Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52 == 1.2 Specifications ==
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * STM32L072xxxx MCU
57 * SX1276/78 Wireless Chip 
58 * Power Consumption:
59 ** Idle: 4mA@12v
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 Mhz
76 ** Band 2 (LF): 410 ~~ 528 Mhz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol
96 * Optional Customized LoRa Protocol
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
98 * AT Commands to change parameters
99 * Remotely configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Counting
102
103 == 1.4 Applications ==
104
105 * Smart Buildings & Home Automation
106 * Logistics and Supply Chain Management
107 * Smart Metering
108 * Smart Agriculture
109 * Smart Cities
110 * Smart Factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
117 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
118 (% style="text-align:center" %)
119 [[image:image-20230424115112-1.png||height="106" width="58"]]
120 )))|(% style="width:334px" %)(((
121 * 2 x Digital Input (Bi-direction)
122 * 2 x Digital Output
123 * 2 x Relay Output (5A@250VAC / 30VDC)
124 * 2 x 0~~20mA Analog Input (res:0.01mA)
125 * 2 x 0~~30V Analog Input (res:0.01v)
126 * 1 x Counting Port
127 )))
128
129 = 2. Assembling the Device =
130
131 == 2.1 What is included in the package? ==
132
133 The package includes the following items:
134
135 * 1 x LT-22222-L I/O Controller
136 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 * 1 x bracket for DIN rail mounting
138 * 1 x programming cable
139
140 Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
141
142 == 2.2 Terminals ==
143
144 Upper screw terminal block (from left to right):
145
146 (% style="width:634px" %)
147 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154
155 Lower screw terminal block (from left to right):
156
157 (% style="width:633px" %)
158 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169
170 == 2.3 Powering the LT-22222-L ==
171
172 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173
174
175 [[image:1653297104069-180.png]]
176
177
178 = 3. Operation Mode =
179
180 == 3.1 How does it work? ==
181
182 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
183
184 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
185
186 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
187
188 == 3.2 Registering with a LoRaWAN network server ==
189
190 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
191
192 [[image:image-20220523172350-1.png||height="266" width="864"]]
193
194 === 3.2.1 Prerequisites ===
195
196 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
197
198 [[image:image-20230425173427-2.png||height="246" width="530"]]
199
200 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
201
202 === 3.2.2 The Things Stack Sandbox (TTSS) ===
203
204 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 * Create an application if you do not have one yet.
206 * Register LT-22222-L with that application. Two registration options are available:
207
208 (% class="wikigeneratedid" %)
209 ==== ====
210
211 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
212
213 * Go to your application and click on the **Register end device** button.
214 * On the **Register end device** page:
215 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
216 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
217 ** Select the **Frequency plan** that matches your device.
218
219 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
220
221
222 * Page continued...
223 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
224 ** Enter the **DevEUI** in the **DevEUI** field.
225 ** Enter the **AppKey** in the **AppKey** field.
226 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
227 ** Under **After registration**, select the **View registered end device** option.
228
229 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
230
231 (% class="wikigeneratedid" %)
232 ==== ====
233
234 ==== 3.2.2.2 Entering device information manually ====
235
236 * On the **Register end device** page:
237 ** Select the **Enter end device specifies manually** option as the input method.
238 ** Select the **Frequency plan** that matches your device.
239 ** Select the **LoRaWAN version**.
240 ** Select the **Regional Parameters version**.
241 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
242 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
243 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
244
245 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
246
247
248 * Page continued...
249 ** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
250 ** Enter **DevEUI** in the **DevEUI** field.
251 ** Enter **AppKey** in the **AppKey** field.
252 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
253 ** Under **After registration**, select the **View registered end device** option.
254 ** Click the **Register end device** button.
255
256 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
257
258
259 You will be navigated to the **Device overview** page.
260
261
262 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
263
264
265 ==== 3.2.2.3 Joining ====
266
267 Click on **Live data** in the left navigation. The Live data panel for your application will display.
268
269 Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
270
271
272 [[image:lt-22222-join-network.png||height="625" width="1000"]]
273
274
275 By default, you will receive an uplink data message every 10 minutes.
276
277 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
278
279 [[image:lt-22222-ul-payload-decoded.png]]
280
281
282 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
283
284 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
285
286
287 == 3.3 Work Modes and their Uplink Payload formats ==
288
289
290 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
291
292 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
293
294 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
295
296 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
297
298 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
299
300 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
301
302 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
303
304
305 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
306
307 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308
309 (((
310 This is the default mode.
311
312 The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
313
314 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
315 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
316 |Value|(((
317 AVI1 voltage
318 )))|(((
319 AVI2 voltage
320 )))|(((
321 ACI1 Current
322 )))|(((
323 ACI2 Current
324 )))|**DIDORO***|(((
325 Reserve
326 )))|MOD
327 )))
328
329 (((
330 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
331
332 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
333 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
334 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
335 )))
336
337 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
338 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
339 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
340
341 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
342
343 For example, if the payload is: [[image:image-20220523175847-2.png]]
344
345
346 **The interface values can be calculated as follows:  **
347
348 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
349
350 AVI2 channel voltage is 0x04AC/1000=1.196V
351
352 ACI1 channel current is 0x1310/1000=4.880mA
353
354 ACI2 channel current is 0x1300/1000=4.864mA
355
356 The last byte 0xAA= **10101010**(b) means,
357
358 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
359 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
360 * **[1] DI3 - not used for LT-22222-L.**
361 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
362 * [1] DI1 channel input state:
363 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
364 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
365 ** DI1 LED is ON in both cases.
366 * **[0] DO3 - not used for LT-22222-L.**
367 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
368 * [0] DO1 channel output state:
369 ** DO1 is FLOATING when there is no load between DO1 and V+.
370 ** DO1 is HIGH when there is a load between DO1 and V+.
371 ** DO1 LED is OFF in both cases.
372
373 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
374
375
376 (((
377 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
378 )))
379
380 (((
381 The uplink payload is 11 bytes long.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
385 |Value|COUNT1|COUNT2 |DIDORO*|(((
386 Reserve
387 )))|MOD
388 )))
389
390 (((
391 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
392
393 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
394 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
395 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
396
397 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
398 )))
399
400 * FIRST: Indicates that this is the first packet after joining the network.
401 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
402
403 (((
404 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
405
406
407 )))
408
409 (((
410 **To activate this mode, run the following AT commands:**
411 )))
412
413 (((
414 (% class="box infomessage" %)
415 (((
416 **AT+MOD=2**
417
418 **ATZ**
419 )))
420 )))
421
422 (((
423
424
425 (% style="color:#4f81bd" %)**AT Commands for counting:**
426 )))
427
428 (((
429 **For LT22222-L:**
430
431 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
432
433 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
434
435 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
438
439 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
440
441 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
442 )))
443
444
445 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
446
447
448 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
449
450 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
451 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
452 |Value|COUNT1|(((
453 ACI1 Current
454 )))|(((
455 ACI2 Current
456 )))|DIDORO*|Reserve|MOD
457
458 (((
459 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
460
461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
462 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
463 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
464 )))
465
466 * RO is for the relay. ROx=1: closed, ROx=0 always open.
467 * FIRST: Indicates that this is the first packet after joining the network.
468 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
469
470 (((
471 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
472 )))
473
474
475 (((
476 **To activate this mode, run the following AT commands:**
477 )))
478
479 (((
480 (% class="box infomessage" %)
481 (((
482 **AT+MOD=3**
483
484 **ATZ**
485 )))
486 )))
487
488 (((
489 AT Commands for counting:
490
491 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
492 )))
493
494
495 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
496
497
498 (((
499 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
500 )))
501
502 (((
503 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
504
505 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
506 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
507 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
508 Reserve
509 )))|MOD
510 )))
511
512 (((
513 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
514
515 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
516 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
517 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
518 )))
519
520 * RO is for the relay. ROx=1: closed, ROx=0 always open.
521 * FIRST: Indicates that this is the first packet after joining the network.
522 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
523
524 (((
525 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
526
527
528 )))
529
530 (((
531 **To activate this mode, run the following AT commands:**
532 )))
533
534 (((
535 (% class="box infomessage" %)
536 (((
537 **AT+MOD=4**
538
539 **ATZ**
540 )))
541 )))
542
543 (((
544 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
545 )))
546
547 (((
548 **In addition to that, below are the commands for AVI1 Counting:**
549
550 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
551
552 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
553
554 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
555
556 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
557 )))
558
559
560 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
561
562
563 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
567 |Value|(((
568 AVI1 voltage
569 )))|(((
570 AVI2 voltage
571 )))|(((
572 ACI1 Current
573 )))|COUNT1|DIDORO*|(((
574 Reserve
575 )))|MOD
576
577 (((
578 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
579
580 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
581 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
582 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
583 )))
584
585 * RO is for the relay. ROx=1: closed, ROx=0 always open.
586 * FIRST: Indicates that this is the first packet after joining the network.
587 * (((
588 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
589 )))
590
591 (((
592 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
593 )))
594
595 (((
596 **To activate this mode, run the following AT commands:**
597 )))
598
599 (((
600 (% class="box infomessage" %)
601 (((
602 **AT+MOD=5**
603
604 **ATZ**
605 )))
606 )))
607
608 (((
609 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
610 )))
611
612
613 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
614
615
616 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
617
618 For example, if you configured the following commands:
619
620 * **AT+MOD=1 ** **~-~->**  The normal working mode
621 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
622
623 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
624
625 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
626 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
627
628 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
629
630 (% style="color:#4f81bd" %)**Trigger based on voltage**:
631
632 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
633
634
635 **Example:**
636
637 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
638
639 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
640
641
642 (% style="color:#4f81bd" %)**Trigger based on current**:
643
644 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
645
646
647 **Example:**
648
649 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
650
651
652 (% style="color:#4f81bd" %)**Trigger based on DI status**:
653
654 DI status triggers Flag.
655
656 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
657
658
659 **Example:**
660
661 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
662
663
664 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
665
666 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
667
668 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
669
670 AA: Type Code for this downlink Command:
671
672 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
673
674 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
675
676 yy2 yy2: AC1 or AV1 HIGH limit.
677
678 yy3 yy3: AC2 or AV2 LOW limit.
679
680 Yy4 yy4: AC2 or AV2 HIGH limit.
681
682
683 **Example 1**: AA 00 13 88 00 00 00 00 00 00
684
685 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
686
687
688 **Example 2**: AA 02 01 00
689
690 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
691
692
693 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
694
695 MOD6 Payload: total of 11 bytes
696
697 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
698 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
699 |Value|(((
700 TRI_A FLAG
701 )))|(((
702 TRI_A Status
703 )))|(((
704 TRI_DI FLAG+STA
705 )))|Reserve|Enable/Disable MOD6|(((
706 MOD(6)
707 )))
708
709 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
710
711 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
712 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
713 |(((
714 AV1_LOW
715 )))|(((
716 AV1_HIGH
717 )))|(((
718 AV2_LOW
719 )))|(((
720 AV2_HIGH
721 )))|(((
722 AC1_LOW
723 )))|(((
724 AC1_HIGH
725 )))|(((
726 AC2_LOW
727 )))|(((
728 AC2_HIGH
729 )))
730
731 * Each bit shows if the corresponding trigger has been configured.
732
733 **Example:**
734
735 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
736
737
738 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
739
740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
741 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
742 |(((
743 AV1_LOW
744 )))|(((
745 AV1_HIGH
746 )))|(((
747 AV2_LOW
748 )))|(((
749 AV2_HIGH
750 )))|(((
751 AC1_LOW
752 )))|(((
753 AC1_HIGH
754 )))|(((
755 AC2_LOW
756 )))|(((
757 AC2_HIGH
758 )))
759
760 * Each bit shows which status has been triggered on this uplink.
761
762 **Example:**
763
764 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
765
766
767 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
768
769 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
770 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
771 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
772
773 * Each bits shows which status has been triggered on this uplink.
774
775 **Example:**
776
777 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
778
779 00000101: Means both DI1 and DI2 trigger are enabled.
780
781
782 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
783
784 Downlink command to poll MOD6 status:
785
786 **AB 06**
787
788 When device got this command, it will send the MOD6 payload.
789
790
791 === 3.3.7 Payload Decoder ===
792
793 (((
794
795
796 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
797 )))
798
799
800 == 3.4 ​Configure LT via AT Commands or Downlinks ==
801
802
803 (((
804 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
805 )))
806
807 (((
808 (((
809 There are two kinds of Commands:
810 )))
811 )))
812
813 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
814
815 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
816
817 === 3.4.1 Common Commands ===
818
819 (((
820 These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
821 )))
822
823
824 === 3.4.2 Sensor related commands ===
825
826 ==== 3.4.2.1 Set Transmit Interval ====
827
828 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
829
830 * (% style="color:#037691" %)**AT command:**
831
832 (% style="color:blue" %)**AT+TDC=N**
833
834 where N is the time in milliseconds.
835
836 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
837
838
839 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
840
841 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
842
843
844
845 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
846
847
848 Sets the work mode.
849
850 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
851
852 Where N is the work mode.
853
854 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
855
856
857 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
858
859 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
860
861
862
863 ==== 3.4.2.3 Poll an uplink ====
864
865
866 Asks the device to send an uplink.
867
868 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
869
870 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
871
872 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
873
874 **Example**: 0x08FF, ask device to send an Uplink
875
876
877
878 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
879
880
881 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
882
883 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
884
885 (% style="color:red" %)**1:** (%%)Enable the trigger mode
886
887 (% style="color:red" %)**0: **(%%)Disable the trigger mode
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
891
892 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
893
894
895
896 ==== 3.4.2.5 Poll trigger settings ====
897
898
899 Polls the trigger settings
900
901 * (% style="color:#037691" %)**AT Command:**
902
903 There is no AT Command for this feature.
904
905 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
906
907 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
908
909
910
911 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
912
913
914 Enable or Disable DI1/DI2/DI2 as trigger,
915
916 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
917
918 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
919
920
921 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
922
923 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
924
925
926
927 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
928
929
930 Set DI1 or DI3(for LT-33222-L) trigger.
931
932 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
933
934 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
935
936 (% style="color:red" %)**b :** (%%)delay timing.
937
938 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
939
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
942
943 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
944
945
946
947 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
948
949
950 Sets DI2 trigger.
951
952 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
953
954 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
955
956 (% style="color:red" %)**b :** (%%)delay timing.
957
958 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
959
960
961 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
962
963 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
964
965
966
967 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
968
969
970 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
971
972 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
973
974 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
975
976 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
977
978
979
980 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
981
982
983 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
984
985 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
988
989 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
990
991
992
993 ==== 3.4.2.11 Trigger – Set minimum interval ====
994
995
996 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
997
998 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
999
1000 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1001
1002 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1003
1004 (((
1005 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1006 )))
1007
1008
1009
1010 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1011
1012
1013 * (% style="color:#037691" %)**AT Command**
1014
1015 There is no AT Command to control Digital Output
1016
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1019
1020 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1021
1022 (((
1023 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1024 )))
1025
1026 (((
1027 01: Low,  00: High ,  11: No action
1028
1029 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1030 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1031 |02  01  00  11|Low|High|No Action
1032 |02  00  11  01|High|No Action|Low
1033 |02  11  01  00|No Action|Low|High
1034 )))
1035
1036 (((
1037 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1038 )))
1039
1040 (((
1041 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1042 )))
1043
1044
1045
1046 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1047
1048
1049 * (% style="color:#037691" %)**AT Command**
1050
1051 There is no AT Command to control Digital Output
1052
1053
1054 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1055
1056 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1057
1058
1059 This is to control the digital output time of DO pin. Include four bytes:
1060
1061 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1062
1063 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1064
1065 01: DO pins will change back to original state after timeout.
1066
1067 00: DO pins will change to an inverter state after timeout 
1068
1069
1070 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1071
1072 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1073 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1074 |0x01|DO1 set to low
1075 |0x00|DO1 set to high
1076 |0x11|DO1 NO Action
1077
1078 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1079
1080 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1081 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1082 |0x01|DO2 set to low
1083 |0x00|DO2 set to high
1084 |0x11|DO2 NO Action
1085
1086 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1087
1088 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1089 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1090 |0x01|DO3 set to low
1091 |0x00|DO3 set to high
1092 |0x11|DO3 NO Action
1093
1094 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1095
1096
1097 (% style="color:red" %)**Note: **
1098
1099 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1100
1101 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1102
1103 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1104
1105
1106 **Example payload:**
1107
1108 **~1. A9 01 01 01 01 07 D0**
1109
1110 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1111
1112 **2. A9 01 00 01 11 07 D0**
1113
1114 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1115
1116 **3. A9 00 00 00 00 07 D0**
1117
1118 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1119
1120 **4. A9 00 11 01 00 07 D0**
1121
1122 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1123
1124
1125
1126 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1127
1128
1129 * (% style="color:#037691" %)**AT Command:**
1130
1131 There is no AT Command to control Relay Output
1132
1133
1134 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1135
1136 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1137
1138
1139 (((
1140 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1141 )))
1142
1143 (((
1144 00: Closed ,  01: Open , 11: No action
1145
1146 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1147 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1148 |03  00  11|Open|No Action
1149 |03  01  11|Close|No Action
1150 |03  11  00|No Action|Open
1151 |03  11  01|No Action|Close
1152 |03  00  00|Open|Open
1153 |03  01  01|Close|Close
1154 |03  01  00|Close|Open
1155 |03  00  01|Open|Close
1156 )))
1157
1158 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1159
1160
1161
1162 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1163
1164
1165 * (% style="color:#037691" %)**AT Command:**
1166
1167 There is no AT Command to control Relay Output
1168
1169
1170 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1171
1172 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1173
1174
1175 This is to control the relay output time of relay. Include four bytes:
1176
1177 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1178
1179 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1180
1181 01: Relays will change back to original state after timeout.
1182
1183 00: Relays will change to an inverter state after timeout
1184
1185
1186 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1187
1188 [[image:image-20221008095908-1.png||height="364" width="564"]]
1189
1190
1191 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1192
1193
1194 (% style="color:red" %)**Note:**
1195
1196 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1197
1198 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1199
1200
1201 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1202
1203
1204 **Example payload:**
1205
1206 **~1. 05 01 11 07 D0**
1207
1208 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1209
1210 **2. 05 01 10 07 D0**
1211
1212 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1213
1214 **3. 05 00 01 07 D0**
1215
1216 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1217
1218 **4. 05 00 00 07 D0**
1219
1220 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1221
1222
1223
1224 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1225
1226
1227 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1228
1229 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1230
1231 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1232
1233 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1234
1235
1236
1237 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1238
1239
1240 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1241
1242 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1243
1244 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1245
1246
1247 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1248
1249 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1250
1251
1252
1253 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1254
1255
1256 Clear counting for counting mode
1257
1258 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1259
1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1261
1262 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1263
1264
1265
1266 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1272
1273
1274 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1275
1276 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1277
1278 (((
1279 range: aa bb cc:0 to 16777215,  (unit:second)
1280 )))
1281
1282
1283
1284 ==== 3.4.2.20 Reset save RO DO state ====
1285
1286
1287 * (% style="color:#037691" %)**AT Command:**
1288
1289 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1290
1291 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1292
1293
1294 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1295
1296 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1297
1298
1299
1300 ==== 3.4.2.21 Encrypted payload ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1306
1307 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1308
1309
1310
1311 ==== 3.4.2.22 Get sensor value ====
1312
1313
1314 * (% style="color:#037691" %)**AT Command:**
1315
1316 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1317
1318 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1319
1320
1321
1322 ==== 3.4.2.23 Resets the downlink packet count ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1328
1329 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1330
1331
1332
1333 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1334
1335
1336 * (% style="color:#037691" %)**AT Command:**
1337
1338 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1339
1340 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1341
1342
1343 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1344
1345 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1346
1347
1348
1349 ==== 3.4.2.25 Copy downlink to uplink ====
1350
1351
1352 * (% style="color:#037691" %)**AT Command**(%%)**:**
1353
1354 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1355
1356 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1357
1358
1359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1360
1361 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1362
1363
1364
1365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1366
1367 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1368
1369
1370
1371 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1372
1373
1374 * (((
1375 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1376
1377 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1378
1379
1380 )))
1381
1382 **Example:**
1383
1384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1385
1386
1387 == 3.5 Integrating with ThingsEye.io ==
1388
1389 The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1390
1391 === 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1392
1393 We use The Things Stack Sandbox for demonstating the configuration but  other
1394
1395 * In **The Things Stack Sandbox**, select your application under **Applications**.
1396 * Select **MQTT** under **Integrations**.
1397 * In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1398 * For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1399
1400 NOTE. The username and  password (API key) you created here are required in the next section.
1401
1402 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1403
1404 === 3.5.2 Configuring ThingsEye.io ===
1405
1406 This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1407
1408 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1409 * Under the **Integrations center**, click **Integrations**.
1410 * Click the **Add integration** button (the button with the **+** symbol).
1411
1412 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1413
1414
1415 On the **Add integration** window, configure the following:
1416
1417 **Basic settings:**
1418
1419 * Select **The Things Stack Community** from the **Integration type** list.
1420 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1421 * Ensure the following options are turned on.
1422 ** Enable integration
1423 ** Debug mode
1424 ** Allow create devices or assets
1425 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1426
1427 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1428
1429
1430 **Uplink data converter:**
1431
1432 * Click the **Create new** button if it is not selected by default.
1433 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1434 * Click the **JavaScript** button.
1435 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1436 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1437
1438 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1439
1440
1441 **Downlink data converter (this is an optional step):**
1442
1443 * Click the **Create new** button if it is not selected by default.
1444 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1445 * Click the **JavaScript** button.
1446 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1447 * Click the **Next** button. You will be navigated to the **Connection** tab.
1448
1449 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1450
1451
1452 **Connection:**
1453
1454 * Choose **Region** from the **Host type**.
1455 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1456 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1457 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1458
1459 [[image:message-1.png]]
1460
1461
1462 * Click the **Add** button.
1463
1464 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1465
1466
1467 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1468
1469
1470 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1471
1472
1473 **Viewing integration details**:
1474
1475 Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1476
1477 [[image:integration-details.png||height="686" width="1000"]]
1478
1479
1480 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1481
1482 Note: See also ThingsEye documentation.
1483
1484
1485 **Viewing events:**
1486
1487 This tab  displays all the uplink messages from the LT-22222-L.
1488
1489 * Click on the **Events **tab.
1490 * Select **Debug **from the **Event type** dropdown.
1491 * Select the** time frame** from the **time window**.
1492
1493 [insert image]
1494
1495 - To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1496
1497 [insert image]
1498
1499
1500 **Deleting the integration**:
1501
1502 If you want to delete this integration, click the **Delete integratio**n button.
1503
1504
1505 == 3.6 Interface Details ==
1506
1507 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1508
1509
1510 Support NPN-type sensor
1511
1512 [[image:1653356991268-289.png]]
1513
1514
1515 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1516
1517
1518 (((
1519 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1520 )))
1521
1522 (((
1523 (((
1524 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1525
1526
1527 )))
1528 )))
1529
1530 [[image:1653357170703-587.png]]
1531
1532 (((
1533 (((
1534 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1535 )))
1536 )))
1537
1538 (((
1539
1540 )))
1541
1542 (((
1543 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1544 )))
1545
1546 (((
1547 This type of sensor outputs a low (GND) signal when active.
1548 )))
1549
1550 * (((
1551 Connect the sensor's output to DI1-
1552 )))
1553 * (((
1554 Connect the sensor's VCC to DI1+.
1555 )))
1556
1557 (((
1558 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1559 )))
1560
1561 (((
1562 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1563 )))
1564
1565 (((
1566 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1567 )))
1568
1569 (((
1570
1571 )))
1572
1573 (((
1574 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1575 )))
1576
1577 (((
1578 This type of sensor outputs a high signal (e.g., 24V) when active.
1579 )))
1580
1581 * (((
1582 Connect the sensor's output to DI1+
1583 )))
1584 * (((
1585 Connect the sensor's GND DI1-.
1586 )))
1587
1588 (((
1589 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1590 )))
1591
1592 (((
1593 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1594 )))
1595
1596 (((
1597 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1598 )))
1599
1600 (((
1601
1602 )))
1603
1604 (((
1605 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1606 )))
1607
1608 (((
1609 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1610 )))
1611
1612 * (((
1613 Connect the sensor's output to DI1+ with a 50K resistor in series.
1614 )))
1615 * (((
1616 Connect the sensor's GND DI1-.
1617 )))
1618
1619 (((
1620 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1621 )))
1622
1623 (((
1624 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1625 )))
1626
1627 (((
1628 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1629 )))
1630
1631
1632 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1633
1634 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1635
1636 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1637
1638 [[image:image-20230616235145-1.png]]
1639
1640 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1641
1642 [[image:image-20240219115718-1.png]]
1643
1644
1645 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1646
1647
1648 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1649
1650 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1651
1652 [[image:1653357531600-905.png]]
1653
1654
1655 === 3.6.4 Analog Input Interfaces ===
1656
1657
1658 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1659
1660
1661 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1662
1663 [[image:1653357592296-182.png]]
1664
1665 Example: Connecting a 4~~20mA sensor
1666
1667 We will use the wind speed sensor as an example for reference only.
1668
1669
1670 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1671
1672 (% style="color:red" %)**Red:  12~~24V**
1673
1674 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1675
1676 **Black:  GND**
1677
1678 **Connection diagram:**
1679
1680 [[image:1653357640609-758.png]]
1681
1682 [[image:1653357648330-671.png||height="155" width="733"]]
1683
1684
1685 Example: Connecting to a regulated power supply to measure voltage
1686
1687 [[image:image-20230608101532-1.png||height="606" width="447"]]
1688
1689 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1690
1691 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1692
1693
1694 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1695
1696 (% style="color:red" %)**Red:  12~~24v**
1697
1698 **Black:  GND**
1699
1700
1701 === 3.6.5 Relay Output ===
1702
1703
1704 (((
1705 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1706
1707 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1708 )))
1709
1710 [[image:image-20220524100215-9.png]]
1711
1712
1713 [[image:image-20220524100215-10.png||height="382" width="723"]]
1714
1715
1716 == 3.7 LEDs Indicators ==
1717
1718
1719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1720 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1721 |**PWR**|Always on if there is power
1722 |**TX**|(((
1723 (((
1724 Device boot: TX blinks 5 times.
1725 )))
1726
1727 (((
1728 Successful join network: TX ON for 5 seconds.
1729 )))
1730
1731 (((
1732 Transmit a LoRa packet: TX blinks once
1733 )))
1734 )))
1735 |**RX**|RX blinks once when receiving a packet.
1736 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1737 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1738 |**DI1**|(((
1739 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1740 )))
1741 |**DI2**|(((
1742 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1743 )))
1744 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1745 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1746
1747 = 4. Using AT Command =
1748
1749 == 4.1 Connecting the LT-22222-L to a computer ==
1750
1751
1752 (((
1753 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1754 )))
1755
1756 [[image:1653358238933-385.png]]
1757
1758
1759 (((
1760 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1761 )))
1762
1763 [[image:1653358355238-883.png]]
1764
1765
1766 (((
1767 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1768 )))
1769
1770 (((
1771 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1772
1773 AT+<CMD>?        : Help on <CMD>
1774 )))
1775
1776 (((
1777 AT+<CMD>         : Run <CMD>
1778 )))
1779
1780 (((
1781 AT+<CMD>=<value> : Set the value
1782 )))
1783
1784 (((
1785 AT+<CMD>=?       :  Get the value
1786 )))
1787
1788 (((
1789 ATZ: Trig a reset of the MCU
1790 )))
1791
1792 (((
1793 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1794 )))
1795
1796 (((
1797 AT+DEUI: Get or Set the Device EUI
1798 )))
1799
1800 (((
1801 AT+DADDR: Get or Set the Device Address
1802 )))
1803
1804 (((
1805 AT+APPKEY: Get or Set the Application Key
1806 )))
1807
1808 (((
1809 AT+NWKSKEY: Get or Set the Network Session Key
1810 )))
1811
1812 (((
1813 AT+APPSKEY:  Get or Set the Application Session Key
1814 )))
1815
1816 (((
1817 AT+APPEUI:  Get or Set the Application EUI
1818 )))
1819
1820 (((
1821 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1822 )))
1823
1824 (((
1825 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1826 )))
1827
1828 (((
1829 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1830 )))
1831
1832 (((
1833 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1834 )))
1835
1836 (((
1837 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1838 )))
1839
1840 (((
1841 AT+RX2FQ: Get or Set the Rx2 window frequency
1842 )))
1843
1844 (((
1845 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1846 )))
1847
1848 (((
1849 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1850 )))
1851
1852 (((
1853 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1854 )))
1855
1856 (((
1857 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1858 )))
1859
1860 (((
1861 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1862 )))
1863
1864 (((
1865 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1866 )))
1867
1868 (((
1869 AT+NWKID: Get or Set the Network ID
1870 )))
1871
1872 (((
1873 AT+FCU: Get or Set the Frame Counter Uplink
1874 )))
1875
1876 (((
1877 AT+FCD: Get or Set the Frame Counter Downlink
1878 )))
1879
1880 (((
1881 AT+CLASS: Get or Set the Device Class
1882 )))
1883
1884 (((
1885 AT+JOIN: Join network
1886 )))
1887
1888 (((
1889 AT+NJS: Get OTAA Join Status
1890 )))
1891
1892 (((
1893 AT+SENDB: Send hexadecimal data along with the application port
1894 )))
1895
1896 (((
1897 AT+SEND: Send text data along with the application port
1898 )))
1899
1900 (((
1901 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1902 )))
1903
1904 (((
1905 AT+RECV: Print last received data in raw format
1906 )))
1907
1908 (((
1909 AT+VER:  Get current image version and Frequency Band
1910 )))
1911
1912 (((
1913 AT+CFM: Get or Set the confirmation mode (0-1)
1914 )))
1915
1916 (((
1917 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1918 )))
1919
1920 (((
1921 AT+SNR: Get the SNR of the last received packet
1922 )))
1923
1924 (((
1925 AT+RSSI: Get the RSSI of the last received packet
1926 )))
1927
1928 (((
1929 AT+TDC: Get or set the application data transmission interval in ms
1930 )))
1931
1932 (((
1933 AT+PORT: Get or set the application port
1934 )))
1935
1936 (((
1937 AT+DISAT: Disable AT commands
1938 )))
1939
1940 (((
1941 AT+PWORD: Set password, max 9 digits
1942 )))
1943
1944 (((
1945 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1946 )))
1947
1948 (((
1949 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1950 )))
1951
1952 (((
1953 AT+CFG: Print all settings
1954 )))
1955
1956
1957 == 4.2 Common AT Command Sequence ==
1958
1959 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1960
1961 (((
1962
1963
1964 (((
1965 (% style="color:blue" %)**If device has not joined network yet:**
1966 )))
1967 )))
1968
1969 (((
1970 (% style="background-color:#dcdcdc" %)**123456**
1971 )))
1972
1973 (((
1974 (% style="background-color:#dcdcdc" %)**AT+FDR**
1975 )))
1976
1977 (((
1978 (% style="background-color:#dcdcdc" %)**123456**
1979 )))
1980
1981 (((
1982 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1983 )))
1984
1985 (((
1986 (% style="background-color:#dcdcdc" %)**ATZ**
1987 )))
1988
1989
1990 (((
1991 (% style="color:blue" %)**If device already joined network:**
1992 )))
1993
1994 (((
1995 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1996 )))
1997
1998 (((
1999 (% style="background-color:#dcdcdc" %)**ATZ**
2000 )))
2001
2002
2003 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2004
2005 (((
2006
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2010 )))
2011 )))
2012
2013 (((
2014 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2015 )))
2016
2017 (((
2018 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2019 )))
2020
2021 (((
2022 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2023 )))
2024
2025 (((
2026 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2027 )))
2028
2029 (((
2030 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2031 )))
2032
2033 (((
2034 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2035 )))
2036
2037 (((
2038 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2039 )))
2040
2041 (((
2042 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2043 )))
2044
2045 (((
2046 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2047 )))
2048
2049 (((
2050 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2051 )))
2052
2053 (((
2054 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2055 )))
2056
2057 (((
2058 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2059
2060
2061 )))
2062
2063 (((
2064 (% style="color:red" %)**Note:**
2065 )))
2066
2067 (((
2068 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2069
2070 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2071
2072 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2073 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2074
2075 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2076 )))
2077
2078 (((
2079 [[image:1653359097980-169.png||height="188" width="729"]]
2080 )))
2081
2082
2083 === 4.2.3 Change to Class A ===
2084
2085
2086 (((
2087 (% style="color:blue" %)**If sensor JOINED:**
2088
2089 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2090
2091 (% style="background-color:#dcdcdc" %)**ATZ**
2092 )))
2093
2094
2095 = 5. Case Study =
2096
2097 == 5.1 Counting how many objects pass through the flow Line ==
2098
2099
2100 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2101
2102
2103 = 6. FAQ =
2104
2105 == 6.1 How to upgrade the firmware image? ==
2106
2107
2108 The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2109
2110 * Support new features.
2111 * Fix bugs.
2112 * Change LoRaWAN bands.
2113
2114 Below is the hardware connection setup for uploading an firmware image to the LT-22222-L:
2115
2116 (% class="box infomessage" %)
2117 (((
2118 The latest firmware version available for the LT-22222-L is v1.6.1 at the time of this writing.
2119 )))
2120
2121 [[image:1653359603330-121.png]]
2122
2123
2124 (((
2125 (% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2126 (% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2127 (% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2128
2129 (((
2130 (% style="color:blue" %)**For LT-22222-L**(%%):
2131
2132 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2133 )))
2134
2135
2136 )))
2137
2138 [[image:image-20220524103407-12.png]]
2139
2140
2141 [[image:image-20220524103429-13.png]]
2142
2143
2144 [[image:image-20220524104033-15.png]]
2145
2146
2147 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2148
2149 [[image:1653360054704-518.png||height="186" width="745"]]
2150
2151
2152 (((
2153 (((
2154 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2155
2156
2157 )))
2158 )))
2159
2160 (((
2161 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2162 )))
2163
2164 (((
2165
2166
2167 == 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2168
2169
2170 )))
2171
2172 (((
2173 (((
2174 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2175 )))
2176 )))
2177
2178 (((
2179 (((
2180 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2181
2182
2183 )))
2184 )))
2185
2186 (((
2187 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2188
2189
2190 )))
2191
2192 (((
2193 [[image:1653360231087-571.png||height="401" width="727"]]
2194
2195
2196 )))
2197
2198 (((
2199 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2200 )))
2201
2202
2203
2204 (((
2205 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2206
2207
2208 )))
2209
2210 (((
2211 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2212
2213 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2214
2215 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2216
2217 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2218
2219 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2220
2221 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2222
2223 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2224
2225 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2226
2227 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2228 )))
2229
2230
2231 (((
2232 As shown in below:
2233 )))
2234
2235 [[image:1653360498588-932.png||height="485" width="726"]]
2236
2237
2238 == 6.4 How to change the uplink interval? ==
2239
2240
2241 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2242
2243
2244 == 6.5 Can I see the counting event in Serial? ==
2245
2246
2247 (((
2248 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2249
2250
2251 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2252
2253
2254 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2255
2256
2257 )))
2258
2259 (((
2260 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2261
2262
2263 If the device is not shut down, but directly powered off.
2264
2265 It will default that this is a power-off state.
2266
2267 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2268
2269 After restart, the status before power failure will be read from flash.
2270
2271
2272 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2273
2274
2275 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2276
2277
2278 [[image:image-20221006170630-1.png||height="610" width="945"]]
2279
2280
2281 == 6.9 Can LT22222-L save RO state? ==
2282
2283
2284 Firmware version needs to be no less than 1.6.0.
2285
2286
2287 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2288
2289
2290 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2291
2292
2293 = 7. Trouble Shooting =
2294 )))
2295
2296 (((
2297 (((
2298 == 7.1 Downlink doesn't work, how to solve it? ==
2299
2300
2301 )))
2302 )))
2303
2304 (((
2305 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2306 )))
2307
2308 (((
2309
2310
2311 == 7.2 Have trouble to upload image. ==
2312
2313
2314 )))
2315
2316 (((
2317 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2318 )))
2319
2320 (((
2321
2322
2323 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2324
2325
2326 )))
2327
2328 (((
2329 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2330 )))
2331
2332
2333 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2334
2335
2336 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2337 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2338
2339
2340 = 8. Order Info =
2341
2342
2343 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2344
2345 (% style="color:#4f81bd" %)**XXX:**
2346
2347 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2348 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2349 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2350 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2351 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2352 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2353 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2354 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2355 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2356
2357 = 9. Packing Info =
2358
2359
2360 **Package Includes**:
2361
2362 * LT-22222-L I/O Controller x 1
2363 * Stick Antenna for LoRa RF part x 1
2364 * Bracket for controller x1
2365 * Program cable x 1
2366
2367 **Dimension and weight**:
2368
2369 * Device Size: 13.5 x 7 x 3 cm
2370 * Device Weight: 105g
2371 * Package Size / pcs : 14.5 x 8 x 5 cm
2372 * Weight / pcs : 170g
2373
2374 = 10. Support =
2375
2376
2377 * (((
2378 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2379 )))
2380 * (((
2381 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2382
2383
2384
2385 )))
2386
2387 = 11. Reference​​​​​ =
2388
2389
2390 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2391 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2392 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0