Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering the LT-22222-L ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options are available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Work Modes and their Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278 (((
279 The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
280
281 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
282 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
283 |Value|(((
284 AVI1 voltage
285 )))|(((
286 AVI2 voltage
287 )))|(((
288 ACI1 Current
289 )))|(((
290 ACI2 Current
291 )))|**DIDORO***|(((
292 Reserve
293 )))|MOD
294 )))
295
296 (((
297 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
300 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
302 )))
303
304 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
307
308 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
309
310 For example, if the payload is: [[image:image-20220523175847-2.png]]
311
312
313 **The interface values can be calculated as follows:  **
314
315 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
316
317 AVI2 channel voltage is 0x04AC/1000=1.196V
318
319 ACI1 channel current is 0x1310/1000=4.880mA
320
321 ACI2 channel current is 0x1300/1000=4.864mA
322
323 The last byte 0xAA= **10101010**(b) means,
324
325 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 * [1] DI3 - not used for LT-22222-L.
328 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 * [1] DI1 channel input state:
330 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 ** DI1 LED is ON in both cases.
333 * [0] DO3 - not used for LT-22222-L.
334 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 * [0] DO1 channel output state:
336 ** DO1 is FLOATING when there is no load between DO1 and V+.
337 ** DO1 is HIGH when there is a load between DO1 and V+.
338 ** DO1 LED is OFF in both cases.
339
340 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341
342
343 (((
344 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
345 )))
346
347 (((
348 The uplink payload is 11 bytes long.
349
350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
352 |Value|COUNT1|COUNT2 |DIDORO*|(((
353 Reserve
354 )))|MOD
355 )))
356
357 (((
358 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
363
364 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
365 )))
366
367 * FIRST: Indicates that this is the first packet after joining the network.
368 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
369
370 (((
371 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
372
373
374 )))
375
376 (((
377 **To activate this mode, run the following AT commands:**
378 )))
379
380 (((
381 (% class="box infomessage" %)
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397
398 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401
402 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
403
404 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
405
406 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
407
408 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
409 )))
410
411
412 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413
414
415 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
419 |Value|COUNT1|(((
420 ACI1 Current
421 )))|(((
422 ACI2 Current
423 )))|DIDORO*|Reserve|MOD
424
425 (((
426 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
427
428 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
431 )))
432
433 * RO is for the relay. ROx=1: closed, ROx=0 always open.
434 * FIRST: Indicates that this is the first packet after joining the network.
435 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
436
437 (((
438 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
439 )))
440
441
442 (((
443 **To activate this mode, run the following AT commands:**
444 )))
445
446 (((
447 (% class="box infomessage" %)
448 (((
449 **AT+MOD=3**
450
451 **ATZ**
452 )))
453 )))
454
455 (((
456 AT Commands for counting:
457
458 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
459 )))
460
461
462 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
463
464
465 (((
466 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
467 )))
468
469 (((
470 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
471
472 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
474 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
475 Reserve
476 )))|MOD
477 )))
478
479 (((
480 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
485 )))
486
487 * RO is for the relay. ROx=1: closed, ROx=0 always open.
488 * FIRST: Indicates that this is the first packet after joining the network.
489 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490
491 (((
492 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
493
494
495 )))
496
497 (((
498 **To activate this mode, run the following AT commands:**
499 )))
500
501 (((
502 (% class="box infomessage" %)
503 (((
504 **AT+MOD=4**
505
506 **ATZ**
507 )))
508 )))
509
510 (((
511 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
512 )))
513
514 (((
515 **In addition to that, below are the commands for AVI1 Counting:**
516
517 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
518
519 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
520
521 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
522
523 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524 )))
525
526
527 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
528
529
530 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
531
532 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
534 |Value|(((
535 AVI1 voltage
536 )))|(((
537 AVI2 voltage
538 )))|(((
539 ACI1 Current
540 )))|COUNT1|DIDORO*|(((
541 Reserve
542 )))|MOD
543
544 (((
545 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
549 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
550 )))
551
552 * RO is for the relay. ROx=1: closed, ROx=0 always open.
553 * FIRST: Indicates that this is the first packet after joining the network.
554 * (((
555 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
556 )))
557
558 (((
559 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
560 )))
561
562 (((
563 **To activate this mode, run the following AT commands:**
564 )))
565
566 (((
567 (% class="box infomessage" %)
568 (((
569 **AT+MOD=5**
570
571 **ATZ**
572 )))
573 )))
574
575 (((
576 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
577 )))
578
579
580 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
581
582
583 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
584
585 For example, if you configured the following commands:
586
587 * **AT+MOD=1 ** **~-~->**  The normal working mode
588 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
589
590 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
591
592 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
594
595 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
596
597 (% style="color:#4f81bd" %)**Trigger based on voltage**:
598
599 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
600
601
602 **Example:**
603
604 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
605
606 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
607
608
609 (% style="color:#4f81bd" %)**Trigger based on current**:
610
611 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
612
613
614 **Example:**
615
616 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
617
618
619 (% style="color:#4f81bd" %)**Trigger based on DI status**:
620
621 DI status triggers Flag.
622
623 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
624
625
626 **Example:**
627
628 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
629
630
631 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
632
633 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
634
635 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
636
637 AA: Type Code for this downlink Command:
638
639 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
640
641 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
642
643 yy2 yy2: AC1 or AV1 HIGH limit.
644
645 yy3 yy3: AC2 or AV2 LOW limit.
646
647 Yy4 yy4: AC2 or AV2 HIGH limit.
648
649
650 **Example 1**: AA 00 13 88 00 00 00 00 00 00
651
652 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
653
654
655 **Example 2**: AA 02 01 00
656
657 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
658
659
660 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661
662 MOD6 Payload: total of 11 bytes
663
664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
666 |Value|(((
667 TRI_A FLAG
668 )))|(((
669 TRI_A Status
670 )))|(((
671 TRI_DI FLAG+STA
672 )))|Reserve|Enable/Disable MOD6|(((
673 MOD(6)
674 )))
675
676 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
677
678 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
679 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
680 |(((
681 AV1_LOW
682 )))|(((
683 AV1_HIGH
684 )))|(((
685 AV2_LOW
686 )))|(((
687 AV2_HIGH
688 )))|(((
689 AC1_LOW
690 )))|(((
691 AC1_HIGH
692 )))|(((
693 AC2_LOW
694 )))|(((
695 AC2_HIGH
696 )))
697
698 * Each bit shows if the corresponding trigger has been configured.
699
700 **Example:**
701
702 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
703
704
705 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
706
707 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
708 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
709 |(((
710 AV1_LOW
711 )))|(((
712 AV1_HIGH
713 )))|(((
714 AV2_LOW
715 )))|(((
716 AV2_HIGH
717 )))|(((
718 AC1_LOW
719 )))|(((
720 AC1_HIGH
721 )))|(((
722 AC2_LOW
723 )))|(((
724 AC2_HIGH
725 )))
726
727 * Each bit shows which status has been triggered on this uplink.
728
729 **Example:**
730
731 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
732
733
734 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
735
736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
737 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
739
740 * Each bits shows which status has been triggered on this uplink.
741
742 **Example:**
743
744 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
745
746 00000101: Means both DI1 and DI2 trigger are enabled.
747
748
749 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
750
751 Downlink command to poll MOD6 status:
752
753 **AB 06**
754
755 When device got this command, it will send the MOD6 payload.
756
757
758 === 3.3.7 Payload Decoder ===
759
760 (((
761
762
763 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
764 )))
765
766
767 == 3.4 ​Configure LT via AT Commands or Downlinks ==
768
769
770 (((
771 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
772 )))
773
774 (((
775 (((
776 There are two kinds of Commands:
777 )))
778 )))
779
780 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
781
782 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
783
784 === 3.4.1 Common Commands ===
785
786 (((
787 These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
788 )))
789
790
791 === 3.4.2 Sensor related commands ===
792
793 ==== 3.4.2.1 Set Transmit Interval ====
794
795 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
796
797 * (% style="color:#037691" %)**AT command:**
798
799 (% style="color:blue" %)**AT+TDC=N**
800
801 where N is the time in milliseconds.
802
803 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
804
805
806 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
807
808 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
809
810
811
812 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
813
814
815 Sets the work mode.
816
817 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
818
819 Where N is the work mode.
820
821 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
822
823
824 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
825
826 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
827
828
829
830 ==== 3.4.2.3 Poll an uplink ====
831
832
833 Asks the device to send an uplink.
834
835 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
836
837 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
838
839 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
840
841 **Example**: 0x08FF, ask device to send an Uplink
842
843
844
845 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
846
847
848 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
849
850 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
851
852 (% style="color:red" %)**1:** (%%)Enable the trigger mode
853
854 (% style="color:red" %)**0: **(%%)Disable the trigger mode
855
856
857 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
858
859 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
860
861
862
863 ==== 3.4.2.5 Poll trigger settings ====
864
865
866 Polls the trigger settings
867
868 * (% style="color:#037691" %)**AT Command:**
869
870 There is no AT Command for this feature.
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
873
874 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
875
876
877
878 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
879
880
881 Enable or Disable DI1/DI2/DI2 as trigger,
882
883 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
884
885 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
886
887
888 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
889
890 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
891
892
893
894 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
895
896
897 Set DI1 or DI3(for LT-33222-L) trigger.
898
899 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
900
901 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
902
903 (% style="color:red" %)**b :** (%%)delay timing.
904
905 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
906
907
908 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
909
910 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
911
912
913
914 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
915
916
917 Sets DI2 trigger.
918
919 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
920
921 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
922
923 (% style="color:red" %)**b :** (%%)delay timing.
924
925 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
926
927
928 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
929
930 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
931
932
933
934 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
935
936
937 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
938
939 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
942
943 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
944
945
946
947 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
948
949
950 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
951
952 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
953
954 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
955
956 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
957
958
959
960 ==== 3.4.2.11 Trigger – Set minimum interval ====
961
962
963 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
964
965 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
966
967 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
968
969 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
970
971 (((
972 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
973 )))
974
975
976
977 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
978
979
980 * (% style="color:#037691" %)**AT Command**
981
982 There is no AT Command to control Digital Output
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
986
987 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
988
989 (((
990 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
991 )))
992
993 (((
994 01: Low,  00: High ,  11: No action
995
996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
998 |02  01  00  11|Low|High|No Action
999 |02  00  11  01|High|No Action|Low
1000 |02  11  01  00|No Action|Low|High
1001 )))
1002
1003 (((
1004 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1005 )))
1006
1007 (((
1008 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1009 )))
1010
1011
1012
1013 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1014
1015
1016 * (% style="color:#037691" %)**AT Command**
1017
1018 There is no AT Command to control Digital Output
1019
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1022
1023 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1024
1025
1026 This is to control the digital output time of DO pin. Include four bytes:
1027
1028 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1029
1030 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1031
1032 01: DO pins will change back to original state after timeout.
1033
1034 00: DO pins will change to an inverter state after timeout 
1035
1036
1037 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1038
1039 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1040 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1041 |0x01|DO1 set to low
1042 |0x00|DO1 set to high
1043 |0x11|DO1 NO Action
1044
1045 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1046
1047 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1048 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1049 |0x01|DO2 set to low
1050 |0x00|DO2 set to high
1051 |0x11|DO2 NO Action
1052
1053 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1054
1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1056 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1057 |0x01|DO3 set to low
1058 |0x00|DO3 set to high
1059 |0x11|DO3 NO Action
1060
1061 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1062
1063
1064 (% style="color:red" %)**Note: **
1065
1066 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1067
1068 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1069
1070 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1071
1072
1073 **Example payload:**
1074
1075 **~1. A9 01 01 01 01 07 D0**
1076
1077 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1078
1079 **2. A9 01 00 01 11 07 D0**
1080
1081 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1082
1083 **3. A9 00 00 00 00 07 D0**
1084
1085 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1086
1087 **4. A9 00 11 01 00 07 D0**
1088
1089 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1090
1091
1092
1093 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1094
1095
1096 * (% style="color:#037691" %)**AT Command:**
1097
1098 There is no AT Command to control Relay Output
1099
1100
1101 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1102
1103 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1104
1105
1106 (((
1107 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1108 )))
1109
1110 (((
1111 00: Closed ,  01: Open , 11: No action
1112
1113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1114 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1115 |03  00  11|Open|No Action
1116 |03  01  11|Close|No Action
1117 |03  11  00|No Action|Open
1118 |03  11  01|No Action|Close
1119 |03  00  00|Open|Open
1120 |03  01  01|Close|Close
1121 |03  01  00|Close|Open
1122 |03  00  01|Open|Close
1123 )))
1124
1125 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1126
1127
1128
1129 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1130
1131
1132 * (% style="color:#037691" %)**AT Command:**
1133
1134 There is no AT Command to control Relay Output
1135
1136
1137 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1138
1139 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1140
1141
1142 This is to control the relay output time of relay. Include four bytes:
1143
1144 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1145
1146 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1147
1148 01: Relays will change back to original state after timeout.
1149
1150 00: Relays will change to an inverter state after timeout
1151
1152
1153 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1154
1155 [[image:image-20221008095908-1.png||height="364" width="564"]]
1156
1157
1158 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1159
1160
1161 (% style="color:red" %)**Note:**
1162
1163 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1164
1165 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1166
1167
1168 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1169
1170
1171 **Example payload:**
1172
1173 **~1. 05 01 11 07 D0**
1174
1175 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1176
1177 **2. 05 01 10 07 D0**
1178
1179 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1180
1181 **3. 05 00 01 07 D0**
1182
1183 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1184
1185 **4. 05 00 00 07 D0**
1186
1187 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1188
1189
1190
1191 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1192
1193
1194 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1195
1196 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197
1198 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1199
1200 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1201
1202
1203
1204 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1205
1206
1207 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1208
1209 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1210
1211 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1212
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1215
1216 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1217
1218
1219
1220 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1221
1222
1223 Clear counting for counting mode
1224
1225 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1226
1227 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1228
1229 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1230
1231
1232
1233 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1234
1235
1236 * (% style="color:#037691" %)**AT Command:**
1237
1238 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1239
1240
1241 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1242
1243 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1244
1245 (((
1246 range: aa bb cc:0 to 16777215,  (unit:second)
1247 )))
1248
1249
1250
1251 ==== 3.4.2.20 Reset save RO DO state ====
1252
1253
1254 * (% style="color:#037691" %)**AT Command:**
1255
1256 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1257
1258 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1259
1260
1261 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1262
1263 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1264
1265
1266
1267 ==== 3.4.2.21 Encrypted payload ====
1268
1269
1270 * (% style="color:#037691" %)**AT Command:**
1271
1272 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1273
1274 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1275
1276
1277
1278 ==== 3.4.2.22 Get sensor value ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1284
1285 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1286
1287
1288
1289 ==== 3.4.2.23 Resets the downlink packet count ====
1290
1291
1292 * (% style="color:#037691" %)**AT Command:**
1293
1294 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1295
1296 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1297
1298
1299
1300 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1306
1307 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1308
1309
1310 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1311
1312 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1313
1314
1315
1316 ==== 3.4.2.25 Copy downlink to uplink ====
1317
1318
1319 * (% style="color:#037691" %)**AT Command**(%%)**:**
1320
1321 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1322
1323 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1324
1325
1326 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1327
1328 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1329
1330
1331
1332 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1333
1334 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1335
1336
1337
1338 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1339
1340
1341 * (((
1342 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1343
1344 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1345
1346
1347 )))
1348
1349 **Example:**
1350
1351 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1352
1353
1354 == 3.5 Integrating with ThingsEye.io ==
1355
1356 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1357
1358 === 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1359
1360 * In **The Things Stack Sandbox**, select your application under **Applications**.
1361 * Select **MQTT** under **Integrations**.
1362 * In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1363 * For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button.
1364
1365 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1366
1367 === 3.5.2 Configuring ThingsEye.io ===
1368
1369 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1370 * Under the **Integrations center**, click **Integrations**.
1371 * Click the **Add integration** button (the button with the **+** symbol).
1372
1373 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1374
1375
1376 On the **Add integration** window, configure the following:
1377
1378 ~1. **Basic settings:**
1379
1380 * Select **The Things Stack Community** from the **Integration type** list.
1381 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1382 * Ensure the following options are turned on.
1383 ** Enable integration
1384 ** Debug mode
1385 ** Allow create devices or assets
1386 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1387
1388 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1389
1390
1391 2. **Uplink data converter:**
1392
1393 * Click the **Create new** button if it is not selected by default.
1394 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1395 * Click the **JavaScript** button.
1396 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1397 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1398
1399 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1400
1401 3.** Downlink data converter (this is an optional step):**
1402
1403 * Click the **Create new** button if it is not selected by default.
1404 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1405 * Click the **JavaScript** button.
1406 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1407 * Click the **Next** button. You will be navigated to the **Connection** tab.
1408
1409 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1410
1411 4. **Connection:**
1412
1413 * Choose **Region** from the **Host type**.
1414 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1415 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1416 * Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**.
1417 * Click the **Add** button.
1418
1419 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1420
1421
1422 Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again.
1423
1424 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1425
1426
1427 Viewing integration details:
1428
1429 Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1430
1431 [add image here]
1432
1433 If you want to edit the settings you have provided, click on the Toggle edit mode button.
1434
1435 [add image here]
1436
1437 Once you have done click on the Apply changes button.
1438
1439 Note: See also ThingsEye documentation.
1440
1441 Click on the Events tab.
1442
1443 - Select Debug from the Event type dropdown.
1444
1445 - Select the time frame from the time window.
1446
1447 [insert image]
1448
1449 - To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1450
1451 [insert image]
1452
1453
1454 Deleting the integration:
1455
1456 If you want to delete this integration, click the Delete integration button.
1457
1458
1459 == 3.6 Interface Details ==
1460
1461 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1462
1463
1464 Support NPN-type sensor
1465
1466 [[image:1653356991268-289.png]]
1467
1468
1469 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1470
1471
1472 (((
1473 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1474 )))
1475
1476 (((
1477 (((
1478 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1479
1480
1481 )))
1482 )))
1483
1484 [[image:1653357170703-587.png]]
1485
1486 (((
1487 (((
1488 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1489 )))
1490 )))
1491
1492 (((
1493
1494 )))
1495
1496 (((
1497 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1498 )))
1499
1500 (((
1501 This type of sensor outputs a low (GND) signal when active.
1502 )))
1503
1504 * (((
1505 Connect the sensor's output to DI1-
1506 )))
1507 * (((
1508 Connect the sensor's VCC to DI1+.
1509 )))
1510
1511 (((
1512 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1513 )))
1514
1515 (((
1516 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1517 )))
1518
1519 (((
1520 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1521 )))
1522
1523 (((
1524
1525 )))
1526
1527 (((
1528 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1529 )))
1530
1531 (((
1532 This type of sensor outputs a high signal (e.g., 24V) when active.
1533 )))
1534
1535 * (((
1536 Connect the sensor's output to DI1+
1537 )))
1538 * (((
1539 Connect the sensor's GND DI1-.
1540 )))
1541
1542 (((
1543 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1544 )))
1545
1546 (((
1547 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1548 )))
1549
1550 (((
1551 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1552 )))
1553
1554 (((
1555
1556 )))
1557
1558 (((
1559 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1560 )))
1561
1562 (((
1563 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1564 )))
1565
1566 * (((
1567 Connect the sensor's output to DI1+ with a 50K resistor in series.
1568 )))
1569 * (((
1570 Connect the sensor's GND DI1-.
1571 )))
1572
1573 (((
1574 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1575 )))
1576
1577 (((
1578 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1579 )))
1580
1581 (((
1582 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1583 )))
1584
1585
1586 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1587
1588 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1589
1590 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1591
1592 [[image:image-20230616235145-1.png]]
1593
1594 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1595
1596 [[image:image-20240219115718-1.png]]
1597
1598
1599 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1600
1601
1602 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1603
1604 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1605
1606 [[image:1653357531600-905.png]]
1607
1608
1609 === 3.6.4 Analog Input Interfaces ===
1610
1611
1612 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1613
1614
1615 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1616
1617 [[image:1653357592296-182.png]]
1618
1619 Example: Connecting a 4~~20mA sensor
1620
1621 We will use the wind speed sensor as an example for reference only.
1622
1623
1624 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1625
1626 (% style="color:red" %)**Red:  12~~24V**
1627
1628 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1629
1630 **Black:  GND**
1631
1632 **Connection diagram:**
1633
1634 [[image:1653357640609-758.png]]
1635
1636 [[image:1653357648330-671.png||height="155" width="733"]]
1637
1638
1639 Example: Connecting to a regulated power supply to measure voltage
1640
1641 [[image:image-20230608101532-1.png||height="606" width="447"]]
1642
1643 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1644
1645 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1646
1647
1648 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1649
1650 (% style="color:red" %)**Red:  12~~24v**
1651
1652 **Black:  GND**
1653
1654
1655 === 3.6.5 Relay Output ===
1656
1657
1658 (((
1659 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1660
1661 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1662 )))
1663
1664 [[image:image-20220524100215-9.png]]
1665
1666
1667 [[image:image-20220524100215-10.png||height="382" width="723"]]
1668
1669
1670 == 3.7 LEDs Indicators ==
1671
1672
1673 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1674 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1675 |**PWR**|Always on if there is power
1676 |**TX**|(((
1677 (((
1678 Device boot: TX blinks 5 times.
1679 )))
1680
1681 (((
1682 Successful join network: TX ON for 5 seconds.
1683 )))
1684
1685 (((
1686 Transmit a LoRa packet: TX blinks once
1687 )))
1688 )))
1689 |**RX**|RX blinks once when receiving a packet.
1690 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1691 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1692 |**DI1**|(((
1693 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1694 )))
1695 |**DI2**|(((
1696 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1697 )))
1698 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1699 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1700
1701 = 4. Using AT Command =
1702
1703 == 4.1 Connecting the LT-22222-L to a computer ==
1704
1705
1706 (((
1707 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1708 )))
1709
1710 [[image:1653358238933-385.png]]
1711
1712
1713 (((
1714 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1715 )))
1716
1717 [[image:1653358355238-883.png]]
1718
1719
1720 (((
1721 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1722 )))
1723
1724 (((
1725 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1726
1727 AT+<CMD>?        : Help on <CMD>
1728 )))
1729
1730 (((
1731 AT+<CMD>         : Run <CMD>
1732 )))
1733
1734 (((
1735 AT+<CMD>=<value> : Set the value
1736 )))
1737
1738 (((
1739 AT+<CMD>=?       :  Get the value
1740 )))
1741
1742 (((
1743 ATZ: Trig a reset of the MCU
1744 )))
1745
1746 (((
1747 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1748 )))
1749
1750 (((
1751 AT+DEUI: Get or Set the Device EUI
1752 )))
1753
1754 (((
1755 AT+DADDR: Get or Set the Device Address
1756 )))
1757
1758 (((
1759 AT+APPKEY: Get or Set the Application Key
1760 )))
1761
1762 (((
1763 AT+NWKSKEY: Get or Set the Network Session Key
1764 )))
1765
1766 (((
1767 AT+APPSKEY:  Get or Set the Application Session Key
1768 )))
1769
1770 (((
1771 AT+APPEUI:  Get or Set the Application EUI
1772 )))
1773
1774 (((
1775 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1776 )))
1777
1778 (((
1779 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1780 )))
1781
1782 (((
1783 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1784 )))
1785
1786 (((
1787 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1788 )))
1789
1790 (((
1791 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1792 )))
1793
1794 (((
1795 AT+RX2FQ: Get or Set the Rx2 window frequency
1796 )))
1797
1798 (((
1799 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 )))
1801
1802 (((
1803 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1804 )))
1805
1806 (((
1807 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1808 )))
1809
1810 (((
1811 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1812 )))
1813
1814 (((
1815 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1816 )))
1817
1818 (((
1819 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1820 )))
1821
1822 (((
1823 AT+NWKID: Get or Set the Network ID
1824 )))
1825
1826 (((
1827 AT+FCU: Get or Set the Frame Counter Uplink
1828 )))
1829
1830 (((
1831 AT+FCD: Get or Set the Frame Counter Downlink
1832 )))
1833
1834 (((
1835 AT+CLASS: Get or Set the Device Class
1836 )))
1837
1838 (((
1839 AT+JOIN: Join network
1840 )))
1841
1842 (((
1843 AT+NJS: Get OTAA Join Status
1844 )))
1845
1846 (((
1847 AT+SENDB: Send hexadecimal data along with the application port
1848 )))
1849
1850 (((
1851 AT+SEND: Send text data along with the application port
1852 )))
1853
1854 (((
1855 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1856 )))
1857
1858 (((
1859 AT+RECV: Print last received data in raw format
1860 )))
1861
1862 (((
1863 AT+VER:  Get current image version and Frequency Band
1864 )))
1865
1866 (((
1867 AT+CFM: Get or Set the confirmation mode (0-1)
1868 )))
1869
1870 (((
1871 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1872 )))
1873
1874 (((
1875 AT+SNR: Get the SNR of the last received packet
1876 )))
1877
1878 (((
1879 AT+RSSI: Get the RSSI of the last received packet
1880 )))
1881
1882 (((
1883 AT+TDC: Get or set the application data transmission interval in ms
1884 )))
1885
1886 (((
1887 AT+PORT: Get or set the application port
1888 )))
1889
1890 (((
1891 AT+DISAT: Disable AT commands
1892 )))
1893
1894 (((
1895 AT+PWORD: Set password, max 9 digits
1896 )))
1897
1898 (((
1899 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1900 )))
1901
1902 (((
1903 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1904 )))
1905
1906 (((
1907 AT+CFG: Print all settings
1908 )))
1909
1910
1911 == 4.2 Common AT Command Sequence ==
1912
1913 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1914
1915 (((
1916
1917
1918 (((
1919 (% style="color:blue" %)**If device has not joined network yet:**
1920 )))
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)**123456**
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)**AT+FDR**
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)**123456**
1933 )))
1934
1935 (((
1936 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1937 )))
1938
1939 (((
1940 (% style="background-color:#dcdcdc" %)**ATZ**
1941 )))
1942
1943
1944 (((
1945 (% style="color:blue" %)**If device already joined network:**
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)**ATZ**
1954 )))
1955
1956
1957 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1958
1959 (((
1960
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1964 )))
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1973 )))
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1977 )))
1978
1979 (((
1980 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1981 )))
1982
1983 (((
1984 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1985 )))
1986
1987 (((
1988 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1989 )))
1990
1991 (((
1992 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1993 )))
1994
1995 (((
1996 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1997 )))
1998
1999 (((
2000 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2001 )))
2002
2003 (((
2004 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2005 )))
2006
2007 (((
2008 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2009 )))
2010
2011 (((
2012 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2013
2014
2015 )))
2016
2017 (((
2018 (% style="color:red" %)**Note:**
2019 )))
2020
2021 (((
2022 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2023
2024 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2025
2026 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2027 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2028
2029 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2030 )))
2031
2032 (((
2033 [[image:1653359097980-169.png||height="188" width="729"]]
2034 )))
2035
2036
2037 === 4.2.3 Change to Class A ===
2038
2039
2040 (((
2041 (% style="color:blue" %)**If sensor JOINED:**
2042
2043 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2044
2045 (% style="background-color:#dcdcdc" %)**ATZ**
2046 )))
2047
2048
2049 = 5. Case Study =
2050
2051 == 5.1 Counting how many objects pass through the flow Line ==
2052
2053
2054 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2055
2056
2057 = 6. FAQ =
2058
2059 == 6.1 How to upgrade the image? ==
2060
2061
2062 The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2063
2064 * Support new features.
2065 * Fix bugs.
2066 * Change LoRaWAN bands.
2067
2068 Below is the hardware connection setup for uploading an image to the LT:
2069
2070 [[image:1653359603330-121.png]]
2071
2072
2073 (((
2074 (% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 (% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 (% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2077
2078
2079 (((
2080 (% style="color:blue" %)**For LT-22222-L**(%%):
2081 Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2082 )))
2083
2084
2085 )))
2086
2087 [[image:image-20220524103407-12.png]]
2088
2089
2090 [[image:image-20220524103429-13.png]]
2091
2092
2093 [[image:image-20220524104033-15.png]]
2094
2095
2096 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2097
2098 [[image:1653360054704-518.png||height="186" width="745"]]
2099
2100
2101 (((
2102 (((
2103 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2104
2105
2106 )))
2107 )))
2108
2109 (((
2110 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2111 )))
2112
2113 (((
2114
2115
2116 == 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2117
2118
2119 )))
2120
2121 (((
2122 (((
2123 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2124 )))
2125 )))
2126
2127 (((
2128 (((
2129 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2130
2131
2132 )))
2133 )))
2134
2135 (((
2136 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2137
2138
2139 )))
2140
2141 (((
2142 [[image:1653360231087-571.png||height="401" width="727"]]
2143
2144
2145 )))
2146
2147 (((
2148 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2149 )))
2150
2151
2152
2153 (((
2154 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2155
2156
2157 )))
2158
2159 (((
2160 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2161
2162 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2163
2164 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2165
2166 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2167
2168 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2169
2170 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2171
2172 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2173
2174 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2175
2176 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2177 )))
2178
2179
2180 (((
2181 As shown in below:
2182 )))
2183
2184 [[image:1653360498588-932.png||height="485" width="726"]]
2185
2186
2187 == 6.4 How to change the uplink interval? ==
2188
2189
2190 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2191
2192
2193 == 6.5 Can I see the counting event in Serial? ==
2194
2195
2196 (((
2197 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2198
2199
2200 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2201
2202
2203 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2204
2205
2206 )))
2207
2208 (((
2209 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2210
2211
2212 If the device is not shut down, but directly powered off.
2213
2214 It will default that this is a power-off state.
2215
2216 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2217
2218 After restart, the status before power failure will be read from flash.
2219
2220
2221 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2222
2223
2224 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2225
2226
2227 [[image:image-20221006170630-1.png||height="610" width="945"]]
2228
2229
2230 == 6.9 Can LT22222-L save RO state? ==
2231
2232
2233 Firmware version needs to be no less than 1.6.0.
2234
2235
2236 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2237
2238
2239 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2240
2241
2242 = 7. Trouble Shooting =
2243 )))
2244
2245 (((
2246 (((
2247 == 7.1 Downlink doesn't work, how to solve it? ==
2248
2249
2250 )))
2251 )))
2252
2253 (((
2254 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2255 )))
2256
2257 (((
2258
2259
2260 == 7.2 Have trouble to upload image. ==
2261
2262
2263 )))
2264
2265 (((
2266 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2267 )))
2268
2269 (((
2270
2271
2272 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2273
2274
2275 )))
2276
2277 (((
2278 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2279 )))
2280
2281
2282 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2283
2284
2285 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2286 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2287
2288
2289 = 8. Order Info =
2290
2291
2292 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2293
2294 (% style="color:#4f81bd" %)**XXX:**
2295
2296 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2297 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2298 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2299 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2300 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2301 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2302 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2303 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2304 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2305
2306 = 9. Packing Info =
2307
2308
2309 **Package Includes**:
2310
2311 * LT-22222-L I/O Controller x 1
2312 * Stick Antenna for LoRa RF part x 1
2313 * Bracket for controller x1
2314 * Program cable x 1
2315
2316 **Dimension and weight**:
2317
2318 * Device Size: 13.5 x 7 x 3 cm
2319 * Device Weight: 105g
2320 * Package Size / pcs : 14.5 x 8 x 5 cm
2321 * Weight / pcs : 170g
2322
2323 = 10. Support =
2324
2325
2326 * (((
2327 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2328 )))
2329 * (((
2330 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2331
2332
2333
2334 )))
2335
2336 = 11. Reference​​​​​ =
2337
2338
2339 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2340 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2341 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0