Version 166.1 by Dilisi S on 2024/11/07 05:43

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering the LT-22222-L ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options are available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Work Modes and their Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278 (((
279 The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
280
281 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
282 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
283 |Value|(((
284 AVI1 voltage
285 )))|(((
286 AVI2 voltage
287 )))|(((
288 ACI1 Current
289 )))|(((
290 ACI2 Current
291 )))|**DIDORO***|(((
292 Reserve
293 )))|MOD
294 )))
295
296 (((
297 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
300 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
302 )))
303
304 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
307
308 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
309
310 For example, if the payload is: [[image:image-20220523175847-2.png]]
311
312
313 **The interface values can be calculated as follows:  **
314
315 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
316
317 AVI2 channel voltage is 0x04AC/1000=1.196V
318
319 ACI1 channel current is 0x1310/1000=4.880mA
320
321 ACI2 channel current is 0x1300/1000=4.864mA
322
323 The last byte 0xAA= **10101010**(b) means,
324
325 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 * [1] DI3 - not used for LT-22222-L.
328 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 * [1] DI1 channel input state:
330 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 ** DI1 LED is ON in both cases.
333 * [0] DO3 - not used for LT-22222-L.
334 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 * [0] DO1 channel output state:
336 ** DO1 is FLOATING when there is no load between DO1 and V+.
337 ** DO1 is HIGH when there is a load between DO1 and V+.
338 ** DO1 LED is OFF in both cases.
339
340 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341
342
343 (((
344 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
345 )))
346
347 (((
348 The uplink payload is 11 bytes long.
349
350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
352 |Value|COUNT1|COUNT2 |DIDORO*|(((
353 Reserve
354 )))|MOD
355 )))
356
357 (((
358 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
363
364 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
365 )))
366
367 * FIRST: Indicates that this is the first packet after joining the network.
368 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
369
370 (((
371 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
372
373
374 )))
375
376 (((
377 **To activate this mode, run the following AT commands:**
378 )))
379
380 (((
381 (% class="box infomessage" %)
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397
398 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401
402 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
403
404 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
405
406 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
407
408 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
409 )))
410
411
412 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413
414
415 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
419 |Value|COUNT1|(((
420 ACI1 Current
421 )))|(((
422 ACI2 Current
423 )))|DIDORO*|Reserve|MOD
424
425 (((
426 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
427
428 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
431 )))
432
433 * RO is for the relay. ROx=1: closed, ROx=0 always open.
434 * FIRST: Indicates that this is the first packet after joining the network.
435 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
436
437 (((
438 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
439 )))
440
441
442 (((
443 **To activate this mode, run the following AT commands:**
444 )))
445
446 (((
447 (% class="box infomessage" %)
448 (((
449 **AT+MOD=3**
450
451 **ATZ**
452 )))
453 )))
454
455 (((
456 AT Commands for counting:
457
458 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
459 )))
460
461
462 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
463
464
465 (((
466 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
467 )))
468
469 (((
470 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
471
472 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
474 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
475 Reserve
476 )))|MOD
477 )))
478
479 (((
480 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
485 )))
486
487 * RO is for the relay. ROx=1: closed, ROx=0 always open.
488 * FIRST: Indicates that this is the first packet after joining the network.
489 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490
491 (((
492 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
493
494
495 )))
496
497 (((
498 **To activate this mode, run the following AT commands:**
499 )))
500
501 (((
502 (% class="box infomessage" %)
503 (((
504 **AT+MOD=4**
505
506 **ATZ**
507 )))
508 )))
509
510 (((
511 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
512 )))
513
514 (((
515 **In addition to that, below are the commands for AVI1 Counting:**
516
517 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
518
519 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
520
521 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
522
523 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524 )))
525
526
527 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
528
529
530 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
531
532 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
534 |Value|(((
535 AVI1 voltage
536 )))|(((
537 AVI2 voltage
538 )))|(((
539 ACI1 Current
540 )))|COUNT1|DIDORO*|(((
541 Reserve
542 )))|MOD
543
544 (((
545 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
549 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
550 )))
551
552 * RO is for the relay. ROx=1: closed, ROx=0 always open.
553 * FIRST: Indicates that this is the first packet after joining the network.
554 * (((
555 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
556 )))
557
558 (((
559 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
560 )))
561
562 (((
563 **To activate this mode, run the following AT commands:**
564 )))
565
566 (((
567 (% class="box infomessage" %)
568 (((
569 **AT+MOD=5**
570
571 **ATZ**
572 )))
573 )))
574
575 (((
576 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
577 )))
578
579
580 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
581
582
583 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
584
585 For example, if you configured the following commands:
586
587 * **AT+MOD=1 ** **~-~->**  The normal working mode
588 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
589
590 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
591
592 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
594
595 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
596
597 (% style="color:#4f81bd" %)**Trigger based on voltage**:
598
599 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
600
601
602 **Example:**
603
604 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
605
606 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
607
608
609 (% style="color:#4f81bd" %)**Trigger based on current**:
610
611 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
612
613
614 **Example:**
615
616 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
617
618
619 (% style="color:#4f81bd" %)**Trigger based on DI status**:
620
621 DI status triggers Flag.
622
623 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
624
625
626 **Example:**
627
628 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
629
630
631 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
632
633 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
634
635 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
636
637 AA: Type Code for this downlink Command:
638
639 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
640
641 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
642
643 yy2 yy2: AC1 or AV1 HIGH limit.
644
645 yy3 yy3: AC2 or AV2 LOW limit.
646
647 Yy4 yy4: AC2 or AV2 HIGH limit.
648
649
650 **Example 1**: AA 00 13 88 00 00 00 00 00 00
651
652 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
653
654
655 **Example 2**: AA 02 01 00
656
657 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
658
659
660 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661
662 MOD6 Payload: total of 11 bytes
663
664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
666 |Value|(((
667 TRI_A FLAG
668 )))|(((
669 TRI_A Status
670 )))|(((
671 TRI_DI FLAG+STA
672 )))|Reserve|Enable/Disable MOD6|(((
673 MOD(6)
674 )))
675
676 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
677
678 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
679 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
680 |(((
681 AV1_LOW
682 )))|(((
683 AV1_HIGH
684 )))|(((
685 AV2_LOW
686 )))|(((
687 AV2_HIGH
688 )))|(((
689 AC1_LOW
690 )))|(((
691 AC1_HIGH
692 )))|(((
693 AC2_LOW
694 )))|(((
695 AC2_HIGH
696 )))
697
698 * Each bit shows if the corresponding trigger has been configured.
699
700 **Example:**
701
702 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
703
704
705 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
706
707 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
708 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
709 |(((
710 AV1_LOW
711 )))|(((
712 AV1_HIGH
713 )))|(((
714 AV2_LOW
715 )))|(((
716 AV2_HIGH
717 )))|(((
718 AC1_LOW
719 )))|(((
720 AC1_HIGH
721 )))|(((
722 AC2_LOW
723 )))|(((
724 AC2_HIGH
725 )))
726
727 * Each bit shows which status has been triggered on this uplink.
728
729 **Example:**
730
731 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
732
733
734 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
735
736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
737 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
739
740 * Each bits shows which status has been triggered on this uplink.
741
742 **Example:**
743
744 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
745
746 00000101: Means both DI1 and DI2 trigger are enabled.
747
748
749 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
750
751 Downlink command to poll MOD6 status:
752
753 **AB 06**
754
755 When device got this command, it will send the MOD6 payload.
756
757
758 === 3.3.7 Payload Decoder ===
759
760 (((
761
762
763 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
764 )))
765
766
767 == 3.4 ​Configure LT via AT Commands or Downlinks ==
768
769
770 (((
771 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
772 )))
773
774 (((
775 (((
776 There are two kinds of Commands:
777 )))
778 )))
779
780 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
781
782 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
783
784 === 3.4.1 Common Commands ===
785
786
787 (((
788 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
789 )))
790
791
792 === 3.4.2 Sensor related commands ===
793
794 ==== 3.4.2.1 Set Transmit Interval ====
795
796
797 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
798
799 * (% style="color:#037691" %)**AT command:**
800
801 (% style="color:blue" %)**AT+TDC=N**
802
803 where N is the time in milliseconds.
804
805 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
806
807
808 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
809
810 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
811
812
813
814 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
815
816
817 Sets the work mode.
818
819 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820
821 Where N is the work mode.
822
823 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
824
825
826 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
827
828 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
829
830
831
832 ==== 3.4.2.3 Poll an uplink ====
833
834
835 Asks the device to send an uplink.
836
837 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
838
839 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
840
841 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
842
843 **Example**: 0x08FF, ask device to send an Uplink
844
845
846
847 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
848
849
850 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
851
852 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
853
854 (% style="color:red" %)**1:** (%%)Enable the trigger mode
855
856 (% style="color:red" %)**0: **(%%)Disable the trigger mode
857
858
859 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
860
861 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
862
863
864
865 ==== 3.4.2.5 Poll trigger settings ====
866
867
868 Polls the trigger settings
869
870 * (% style="color:#037691" %)**AT Command:**
871
872 There is no AT Command for this feature.
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
875
876 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
877
878
879
880 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
881
882
883 Enable or Disable DI1/DI2/DI2 as trigger,
884
885 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
886
887 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
891
892 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
893
894
895
896 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
897
898
899 Set DI1 or DI3(for LT-33222-L) trigger.
900
901 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
902
903 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
904
905 (% style="color:red" %)**b :** (%%)delay timing.
906
907 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
908
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
911
912 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
913
914
915
916 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
917
918
919 Sets DI2 trigger.
920
921 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
922
923 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
924
925 (% style="color:red" %)**b :** (%%)delay timing.
926
927 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
931
932 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
933
934
935
936 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
937
938
939 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
940
941 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
942
943 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
944
945 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
946
947
948
949 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
950
951
952 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
953
954 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
955
956 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
957
958 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
959
960
961
962 ==== 3.4.2.11 Trigger – Set minimum interval ====
963
964
965 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
966
967 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
968
969 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
970
971 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
972
973 (((
974 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
975 )))
976
977
978
979 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
980
981
982 * (% style="color:#037691" %)**AT Command**
983
984 There is no AT Command to control Digital Output
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
988
989 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
990
991 (((
992 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
993 )))
994
995 (((
996 01: Low,  00: High ,  11: No action
997
998 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
999 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1000 |02  01  00  11|Low|High|No Action
1001 |02  00  11  01|High|No Action|Low
1002 |02  11  01  00|No Action|Low|High
1003 )))
1004
1005 (((
1006 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1007 )))
1008
1009 (((
1010 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1011 )))
1012
1013
1014
1015 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1016
1017
1018 * (% style="color:#037691" %)**AT Command**
1019
1020 There is no AT Command to control Digital Output
1021
1022
1023 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1024
1025 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1026
1027
1028 This is to control the digital output time of DO pin. Include four bytes:
1029
1030 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1031
1032 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1033
1034 01: DO pins will change back to original state after timeout.
1035
1036 00: DO pins will change to an inverter state after timeout 
1037
1038
1039 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1040
1041 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1042 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1043 |0x01|DO1 set to low
1044 |0x00|DO1 set to high
1045 |0x11|DO1 NO Action
1046
1047 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1048
1049 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1050 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1051 |0x01|DO2 set to low
1052 |0x00|DO2 set to high
1053 |0x11|DO2 NO Action
1054
1055 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1058 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1059 |0x01|DO3 set to low
1060 |0x00|DO3 set to high
1061 |0x11|DO3 NO Action
1062
1063 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1064
1065
1066 (% style="color:red" %)**Note: **
1067
1068 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1069
1070 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1071
1072 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1073
1074
1075 **Example payload:**
1076
1077 **~1. A9 01 01 01 01 07 D0**
1078
1079 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1080
1081 **2. A9 01 00 01 11 07 D0**
1082
1083 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1084
1085 **3. A9 00 00 00 00 07 D0**
1086
1087 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1088
1089 **4. A9 00 11 01 00 07 D0**
1090
1091 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1092
1093
1094
1095 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1096
1097
1098 * (% style="color:#037691" %)**AT Command:**
1099
1100 There is no AT Command to control Relay Output
1101
1102
1103 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1104
1105 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1106
1107
1108 (((
1109 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1110 )))
1111
1112 (((
1113 00: Closed ,  01: Open , 11: No action
1114
1115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1116 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1117 |03  00  11|Open|No Action
1118 |03  01  11|Close|No Action
1119 |03  11  00|No Action|Open
1120 |03  11  01|No Action|Close
1121 |03  00  00|Open|Open
1122 |03  01  01|Close|Close
1123 |03  01  00|Close|Open
1124 |03  00  01|Open|Close
1125 )))
1126
1127 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1128
1129
1130
1131 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1132
1133
1134 * (% style="color:#037691" %)**AT Command:**
1135
1136 There is no AT Command to control Relay Output
1137
1138
1139 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1140
1141 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1142
1143
1144 This is to control the relay output time of relay. Include four bytes:
1145
1146 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1147
1148 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1149
1150 01: Relays will change back to original state after timeout.
1151
1152 00: Relays will change to an inverter state after timeout
1153
1154
1155 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1156
1157 [[image:image-20221008095908-1.png||height="364" width="564"]]
1158
1159
1160 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1161
1162
1163 (% style="color:red" %)**Note:**
1164
1165 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1166
1167 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1168
1169
1170 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1171
1172
1173 **Example payload:**
1174
1175 **~1. 05 01 11 07 D0**
1176
1177 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1178
1179 **2. 05 01 10 07 D0**
1180
1181 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1182
1183 **3. 05 00 01 07 D0**
1184
1185 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1186
1187 **4. 05 00 00 07 D0**
1188
1189 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1190
1191
1192
1193 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1194
1195
1196 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197
1198 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199
1200 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1201
1202 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1203
1204
1205
1206 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1210
1211 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1212
1213 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1217
1218 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1219
1220
1221
1222 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1223
1224
1225 Clear counting for counting mode
1226
1227 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1228
1229 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1230
1231 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1232
1233
1234
1235 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1236
1237
1238 * (% style="color:#037691" %)**AT Command:**
1239
1240 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1241
1242
1243 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1244
1245 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1246
1247 (((
1248 range: aa bb cc:0 to 16777215,  (unit:second)
1249 )))
1250
1251
1252
1253 ==== 3.4.2.20 Reset save RO DO state ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1259
1260 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1261
1262
1263 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1264
1265 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1266
1267
1268
1269 ==== 3.4.2.21 Encrypted payload ====
1270
1271
1272 * (% style="color:#037691" %)**AT Command:**
1273
1274 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1275
1276 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1277
1278
1279
1280 ==== 3.4.2.22 Get sensor value ====
1281
1282
1283 * (% style="color:#037691" %)**AT Command:**
1284
1285 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1286
1287 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1288
1289
1290
1291 ==== 3.4.2.23 Resets the downlink packet count ====
1292
1293
1294 * (% style="color:#037691" %)**AT Command:**
1295
1296 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1297
1298 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1299
1300
1301
1302 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1308
1309 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1310
1311
1312 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1313
1314 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1315
1316
1317
1318 ==== 3.4.2.25 Copy downlink to uplink ====
1319
1320
1321 * (% style="color:#037691" %)**AT Command**(%%)**:**
1322
1323 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1324
1325 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1326
1327
1328 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1329
1330 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1331
1332
1333
1334 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1335
1336 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1337
1338
1339
1340 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1341
1342
1343 * (((
1344 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1345
1346 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1347
1348
1349 )))
1350
1351 **Example:**
1352
1353 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1354
1355
1356 == 3.5 Integrating with ThingsEye.io ==
1357
1358 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1359
1360 === 3.5.1 Configuring The Things Stack Sandbox ===
1361
1362 * Go to your Application and select MQTT under Integrations.
1363 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1364 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1365
1366 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1367
1368 === 3.5.2 Configuring ThingsEye.io ===
1369
1370 * Login to your thingsEye.io account.
1371 * Under the Integrations center, click Integrations.
1372 * Click the Add integration button (the button with the + symbol).
1373
1374 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1375
1376
1377 On the Add integration page configure the following:
1378
1379 Basic settings:
1380
1381 * Select The Things Stack Community from the Integration type list.
1382 * Enter a suitable name for your integration in the Name box or keep the default name.
1383 * Click the Next button.
1384
1385 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1386
1387 Uplink Data converter:
1388
1389 * Click the Create New button if it is not selected by default.
1390 * Click the JavaScript button.
1391 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1392 * Click the Next button.
1393
1394 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1395
1396 Downlink Data converter (this is an optional step):
1397
1398 * Click the Create new button if it is not selected by default.
1399 * Click the JavaScript button.
1400 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1401 * Click the Next button.
1402
1403 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1404
1405 Connection:
1406
1407 * Choose Region from the Host type.
1408 * Enter the cluster of your The Things Stack in the Region textbox.
1409 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1410 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1411 * Click the Add button.
1412
1413 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1414
1415
1416 Your integration is added to the integrations list and it will display on the Integrations page.
1417
1418 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1419
1420
1421 == 3.6 Interface Details ==
1422
1423 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1424
1425
1426 Support NPN-type sensor
1427
1428 [[image:1653356991268-289.png]]
1429
1430
1431 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1432
1433
1434 (((
1435 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1436 )))
1437
1438 (((
1439 (((
1440 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1441
1442
1443 )))
1444 )))
1445
1446 [[image:1653357170703-587.png]]
1447
1448 (((
1449 (((
1450 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1451 )))
1452 )))
1453
1454 (((
1455
1456 )))
1457
1458 (((
1459 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1460 )))
1461
1462 (((
1463 This type of sensor outputs a low (GND) signal when active.
1464 )))
1465
1466 * (((
1467 Connect the sensor's output to DI1-
1468 )))
1469 * (((
1470 Connect the sensor's VCC to DI1+.
1471 )))
1472
1473 (((
1474 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1475 )))
1476
1477 (((
1478 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1479 )))
1480
1481 (((
1482 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1483 )))
1484
1485 (((
1486
1487 )))
1488
1489 (((
1490 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1491 )))
1492
1493 (((
1494 This type of sensor outputs a high signal (e.g., 24V) when active.
1495 )))
1496
1497 * (((
1498 Connect the sensor's output to DI1+
1499 )))
1500 * (((
1501 Connect the sensor's GND DI1-.
1502 )))
1503
1504 (((
1505 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1506 )))
1507
1508 (((
1509 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1510 )))
1511
1512 (((
1513 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1514 )))
1515
1516 (((
1517
1518 )))
1519
1520 (((
1521 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1522 )))
1523
1524 (((
1525 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1526 )))
1527
1528 * (((
1529 Connect the sensor's output to DI1+ with a 50K resistor in series.
1530 )))
1531 * (((
1532 Connect the sensor's GND DI1-.
1533 )))
1534
1535 (((
1536 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1537 )))
1538
1539 (((
1540 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1541 )))
1542
1543 (((
1544 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1545 )))
1546
1547
1548 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1549
1550 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1551
1552 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1553
1554 [[image:image-20230616235145-1.png]]
1555
1556 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1557
1558 [[image:image-20240219115718-1.png]]
1559
1560
1561 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1562
1563
1564 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1565
1566 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1567
1568 [[image:1653357531600-905.png]]
1569
1570
1571 === 3.6.4 Analog Input Interfaces ===
1572
1573
1574 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1575
1576
1577 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1578
1579 [[image:1653357592296-182.png]]
1580
1581 Example: Connecting a 4~~20mA sensor
1582
1583 We will use the wind speed sensor as an example for reference only.
1584
1585
1586 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1587
1588 (% style="color:red" %)**Red:  12~~24V**
1589
1590 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1591
1592 **Black:  GND**
1593
1594 **Connection diagram:**
1595
1596 [[image:1653357640609-758.png]]
1597
1598 [[image:1653357648330-671.png||height="155" width="733"]]
1599
1600
1601 Example: Connecting to a regulated power supply to measure voltage
1602
1603 [[image:image-20230608101532-1.png||height="606" width="447"]]
1604
1605 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1606
1607 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1608
1609
1610 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1611
1612 (% style="color:red" %)**Red:  12~~24v**
1613
1614 **Black:  GND**
1615
1616
1617 === 3.6.5 Relay Output ===
1618
1619
1620 (((
1621 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1622
1623 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1624 )))
1625
1626 [[image:image-20220524100215-9.png]]
1627
1628
1629 [[image:image-20220524100215-10.png||height="382" width="723"]]
1630
1631
1632 == 3.7 LEDs Indicators ==
1633
1634
1635 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1636 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1637 |**PWR**|Always on if there is power
1638 |**TX**|(((
1639 (((
1640 Device boot: TX blinks 5 times.
1641 )))
1642
1643 (((
1644 Successful join network: TX ON for 5 seconds.
1645 )))
1646
1647 (((
1648 Transmit a LoRa packet: TX blinks once
1649 )))
1650 )))
1651 |**RX**|RX blinks once when receiving a packet.
1652 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1653 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1654 |**DI1**|(((
1655 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1656 )))
1657 |**DI2**|(((
1658 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1659 )))
1660 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1661 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1662
1663 = 4. Using AT Command =
1664
1665 == 4.1 Connecting the LT-22222-L to a computer ==
1666
1667
1668 (((
1669 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1670 )))
1671
1672 [[image:1653358238933-385.png]]
1673
1674
1675 (((
1676 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1677 )))
1678
1679 [[image:1653358355238-883.png]]
1680
1681
1682 (((
1683 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 )))
1685
1686 (((
1687 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1688
1689 AT+<CMD>?        : Help on <CMD>
1690 )))
1691
1692 (((
1693 AT+<CMD>         : Run <CMD>
1694 )))
1695
1696 (((
1697 AT+<CMD>=<value> : Set the value
1698 )))
1699
1700 (((
1701 AT+<CMD>=?       :  Get the value
1702 )))
1703
1704 (((
1705 ATZ: Trig a reset of the MCU
1706 )))
1707
1708 (((
1709 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1710 )))
1711
1712 (((
1713 AT+DEUI: Get or Set the Device EUI
1714 )))
1715
1716 (((
1717 AT+DADDR: Get or Set the Device Address
1718 )))
1719
1720 (((
1721 AT+APPKEY: Get or Set the Application Key
1722 )))
1723
1724 (((
1725 AT+NWKSKEY: Get or Set the Network Session Key
1726 )))
1727
1728 (((
1729 AT+APPSKEY:  Get or Set the Application Session Key
1730 )))
1731
1732 (((
1733 AT+APPEUI:  Get or Set the Application EUI
1734 )))
1735
1736 (((
1737 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1738 )))
1739
1740 (((
1741 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1742 )))
1743
1744 (((
1745 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1746 )))
1747
1748 (((
1749 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1750 )))
1751
1752 (((
1753 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1754 )))
1755
1756 (((
1757 AT+RX2FQ: Get or Set the Rx2 window frequency
1758 )))
1759
1760 (((
1761 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1762 )))
1763
1764 (((
1765 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1766 )))
1767
1768 (((
1769 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1770 )))
1771
1772 (((
1773 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1774 )))
1775
1776 (((
1777 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1778 )))
1779
1780 (((
1781 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1782 )))
1783
1784 (((
1785 AT+NWKID: Get or Set the Network ID
1786 )))
1787
1788 (((
1789 AT+FCU: Get or Set the Frame Counter Uplink
1790 )))
1791
1792 (((
1793 AT+FCD: Get or Set the Frame Counter Downlink
1794 )))
1795
1796 (((
1797 AT+CLASS: Get or Set the Device Class
1798 )))
1799
1800 (((
1801 AT+JOIN: Join network
1802 )))
1803
1804 (((
1805 AT+NJS: Get OTAA Join Status
1806 )))
1807
1808 (((
1809 AT+SENDB: Send hexadecimal data along with the application port
1810 )))
1811
1812 (((
1813 AT+SEND: Send text data along with the application port
1814 )))
1815
1816 (((
1817 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1818 )))
1819
1820 (((
1821 AT+RECV: Print last received data in raw format
1822 )))
1823
1824 (((
1825 AT+VER:  Get current image version and Frequency Band
1826 )))
1827
1828 (((
1829 AT+CFM: Get or Set the confirmation mode (0-1)
1830 )))
1831
1832 (((
1833 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1834 )))
1835
1836 (((
1837 AT+SNR: Get the SNR of the last received packet
1838 )))
1839
1840 (((
1841 AT+RSSI: Get the RSSI of the last received packet
1842 )))
1843
1844 (((
1845 AT+TDC: Get or set the application data transmission interval in ms
1846 )))
1847
1848 (((
1849 AT+PORT: Get or set the application port
1850 )))
1851
1852 (((
1853 AT+DISAT: Disable AT commands
1854 )))
1855
1856 (((
1857 AT+PWORD: Set password, max 9 digits
1858 )))
1859
1860 (((
1861 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1862 )))
1863
1864 (((
1865 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1866 )))
1867
1868 (((
1869 AT+CFG: Print all settings
1870 )))
1871
1872
1873 == 4.2 Common AT Command Sequence ==
1874
1875 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1876
1877 (((
1878
1879
1880 (((
1881 (% style="color:blue" %)**If device has not joined network yet:**
1882 )))
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)**123456**
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)**AT+FDR**
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)**123456**
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)**ATZ**
1903 )))
1904
1905
1906 (((
1907 (% style="color:blue" %)**If device already joined network:**
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)**ATZ**
1916 )))
1917
1918
1919 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1920
1921 (((
1922
1923
1924 (((
1925 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1926 )))
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1943 )))
1944
1945 (((
1946 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1947 )))
1948
1949 (((
1950 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1951 )))
1952
1953 (((
1954 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1967 )))
1968
1969 (((
1970 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1971 )))
1972
1973 (((
1974 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1975
1976
1977 )))
1978
1979 (((
1980 (% style="color:red" %)**Note:**
1981 )))
1982
1983 (((
1984 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1985
1986 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1987
1988 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1989 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1990
1991 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1992 )))
1993
1994 (((
1995 [[image:1653359097980-169.png||height="188" width="729"]]
1996 )))
1997
1998
1999 === 4.2.3 Change to Class A ===
2000
2001
2002 (((
2003 (% style="color:blue" %)**If sensor JOINED:**
2004
2005 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2006
2007 (% style="background-color:#dcdcdc" %)**ATZ**
2008 )))
2009
2010
2011 = 5. Case Study =
2012
2013 == 5.1 Counting how many objects pass through the flow Line ==
2014
2015
2016 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2017
2018
2019 = 6. FAQ =
2020
2021 == 6.1 How to upgrade the image? ==
2022
2023
2024 The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2025
2026 * Support new features.
2027 * Fix bugs.
2028 * Change LoRaWAN bands.
2029
2030 Below is the hardware connection setup for uploading an image to the LT:
2031
2032 [[image:1653359603330-121.png]]
2033
2034
2035 (((
2036 (% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2037 (% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2038 (% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2039
2040
2041 (((
2042 (% style="color:blue" %)**For LT-22222-L**(%%):
2043 Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2044 )))
2045
2046
2047 )))
2048
2049 [[image:image-20220524103407-12.png]]
2050
2051
2052 [[image:image-20220524103429-13.png]]
2053
2054
2055 [[image:image-20220524104033-15.png]]
2056
2057
2058 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2059
2060 [[image:1653360054704-518.png||height="186" width="745"]]
2061
2062
2063 (((
2064 (((
2065 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2066
2067
2068 )))
2069 )))
2070
2071 (((
2072 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2073 )))
2074
2075 (((
2076
2077
2078 == 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2079
2080
2081 )))
2082
2083 (((
2084 (((
2085 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2086 )))
2087 )))
2088
2089 (((
2090 (((
2091 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2092
2093
2094 )))
2095 )))
2096
2097 (((
2098 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2099
2100
2101 )))
2102
2103 (((
2104 [[image:1653360231087-571.png||height="401" width="727"]]
2105
2106
2107 )))
2108
2109 (((
2110 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2111 )))
2112
2113
2114
2115 (((
2116 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2117
2118
2119 )))
2120
2121 (((
2122 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2123
2124 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2125
2126 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2127
2128 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2129
2130 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2131
2132 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2133
2134 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2135
2136 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2137
2138 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2139 )))
2140
2141
2142 (((
2143 As shown in below:
2144 )))
2145
2146 [[image:1653360498588-932.png||height="485" width="726"]]
2147
2148
2149 == 6.4 How to change the uplink interval? ==
2150
2151
2152 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2153
2154
2155 == 6.5 Can I see the counting event in Serial? ==
2156
2157
2158 (((
2159 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2160
2161
2162 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2163
2164
2165 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166
2167
2168 )))
2169
2170 (((
2171 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2172
2173
2174 If the device is not shut down, but directly powered off.
2175
2176 It will default that this is a power-off state.
2177
2178 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2179
2180 After restart, the status before power failure will be read from flash.
2181
2182
2183 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2184
2185
2186 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2187
2188
2189 [[image:image-20221006170630-1.png||height="610" width="945"]]
2190
2191
2192 == 6.9 Can LT22222-L save RO state? ==
2193
2194
2195 Firmware version needs to be no less than 1.6.0.
2196
2197
2198 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2199
2200
2201 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2202
2203
2204 = 7. Trouble Shooting =
2205 )))
2206
2207 (((
2208 (((
2209 == 7.1 Downlink doesn't work, how to solve it? ==
2210
2211
2212 )))
2213 )))
2214
2215 (((
2216 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2217 )))
2218
2219 (((
2220
2221
2222 == 7.2 Have trouble to upload image. ==
2223
2224
2225 )))
2226
2227 (((
2228 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2229 )))
2230
2231 (((
2232
2233
2234 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2235
2236
2237 )))
2238
2239 (((
2240 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2241 )))
2242
2243
2244 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2245
2246
2247 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2248 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2249
2250
2251 = 8. Order Info =
2252
2253
2254 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2255
2256 (% style="color:#4f81bd" %)**XXX:**
2257
2258 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2259 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2260 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2261 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2262 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2263 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2264 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2265 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2266 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2267
2268 = 9. Packing Info =
2269
2270
2271 **Package Includes**:
2272
2273 * LT-22222-L I/O Controller x 1
2274 * Stick Antenna for LoRa RF part x 1
2275 * Bracket for controller x1
2276 * Program cable x 1
2277
2278 **Dimension and weight**:
2279
2280 * Device Size: 13.5 x 7 x 3 cm
2281 * Device Weight: 105g
2282 * Package Size / pcs : 14.5 x 8 x 5 cm
2283 * Weight / pcs : 170g
2284
2285 = 10. Support =
2286
2287
2288 * (((
2289 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2290 )))
2291 * (((
2292 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2293
2294
2295
2296 )))
2297
2298 = 11. Reference​​​​​ =
2299
2300
2301 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2302 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2303 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]