 The last byte 0xAA= **10101010**(b) means,
354
355 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 * **[1] DI3 - not used for LT-22222-L.**
358 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 * [1] DI1 channel input state:
360 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 ** DI1 LED is ON in both cases.
363 * **[0] DO3 - not used for LT-22222-L.**
364 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 * [0] DO1 channel output state:
366 ** DO1 is FLOATING when there is no load between DO1 and V+.
367 ** DO1 is HIGH when there is a load between DO1 and V+.
368 ** DO1 LED is OFF in both cases.
369
370 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
371
372
373 (((
374 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
375 )))
376
377 (((
378 The uplink payload is 11 bytes long.
379
380 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
381 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
382 |Value|COUNT1|COUNT2 |DIDORO*|(((
383 Reserve
384 )))|MOD
385 )))
386
387 (((
388 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
389
390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
391 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
393
394 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
395 )))
396
397 * FIRST: Indicates that this is the first packet after joining the network.
398 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
399
400 (((
401 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
402
403
404 )))
405
406 (((
407 **To activate this mode, run the following AT commands:**
408 )))
409
410 (((
411 (% class="box infomessage" %)
412 (((
413 **AT+MOD=2**
414
415 **ATZ**
416 )))
417 )))
418
419 (((
420
421
422 (% style="color:#4f81bd" %)**AT Commands for counting:**
423 )))
424
425 (((
426 **For LT22222-L:**
427
428 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
429
430 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
431
432 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
433
434 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
435
436 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
437
438 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
439 )))
440
441
442 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
443
444
445 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
446
447 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
448 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
449 |Value|COUNT1|(((
450 ACI1 Current
451 )))|(((
452 ACI2 Current
453 )))|DIDORO*|Reserve|MOD
454
455 (((
456 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
457
458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
459 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
461 )))
462
463 * RO is for the relay. ROx=1: closed, ROx=0 always open.
464 * FIRST: Indicates that this is the first packet after joining the network.
465 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
466
467 (((
468 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
469 )))
470
471
472 (((
473 **To activate this mode, run the following AT commands:**
474 )))
475
476 (((
477 (% class="box infomessage" %)
478 (((
479 **AT+MOD=3**
480
481 **ATZ**
482 )))
483 )))
484
485 (((
486 AT Commands for counting:
487
488 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
489 )))
490
491
492 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
493
494
495 (((
496 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
497 )))
498
499 (((
500 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
501
502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
504 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
505 Reserve
506 )))|MOD
507 )))
508
509 (((
510 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
511
512 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
515 )))
516
517 * RO is for the relay. ROx=1: closed, ROx=0 always open.
518 * FIRST: Indicates that this is the first packet after joining the network.
519 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
520
521 (((
522 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
523
524
525 )))
526
527 (((
528 **To activate this mode, run the following AT commands:**
529 )))
530
531 (((
532 (% class="box infomessage" %)
533 (((
534 **AT+MOD=4**
535
536 **ATZ**
537 )))
538 )))
539
540 (((
541 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
542 )))
543
544 (((
545 **In addition to that, below are the commands for AVI1 Counting:**
546
547 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
548
549 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
550
551 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
552
553 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
554 )))
555
556
557 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
558
559
560 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
561
562 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
564 |Value|(((
565 AVI1 voltage
566 )))|(((
567 AVI2 voltage
568 )))|(((
569 ACI1 Current
570 )))|COUNT1|DIDORO*|(((
571 Reserve
572 )))|MOD
573
574 (((
575 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
576
577 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
579 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
580 )))
581
582 * RO is for the relay. ROx=1: closed, ROx=0 always open.
583 * FIRST: Indicates that this is the first packet after joining the network.
584 * (((
585 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
586 )))
587
588 (((
589 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
590 )))
591
592 (((
593 **To activate this mode, run the following AT commands:**
594 )))
595
596 (((
597 (% class="box infomessage" %)
598 (((
599 **AT+MOD=5**
600
601 **ATZ**
602 )))
603 )))
604
605 (((
606 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
607 )))
608
609
610 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
611
612
613 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
614
615 For example, if you configured the following commands:
616
617 * **AT+MOD=1 ** **~-~->**  The normal working mode
618 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
619
620 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
621
622 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
624
625 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
626
627 (% style="color:#4f81bd" %)**Trigger based on voltage**:
628
629 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
630
631
632 **Example:**
633
634 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
635
636 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
637
638
639 (% style="color:#4f81bd" %)**Trigger based on current**:
640
641 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
642
643
644 **Example:**
645
646 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
647
648
649 (% style="color:#4f81bd" %)**Trigger based on DI status**:
650
651 DI status triggers Flag.
652
653 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
654
655
656 **Example:**
657
658 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
659
660
661 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
662
663 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
664
665 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
666
667 AA: Type Code for this downlink Command:
668
669 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
670
671 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
672
673 yy2 yy2: AC1 or AV1 HIGH limit.
674
675 yy3 yy3: AC2 or AV2 LOW limit.
676
677 Yy4 yy4: AC2 or AV2 HIGH limit.
678
679
680 **Example 1**: AA 00 13 88 00 00 00 00 00 00
681
682 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
683
684
685 **Example 2**: AA 02 01 00
686
687 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
688
689
690 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
691
692 MOD6 Payload: total of 11 bytes
693
694 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
696 |Value|(((
697 TRI_A FLAG
698 )))|(((
699 TRI_A Status
700 )))|(((
701 TRI_DI FLAG+STA
702 )))|Reserve|Enable/Disable MOD6|(((
703 MOD(6)
704 )))
705
706 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
707
708 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
710 |(((
711 AV1_LOW
712 )))|(((
713 AV1_HIGH
714 )))|(((
715 AV2_LOW
716 )))|(((
717 AV2_HIGH
718 )))|(((
719 AC1_LOW
720 )))|(((
721 AC1_HIGH
722 )))|(((
723 AC2_LOW
724 )))|(((
725 AC2_HIGH
726 )))
727
728 * Each bit shows if the corresponding trigger has been configured.
729
730 **Example:**
731
732 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
733
734
735 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
736
737 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
739 |(((
740 AV1_LOW
741 )))|(((
742 AV1_HIGH
743 )))|(((
744 AV2_LOW
745 )))|(((
746 AV2_HIGH
747 )))|(((
748 AC1_LOW
749 )))|(((
750 AC1_HIGH
751 )))|(((
752 AC2_LOW
753 )))|(((
754 AC2_HIGH
755 )))
756
757 * Each bit shows which status has been triggered on this uplink.
758
759 **Example:**
760
761 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
762
763
764 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
765
766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
769
770 * Each bits shows which status has been triggered on this uplink.
771
772 **Example:**
773
774 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
775
776 00000101: Means both DI1 and DI2 trigger are enabled.
777
778
779 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
780
781 Downlink command to poll MOD6 status:
782
783 **AB 06**
784
785 When device got this command, it will send the MOD6 payload.
786
787
788 === 3.3.7 Payload Decoder ===
789
790 (((
791
792
793 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
794 )))
795
796
797 == 3.4 ​Configure LT via AT Commands or Downlinks ==
798
799
800 (((
801 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
802 )))
803
804 (((
805 (((
806 There are two kinds of Commands:
807 )))
808 )))
809
810 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
811
812 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
813
814 === 3.4.1 Common Commands ===
815
816 (((
817 These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
818 )))
819
820
821 === 3.4.2 Sensor related commands ===
822
823 ==== 3.4.2.1 Set Transmit Interval ====
824
825 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
826
827 * (% style="color:#037691" %)**AT command:**
828
829 (% style="color:blue" %)**AT+TDC=N**
830
831 where N is the time in milliseconds.
832
833 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
834
835
836 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
837
838 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
839
840
841
842 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
843
844
845 Sets the work mode.
846
847 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
848
849 Where N is the work mode.
850
851 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
852
853
854 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855
856 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
857
858
859
860 ==== 3.4.2.3 Poll an uplink ====
861
862
863 Asks the device to send an uplink.
864
865 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
866
867 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868
869 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
870
871 **Example**: 0x08FF, ask device to send an Uplink
872
873
874
875 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
876
877
878 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
879
880 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
881
882 (% style="color:red" %)**1:** (%%)Enable the trigger mode
883
884 (% style="color:red" %)**0: **(%%)Disable the trigger mode
885
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
888
889 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
890
891
892
893 ==== 3.4.2.5 Poll trigger settings ====
894
895
896 Polls the trigger settings
897
898 * (% style="color:#037691" %)**AT Command:**
899
900 There is no AT Command for this feature.
901
902 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
903
904 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
905
906
907
908 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
909
910
911 Enable or Disable DI1/DI2/DI2 as trigger,
912
913 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
914
915 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
916
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
919
920 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
921
922
923
924 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
925
926
927 Set DI1 or DI3(for LT-33222-L) trigger.
928
929 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
930
931 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
932
933 (% style="color:red" %)**b :** (%%)delay timing.
934
935 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
936
937
938 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
939
940 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
941
942
943
944 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
945
946
947 Sets DI2 trigger.
948
949 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
950
951 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
952
953 (% style="color:red" %)**b :** (%%)delay timing.
954
955 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
959
960 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
961
962
963
964 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
965
966
967 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
968
969 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
972
973 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
974
975
976
977 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
978
979
980 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
981
982 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
983
984 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
985
986 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
987
988
989
990 ==== 3.4.2.11 Trigger – Set minimum interval ====
991
992
993 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
994
995 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
996
997 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
998
999 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1000
1001 (((
1002 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1003 )))
1004
1005
1006
1007 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1008
1009
1010 * (% style="color:#037691" %)**AT Command**
1011
1012 There is no AT Command to control Digital Output
1013
1014
1015 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1016
1017 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1018
1019 (((
1020 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1021 )))
1022
1023 (((
1024 01: Low,  00: High ,  11: No action
1025
1026 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1028 |02  01  00  11|Low|High|No Action
1029 |02  00  11  01|High|No Action|Low
1030 |02  11  01  00|No Action|Low|High
1031 )))
1032
1033 (((
1034 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1035 )))
1036
1037 (((
1038 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1039 )))
1040
1041
1042
1043 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1044
1045
1046 * (% style="color:#037691" %)**AT Command**
1047
1048 There is no AT Command to control Digital Output
1049
1050
1051 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1052
1053 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1054
1055
1056 This is to control the digital output time of DO pin. Include four bytes:
1057
1058 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1059
1060 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1061
1062 01: DO pins will change back to original state after timeout.
1063
1064 00: DO pins will change to an inverter state after timeout 
1065
1066
1067 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1068
1069 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1070 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1071 |0x01|DO1 set to low
1072 |0x00|DO1 set to high
1073 |0x11|DO1 NO Action
1074
1075 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1076
1077 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1078 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1079 |0x01|DO2 set to low
1080 |0x00|DO2 set to high
1081 |0x11|DO2 NO Action
1082
1083 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1084
1085 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1086 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1087 |0x01|DO3 set to low
1088 |0x00|DO3 set to high
1089 |0x11|DO3 NO Action
1090
1091 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1092
1093
1094 (% style="color:red" %)**Note: **
1095
1096 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1097
1098 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1099
1100 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1101
1102
1103 **Example payload:**
1104
1105 **~1. A9 01 01 01 01 07 D0**
1106
1107 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1108
1109 **2. A9 01 00 01 11 07 D0**
1110
1111 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1112
1113 **3. A9 00 00 00 00 07 D0**
1114
1115 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1116
1117 **4. A9 00 11 01 00 07 D0**
1118
1119 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1120
1121
1122
1123 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1124
1125
1126 * (% style="color:#037691" %)**AT Command:**
1127
1128 There is no AT Command to control Relay Output
1129
1130
1131 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1132
1133 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1134
1135
1136 (((
1137 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1138 )))
1139
1140 (((
1141 00: Closed ,  01: Open , 11: No action
1142
1143 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1144 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1145 |03  00  11|Open|No Action
1146 |03  01  11|Close|No Action
1147 |03  11  00|No Action|Open
1148 |03  11  01|No Action|Close
1149 |03  00  00|Open|Open
1150 |03  01  01|Close|Close
1151 |03  01  00|Close|Open
1152 |03  00  01|Open|Close
1153 )))
1154
1155 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1156
1157
1158
1159 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1160
1161
1162 * (% style="color:#037691" %)**AT Command:**
1163
1164 There is no AT Command to control Relay Output
1165
1166
1167 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1168
1169 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1170
1171
1172 This is to control the relay output time of relay. Include four bytes:
1173
1174 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1175
1176 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1177
1178 01: Relays will change back to original state after timeout.
1179
1180 00: Relays will change to an inverter state after timeout
1181
1182
1183 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1184
1185 [[image:image-20221008095908-1.png||height="364" width="564"]]
1186
1187
1188 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1189
1190
1191 (% style="color:red" %)**Note:**
1192
1193 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1194
1195 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1196
1197
1198 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1199
1200
1201 **Example payload:**
1202
1203 **~1. 05 01 11 07 D0**
1204
1205 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1206
1207 **2. 05 01 10 07 D0**
1208
1209 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1210
1211 **3. 05 00 01 07 D0**
1212
1213 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1214
1215 **4. 05 00 00 07 D0**
1216
1217 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1218
1219
1220
1221 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1222
1223
1224 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1225
1226 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1227
1228 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1229
1230 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1231
1232
1233
1234 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1235
1236
1237 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1238
1239 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1240
1241 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1242
1243
1244 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1245
1246 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1247
1248
1249
1250 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1251
1252
1253 Clear counting for counting mode
1254
1255 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1256
1257 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1258
1259 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1260
1261
1262
1263 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1264
1265
1266 * (% style="color:#037691" %)**AT Command:**
1267
1268 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1269
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1272
1273 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1274
1275 (((
1276 range: aa bb cc:0 to 16777215,  (unit:second)
1277 )))
1278
1279
1280
1281 ==== 3.4.2.20 Reset save RO DO state ====
1282
1283
1284 * (% style="color:#037691" %)**AT Command:**
1285
1286 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1287
1288 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1289
1290
1291 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1292
1293 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1294
1295
1296
1297 ==== 3.4.2.21 Encrypted payload ====
1298
1299
1300 * (% style="color:#037691" %)**AT Command:**
1301
1302 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1303
1304 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1305
1306
1307
1308 ==== 3.4.2.22 Get sensor value ====
1309
1310
1311 * (% style="color:#037691" %)**AT Command:**
1312
1313 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1314
1315 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1316
1317
1318
1319 ==== 3.4.2.23 Resets the downlink packet count ====
1320
1321
1322 * (% style="color:#037691" %)**AT Command:**
1323
1324 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1325
1326 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1327
1328
1329
1330 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1331
1332
1333 * (% style="color:#037691" %)**AT Command:**
1334
1335 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1336
1337 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1338
1339
1340 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1341
1342 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1343
1344
1345
1346 ==== 3.4.2.25 Copy downlink to uplink ====
1347
1348
1349 * (% style="color:#037691" %)**AT Command**(%%)**:**
1350
1351 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1352
1353 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1354
1355
1356 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1357
1358 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1359
1360
1361
1362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1363
1364 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1365
1366
1367
1368 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1369
1370
1371 * (((
1372 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1373
1374 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1375
1376
1377 )))
1378
1379 **Example:**
1380
1381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1382
1383
1384 == 3.5 Integrating with ThingsEye.io ==
1385
1386 The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1387
1388 === 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1389
1390 We use The Things Stack Sandbox for demonstating the configuration but  other
1391
1392 * In **The Things Stack Sandbox**, select your application under **Applications**.
1393 * Select **MQTT** under **Integrations**.
1394 * In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 * For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1396
1397 NOTE. The username and  password (API key) you created here are required in the next section.
1398
1399 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1400
1401 === 3.5.2 Configuring ThingsEye.io ===
1402
1403 This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1404
1405 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 * Under the **Integrations center**, click **Integrations**.
1407 * Click the **Add integration** button (the button with the **+** symbol).
1408
1409 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1410
1411
1412 On the **Add integration** window, configure the following:
1413
1414 **Basic settings:**
1415
1416 * Select **The Things Stack Community** from the **Integration type** list.
1417 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 * Ensure the following options are turned on.
1419 ** Enable integration
1420 ** Debug mode
1421 ** Allow create devices or assets
1422 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1423
1424 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1425
1426
1427 **Uplink data converter:**
1428
1429 * Click the **Create new** button if it is not selected by default.
1430 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 * Click the **JavaScript** button.
1432 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1434
1435 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436
1437
1438 **Downlink data converter (this is an optional step):**
1439
1440 * Click the **Create new** button if it is not selected by default.
1441 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 * Click the **JavaScript** button.
1443 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 * Click the **Next** button. You will be navigated to the **Connection** tab.
1445
1446 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1447
1448
1449 **Connection:**
1450
1451 * Choose **Region** from the **Host type**.
1452 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1455
1456 [[image:message-1.png]]
1457
1458
1459 * Click the **Add** button.
1460
1461 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462
1463
1464 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465
1466
1467 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468
1469
1470 **Viewing integration details**:
1471
1472 Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473
1474 [[image:integration-details.png||height="686" width="1000"]]
1475
1476
1477 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478
1479 Note: See also ThingsEye documentation.
1480
1481
1482 **Viewing events:**
1483
1484 This tab  displays all the uplink messages from the LT-22222-L.
1485
1486 * Click on the **Events **tab.
1487 * Select **Debug **from the **Event type** dropdown.
1488 * Select the** time frame** from the **time window**.
1489
1490 [insert image]
1491
1492 - To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493
1494 [insert image]
1495
1496
1497 **Deleting the integration**:
1498
1499 If you want to delete this integration, click the **Delete integratio**n button.
1500
1501
1502 == 3.6 Interface Details ==
1503
1504 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1505
1506
1507 Support NPN-type sensor
1508
1509 [[image:1653356991268-289.png]]
1510
1511
1512 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1513
1514
1515 (((
1516 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1517 )))
1518
1519 (((
1520 (((
1521 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1522
1523
1524 )))
1525 )))
1526
1527 [[image:1653357170703-587.png]]
1528
1529 (((
1530 (((
1531 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1532 )))
1533 )))
1534
1535 (((
1536
1537 )))
1538
1539 (((
1540 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1541 )))
1542
1543 (((
1544 This type of sensor outputs a low (GND) signal when active.
1545 )))
1546
1547 * (((
1548 Connect the sensor's output to DI1-
1549 )))
1550 * (((
1551 Connect the sensor's VCC to DI1+.
1552 )))
1553
1554 (((
1555 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1556 )))
1557
1558 (((
1559 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1560 )))
1561
1562 (((
1563 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1564 )))
1565
1566 (((
1567
1568 )))
1569
1570 (((
1571 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1572 )))
1573
1574 (((
1575 This type of sensor outputs a high signal (e.g., 24V) when active.
1576 )))
1577
1578 * (((
1579 Connect the sensor's output to DI1+
1580 )))
1581 * (((
1582 Connect the sensor's GND DI1-.
1583 )))
1584
1585 (((
1586 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1587 )))
1588
1589 (((
1590 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1591 )))
1592
1593 (((
1594 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1595 )))
1596
1597 (((
1598
1599 )))
1600
1601 (((
1602 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1603 )))
1604
1605 (((
1606 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1607 )))
1608
1609 * (((
1610 Connect the sensor's output to DI1+ with a 50K resistor in series.
1611 )))
1612 * (((
1613 Connect the sensor's GND DI1-.
1614 )))
1615
1616 (((
1617 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1618 )))
1619
1620 (((
1621 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1622 )))
1623
1624 (((
1625 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1626 )))
1627
1628
1629 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1630
1631 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1632
1633 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1634
1635 [[image:image-20230616235145-1.png]]
1636
1637 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1638
1639 [[image:image-20240219115718-1.png]]
1640
1641
1642 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1643
1644
1645 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646
1647 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648
1649 [[image:1653357531600-905.png]]
1650
1651
1652 === 3.6.4 Analog Input Interfaces ===
1653
1654
1655 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1656
1657
1658 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1659
1660 [[image:1653357592296-182.png]]
1661
1662 Example: Connecting a 4~~20mA sensor
1663
1664 We will use the wind speed sensor as an example for reference only.
1665
1666
1667 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1668
1669 (% style="color:red" %)**Red:  12~~24V**
1670
1671 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1672
1673 **Black:  GND**
1674
1675 **Connection diagram:**
1676
1677 [[image:1653357640609-758.png]]
1678
1679 [[image:1653357648330-671.png||height="155" width="733"]]
1680
1681
1682 Example: Connecting to a regulated power supply to measure voltage
1683
1684 [[image:image-20230608101532-1.png||height="606" width="447"]]
1685
1686 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1687
1688 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1689
1690
1691 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1692
1693 (% style="color:red" %)**Red:  12~~24v**
1694
1695 **Black:  GND**
1696
1697
1698 === 3.6.5 Relay Output ===
1699
1700
1701 (((
1702 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1703
1704 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1705 )))
1706
1707 [[image:image-20220524100215-9.png]]
1708
1709
1710 [[image:image-20220524100215-10.png||height="382" width="723"]]
1711
1712
1713 == 3.7 LEDs Indicators ==
1714
1715
1716 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1718 |**PWR**|Always on if there is power
1719 |**TX**|(((
1720 (((
1721 Device boot: TX blinks 5 times.
1722 )))
1723
1724 (((
1725 Successful join network: TX ON for 5 seconds.
1726 )))
1727
1728 (((
1729 Transmit a LoRa packet: TX blinks once
1730 )))
1731 )))
1732 |**RX**|RX blinks once when receiving a packet.
1733 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 |**DI1**|(((
1736 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1737 )))
1738 |**DI2**|(((
1739 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1740 )))
1741 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1743
1744 = 4. Using AT Commands =
1745
1746 The LT-22222-L supports programming using AT Commands.
1747
1748 == 4.1 Connecting the LT-22222-L to a PC ==
1749
1750 (((
1751 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1752 )))
1753
1754 [[image:1653358238933-385.png]]
1755
1756
1757 (((
1758 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1759 )))
1760
1761 [[image:1653358355238-883.png]]
1762
1763
1764 (((
1765 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1766
1767 == 4.2 LT-22222-L related AT commands ==
1768 )))
1769
1770 (((
1771 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1772
1773 * AT+<CMD>? : Help on <CMD>
1774 * AT+<CMD> : Run <CMD>
1775 * AT+<CMD>=<value> : Set the value
1776 * AT+<CMD>=? : Get the value
1777 * ATZ: Trigger a reset of the MCU
1778 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 * AT+RX2FQ: Get or set the Rx2 window frequency
1791 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 * AT+NWKID: Get or set the Network ID
1798 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 * AT+CLASS: Get or set the Device Class
1801 * AT+JOIN: Join network
1802 * AT+NJS: Get OTAA Join Status
1803 * AT+SENDB: Send hexadecimal data along with the application port
1804 * AT+SEND: Send text data along with the application port
1805 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 * AT+RECV: Print last received data in raw format
1807 * AT+VER: Get current image version and Frequency Band
1808 * AT+CFM: Get or Set the confirmation mode (0-1)
1809 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 * AT+SNR: Get the SNR of the last received packet
1811 * AT+RSSI: Get the RSSI of the last received packet
1812 * AT+TDC: Get or set the application data transmission interval in ms
1813 * AT+PORT: Get or set the application port
1814 * AT+DISAT: Disable AT commands
1815 * AT+PWORD: Set password, max 9 digits
1816 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 * AT+CFG: Print all settings
1819 )))
1820
1821
1822 == 4.2 Common AT Command Sequence ==
1823
1824 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1825
1826 (((
1827
1828
1829 (((
1830 (% style="color:blue" %)**If the device has not joined the network yet:**
1831 )))
1832 )))
1833
1834 (((
1835 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1848 )))
1849
1850 (((
1851 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1852 )))
1853
1854
1855 (((
1856 (% style="color:blue" %)**If the device has already joined the network:**
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)##**ATZ**##
1865 )))
1866
1867
1868 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1869
1870 (((
1871
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1875 )))
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1924
1925
1926 )))
1927
1928 (((
1929 (% style="color:red" %)**Note:**
1930 )))
1931
1932 (((
1933 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1934
1935 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1936
1937 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1938 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1939
1940 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1941 )))
1942
1943 (((
1944 [[image:1653359097980-169.png||height="188" width="729"]]
1945 )))
1946
1947
1948 === 4.2.3 Change to Class A ===
1949
1950
1951 (((
1952 (% style="color:blue" %)**If sensor JOINED:**
1953
1954 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1955
1956 (% style="background-color:#dcdcdc" %)**ATZ**
1957 )))
1958
1959
1960 = 5. Case Study =
1961
1962 == 5.1 Counting how many objects pass through the flow Line ==
1963
1964
1965 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1966
1967
1968 = 6. FAQ =
1969
1970 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1971
1972 == 6.1 How to update the firmware? ==
1973
1974 Dragino frequently releases firmware updates for the LT-22222-L.
1975
1976 Updating your LT-22222-L with the latest firmware version helps to:
1977
1978 * Support new features
1979 * Fix bugs
1980 * Change LoRaWAN frequency bands
1981
1982 You will need the following things before proceeding:
1983
1984 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 * USB to TTL adapter
1986 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988
1989 {{info}}
1990 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 {{/info}}
1992
1993 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994
1995
1996 [[image:1653359603330-121.png]]
1997
1998
1999 Start the STM32 Flash Loader and choose the correct COM port to update.
2000
2001 (((
2002 (((
2003 (% style="color:blue" %)**For LT-22222-L**(%%):
2004
2005 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2006 )))
2007
2008
2009 )))
2010
2011 [[image:image-20220524103407-12.png]]
2012
2013
2014 [[image:image-20220524103429-13.png]]
2015
2016
2017 [[image:image-20220524104033-15.png]]
2018
2019
2020 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2021
2022 [[image:1653360054704-518.png||height="186" width="745"]]
2023
2024
2025 (((
2026 (((
2027 == 6.2 How to change the LoRaWAN frequency band/region? ==
2028
2029
2030 )))
2031 )))
2032
2033 (((
2034 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2035 )))
2036
2037 (((
2038
2039
2040 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2041
2042
2043 )))
2044
2045 (((
2046 (((
2047 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2048 )))
2049 )))
2050
2051 (((
2052 (((
2053 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2054
2055
2056 )))
2057 )))
2058
2059 (((
2060 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2061
2062
2063 )))
2064
2065 (((
2066 [[image:1653360231087-571.png||height="401" width="727"]]
2067
2068
2069 )))
2070
2071 (((
2072 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2073 )))
2074
2075
2076
2077 (((
2078 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2079
2080
2081 )))
2082
2083 (((
2084 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2085
2086 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2087
2088 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2089
2090 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2091
2092 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2093
2094 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2095
2096 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2097
2098 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2099
2100 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2101 )))
2102
2103
2104 (((
2105 As shown in below:
2106 )))
2107
2108 [[image:1653360498588-932.png||height="485" width="726"]]
2109
2110
2111 == 6.4 How to change the uplink interval? ==
2112
2113
2114 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2115
2116
2117 == 6.5 Can I see the counting event in the serial output? ==
2118
2119
2120 (((
2121 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2122
2123
2124 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2125
2126
2127 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2128 )))
2129
2130 (((
2131 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2132
2133
2134 * If the device is not properly shut down and is directly powered off.
2135 * It will default to a power-off state.
2136 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 * After a restart, the status before the power failure will be read from flash.
2138
2139 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2140
2141
2142 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2143
2144
2145 [[image:image-20221006170630-1.png||height="610" width="945"]]
2146
2147
2148 == 6.9 Can the LT-22222-L save the RO state? ==
2149
2150
2151 The firmware version must be at least 1.6.0.
2152
2153
2154 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2155
2156
2157 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2158
2159
2160 = 7. Troubleshooting =
2161 )))
2162
2163 (((
2164 (((
2165 == 7.1 Downlink isn't working. How can I solve this? ==
2166
2167
2168 )))
2169 )))
2170
2171 (((
2172 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2173 )))
2174
2175 (((
2176
2177
2178 == 7.2 Having trouble uploading an image? ==
2179
2180
2181 )))
2182
2183 (((
2184 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2185 )))
2186
2187 (((
2188
2189
2190 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2191
2192
2193 )))
2194
2195 (((
2196 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2197 )))
2198
2199
2200 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2201
2202
2203 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2205
2206
2207 = 8. Ordering information =
2208
2209
2210 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2211
2212 (% style="color:#4f81bd" %)**XXX:**
2213
2214 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2223
2224 = 9. Packing information =
2225
2226
2227 **Package includes**:
2228
2229 * LT-22222-L I/O Controller x 1
2230 * Stick Antenna for LoRa RF part x 1
2231 * Bracket for controller x1
2232 * 3.5mm Programming cable x 1
2233
2234 **Dimension and weight**:
2235
2236 * Device Size: 13.5 x 7 x 3 cm
2237 * Device Weight: 105 g
2238 * Package Size / pcs : 14.5 x 8 x 5 cm
2239 * Weight / pcs : 170 g
2240
2241 = 10. Support =
2242
2243
2244 * (((
2245 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2246 )))
2247 * (((
2248 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2249
2250
2251 )))
2252
2253 = 11. Reference​​​​​ =
2254
2255
2256 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2257 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2258 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0