Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Set up your own private LoRaWAN network.
44
45 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering the LT-22222-L  ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options are available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278
279 (((
280 The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281
282 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 |Value|(((
285 AVI1 voltage
286 )))|(((
287 AVI2 voltage
288 )))|(((
289 ACI1 Current
290 )))|(((
291 ACI2 Current
292 )))|DIDORO*|(((
293 Reserve
294 )))|MOD
295 )))
296
297 (((
298 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 )))
304
305 * RO is for the relay. ROx=1: closed, ROx=0 always open.
306 * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308
309 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
310
311 For example, if the payload is: [[image:image-20220523175847-2.png]]
312
313
314 **The interface values can be calculated as follows:  **
315
316 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317
318 AVI2 channel voltage is 0x04AC/1000=1.196V
319
320 ACI1 channel current is 0x1310/1000=4.880mA
321
322 ACI2 channel current is 0x1300/1000=4.864mA
323
324 The last byte 0xAA= **10101010**(b) means,
325
326 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 * [1] DI3 - not used for LT-22222-L.
329 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 * [1] DI1 channel input state:
331 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 ** DI1 LED is ON in both cases.
334 * [0] DO3 - not used for LT-22222-L.
335 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 * [0] DO1 channel output state:
337 ** DO1 is FLOATING when there is no load between DO1 and V+.
338 ** DO1 is HIGH when there is a load between DO1 and V+.
339 ** DO1 LED is OFF in both cases.
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 (((
345 **For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
346 )))
347
348 (((
349 The uplink payload is 11 bytes long.
350
351 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 |Value|COUNT1|COUNT2 |DIDORO*|(((
354 Reserve
355 )))|MOD
356 )))
357
358 (((
359 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
360
361 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
364
365 * RO is for the relay. ROx=1: closed, ROx=0 always open.
366 )))
367
368 * FIRST: Indicates that this is the first packet after joining the network.
369 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
370
371 (((
372 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
373
374
375 )))
376
377 (((
378 **To activate this mode, run the following AT commands:**
379 )))
380
381 (((
382 (% class="box infomessage" %)
383 (((
384 **AT+MOD=2**
385
386 **ATZ**
387 )))
388 )))
389
390 (((
391
392
393 (% style="color:#4f81bd" %)**AT Commands for counting:**
394 )))
395
396 (((
397 **For LT22222-L:**
398
399 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
400
401 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
402
403 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
404
405 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
406
407 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
408
409 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
410 )))
411
412
413 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
414
415
416 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
417
418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 |Value|COUNT1|(((
421 ACI1 Current
422 )))|(((
423 ACI2 Current
424 )))|DIDORO*|Reserve|MOD
425
426 (((
427 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
428
429 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
432 )))
433
434 * RO is for the relay. ROx=1: closed, ROx=0 always open.
435 * FIRST: Indicates that this is the first packet after joining the network.
436 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
437
438 (((
439 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
440 )))
441
442
443 (((
444 **To activate this mode, run the following AT commands:**
445 )))
446
447 (((
448 (% class="box infomessage" %)
449 (((
450 **AT+MOD=3**
451
452 **ATZ**
453 )))
454 )))
455
456 (((
457 AT Commands for counting:
458
459 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
460 )))
461
462
463 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
464
465
466 (((
467 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
468 )))
469
470 (((
471 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 Reserve
477 )))|MOD
478 )))
479
480 (((
481 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482
483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
486 )))
487
488 * RO is for the relay. ROx=1: closed, ROx=0 always open.
489 * FIRST: Indicates that this is the first packet after joining the network.
490 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
491
492 (((
493 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
494
495
496 )))
497
498 (((
499 **To activate this mode, run the following AT commands:**
500 )))
501
502 (((
503 (% class="box infomessage" %)
504 (((
505 **AT+MOD=4**
506
507 **ATZ**
508 )))
509 )))
510
511 (((
512 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
513 )))
514
515 (((
516 **In addition to that, below are the commands for AVI1 Counting:**
517
518 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521
522 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523
524 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
525 )))
526
527
528 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
529
530
531 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
532
533 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 |Value|(((
536 AVI1 voltage
537 )))|(((
538 AVI2 voltage
539 )))|(((
540 ACI1 Current
541 )))|COUNT1|DIDORO*|(((
542 Reserve
543 )))|MOD
544
545 (((
546 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
551 )))
552
553 * RO is for the relay. ROx=1: closed, ROx=0 always open.
554 * FIRST: Indicates that this is the first packet after joining the network.
555 * (((
556 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
557 )))
558
559 (((
560 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
561 )))
562
563 (((
564 **To activate this mode, run the following AT commands:**
565 )))
566
567 (((
568 (% class="box infomessage" %)
569 (((
570 **AT+MOD=5**
571
572 **ATZ**
573 )))
574 )))
575
576 (((
577 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
578 )))
579
580
581 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
582
583
584 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
585
586 For example, if you configured the following commands:
587
588 * **AT+MOD=1 ** **~-~->**  The normal working mode
589 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
590
591 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
592
593 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
595
596
597 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
598
599 (% style="color:#4f81bd" %)**Trigger based on voltage**:
600
601 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
602
603
604 **Example:**
605
606 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
607
608 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
609
610
611 (% style="color:#4f81bd" %)**Trigger based on current**:
612
613 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
614
615
616 **Example:**
617
618 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
619
620
621 (% style="color:#4f81bd" %)**Trigger base on DI status**:
622
623 DI status trigger Flag.
624
625 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
626
627
628 **Example:**
629
630 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
631
632
633 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
634
635 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
636
637 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
638
639 AA: Code for this downlink Command:
640
641 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
642
643 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
644
645 yy2 yy2: AC1 or AV1 high limit.
646
647 yy3 yy3: AC2 or AV2 low limit.
648
649 Yy4 yy4: AC2 or AV2 high limit.
650
651
652 **Example1**: AA 00 13 88 00 00 00 00 00 00
653
654 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
655
656
657 **Example2**: AA 02 01 00
658
659 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
660
661
662
663 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
664
665 MOD6 Payload : total 11 bytes payload
666
667 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
668 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
669 |Value|(((
670 TRI_A FLAG
671 )))|(((
672 TRI_A Status
673 )))|(((
674 TRI_DI FLAG+STA
675 )))|Reserve|Enable/Disable MOD6|(((
676 MOD(6)
677 )))
678
679 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
680
681 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
682 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
683 |(((
684 AV1_LOW
685 )))|(((
686 AV1_HIGH
687 )))|(((
688 AV2_LOW
689 )))|(((
690 AV2_HIGH
691 )))|(((
692 AC1_LOW
693 )))|(((
694 AC1_HIGH
695 )))|(((
696 AC2_LOW
697 )))|(((
698 AC2_HIGH
699 )))
700
701 * Each bits shows if the corresponding trigger has been configured.
702
703 **Example:**
704
705 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
706
707
708 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
709
710 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
711 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
712 |(((
713 AV1_LOW
714 )))|(((
715 AV1_HIGH
716 )))|(((
717 AV2_LOW
718 )))|(((
719 AV2_HIGH
720 )))|(((
721 AC1_LOW
722 )))|(((
723 AC1_HIGH
724 )))|(((
725 AC2_LOW
726 )))|(((
727 AC2_HIGH
728 )))
729
730 * Each bits shows which status has been trigger on this uplink.
731
732 **Example:**
733
734 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
735
736
737 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
738
739 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
740 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
741 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
742
743 * Each bits shows which status has been trigger on this uplink.
744
745 **Example:**
746
747 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
748
749 00000101: Means both DI1 and DI2 trigger are enabled.
750
751
752 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
753
754 Downlink command to poll MOD6 status:
755
756 **AB 06**
757
758 When device got this command, it will send the MOD6 payload.
759
760
761 === 3.3.7 Payload Decoder ===
762
763 (((
764
765
766 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
767 )))
768
769
770 == 3.4 ​Configure LT via AT or Downlink ==
771
772
773 (((
774 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
775 )))
776
777 (((
778 (((
779 There are two kinds of Commands:
780 )))
781 )))
782
783 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
784
785 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
786
787 === 3.4.1 Common Commands ===
788
789
790 (((
791 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
792 )))
793
794
795 === 3.4.2 Sensor related commands ===
796
797 ==== 3.4.2.1 Set Transmit Interval ====
798
799
800 Set device uplink interval.
801
802 * (% style="color:#037691" %)**AT Command:**
803
804 (% style="color:blue" %)**AT+TDC=N **
805
806
807 **Example: **AT+TDC=30000. Means set interval to 30 seconds
808
809
810 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
811
812 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
813
814
815
816 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
817
818
819 Set work mode.
820
821 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
822
823 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
824
825 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
826
827 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
828
829
830
831 ==== 3.4.2.3 Poll an uplink ====
832
833
834 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
835
836 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
837
838 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
839
840 **Example**: 0x08FF, ask device to send an Uplink
841
842
843
844 ==== 3.4.2.4 Enable Trigger Mode ====
845
846
847 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
848
849 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
850
851 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
852
853 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
854
855
856 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
857
858 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
859
860
861
862 ==== 3.4.2.5 Poll trigger settings ====
863
864
865 Poll trigger settings
866
867 * (% style="color:#037691" %)**AT Command:**
868
869 There is no AT Command for this feature.
870
871 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
872
873 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
874
875
876
877 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
878
879
880 Enable Disable DI1/DI2/DI2 as trigger,
881
882 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
883
884 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
885
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
888
889 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
890
891
892
893 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
894
895
896 Set DI1 or DI3(for LT-33222-L) trigger.
897
898 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
899
900 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
901
902 (% style="color:red" %)**b :** (%%)delay timing.
903
904 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
905
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
908
909 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
910
911
912
913 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
914
915
916 Set DI2 trigger.
917
918 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
919
920 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
921
922 (% style="color:red" %)**b :** (%%)delay timing.
923
924 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
925
926
927 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
928
929 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
930
931
932
933 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
934
935
936 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
937
938 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
941
942 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
943
944
945
946 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
947
948
949 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
950
951 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
952
953 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
954
955 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
956
957
958
959 ==== 3.4.2.11 Trigger – Set minimum interval ====
960
961
962 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
963
964 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
967
968 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
969
970 (((
971 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
972 )))
973
974
975
976 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
977
978
979 * (% style="color:#037691" %)**AT Command**
980
981 There is no AT Command to control Digital Output
982
983
984 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
985
986 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
987
988 (((
989 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
990 )))
991
992 (((
993 01: Low,  00: High ,  11: No action
994
995 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
996 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
997 |02  01  00  11|Low|High|No Action
998 |02  00  11  01|High|No Action|Low
999 |02  11  01  00|No Action|Low|High
1000 )))
1001
1002 (((
1003 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1004 )))
1005
1006 (((
1007 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1008 )))
1009
1010
1011
1012 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1013
1014
1015 * (% style="color:#037691" %)**AT Command**
1016
1017 There is no AT Command to control Digital Output
1018
1019
1020 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1021
1022 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1023
1024
1025 This is to control the digital output time of DO pin. Include four bytes:
1026
1027 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1028
1029 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1030
1031 01: DO pins will change back to original state after timeout.
1032
1033 00: DO pins will change to an inverter state after timeout 
1034
1035
1036 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1037
1038 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1039 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1040 |0x01|DO1 set to low
1041 |0x00|DO1 set to high
1042 |0x11|DO1 NO Action
1043
1044 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1045
1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1047 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1048 |0x01|DO2 set to low
1049 |0x00|DO2 set to high
1050 |0x11|DO2 NO Action
1051
1052 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1053
1054 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1055 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1056 |0x01|DO3 set to low
1057 |0x00|DO3 set to high
1058 |0x11|DO3 NO Action
1059
1060 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1061
1062
1063 (% style="color:red" %)**Note: **
1064
1065 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1066
1067 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1068
1069 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1070
1071
1072 **Example payload:**
1073
1074 **~1. A9 01 01 01 01 07 D0**
1075
1076 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1077
1078 **2. A9 01 00 01 11 07 D0**
1079
1080 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1081
1082 **3. A9 00 00 00 00 07 D0**
1083
1084 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1085
1086 **4. A9 00 11 01 00 07 D0**
1087
1088 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1089
1090
1091
1092 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1093
1094
1095 * (% style="color:#037691" %)**AT Command:**
1096
1097 There is no AT Command to control Relay Output
1098
1099
1100 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1101
1102 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1103
1104
1105 (((
1106 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1107 )))
1108
1109 (((
1110 00: Close ,  01: Open , 11: No action
1111
1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1113 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1114 |03  00  11|Open|No Action
1115 |03  01  11|Close|No Action
1116 |03  11  00|No Action|Open
1117 |03  11  01|No Action|Close
1118 |03  00  00|Open|Open
1119 |03  01  01|Close|Close
1120 |03  01  00|Close|Open
1121 |03  00  01|Open|Close
1122 )))
1123
1124 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1125
1126
1127
1128 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1129
1130
1131 * (% style="color:#037691" %)**AT Command:**
1132
1133 There is no AT Command to control Relay Output
1134
1135
1136 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1137
1138 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1139
1140
1141 This is to control the relay output time of relay. Include four bytes:
1142
1143 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1144
1145 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1146
1147 01: Relays will change back to original state after timeout.
1148
1149 00: Relays will change to an inverter state after timeout
1150
1151
1152 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1153
1154 [[image:image-20221008095908-1.png||height="364" width="564"]]
1155
1156
1157 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1158
1159
1160 (% style="color:red" %)**Note:**
1161
1162 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1163
1164 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1165
1166
1167 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1168
1169
1170 **Example payload:**
1171
1172 **~1. 05 01 11 07 D0**
1173
1174 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1175
1176 **2. 05 01 10 07 D0**
1177
1178 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1179
1180 **3. 05 00 01 07 D0**
1181
1182 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1183
1184 **4. 05 00 00 07 D0**
1185
1186 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1187
1188
1189
1190 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1191
1192
1193 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1194
1195 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1196
1197 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1198
1199 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1200
1201
1202
1203 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1204
1205
1206 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1207
1208 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1209
1210 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1211
1212
1213 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1214
1215 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1216
1217
1218
1219 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1220
1221
1222 Clear counting for counting mode
1223
1224 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1227
1228 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1229
1230
1231
1232 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233
1234
1235 * (% style="color:#037691" %)**AT Command:**
1236
1237 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1238
1239
1240 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1241
1242 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1243
1244 (((
1245 range: aa bb cc:0 to 16777215,  (unit:second)
1246 )))
1247
1248
1249
1250 ==== 3.4.2.20 Reset save RO DO state ====
1251
1252
1253 * (% style="color:#037691" %)**AT Command:**
1254
1255 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1256
1257 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1258
1259
1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1261
1262 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1263
1264
1265
1266 ==== 3.4.2.21 Encrypted payload ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1272
1273 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1274
1275
1276
1277 ==== 3.4.2.22 Get sensor value ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**
1281
1282 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1283
1284 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1285
1286
1287
1288 ==== 3.4.2.23 Resets the downlink packet count ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1294
1295 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1296
1297
1298
1299 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1300
1301
1302 * (% style="color:#037691" %)**AT Command:**
1303
1304 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1305
1306 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1307
1308
1309 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1310
1311 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1312
1313
1314
1315 ==== 3.4.2.25 Copy downlink to uplink ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command**(%%)**:**
1319
1320 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1321
1322 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1323
1324
1325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1326
1327 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1328
1329
1330
1331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1332
1333 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1334
1335
1336
1337 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1338
1339
1340 * (((
1341 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1342
1343 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1344
1345
1346 )))
1347
1348 **Example:**
1349
1350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1351
1352
1353 == 3.5 Integrating with ThingsEye.io ==
1354
1355 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1356
1357 === 3.5.1 Configuring The Things Stack Sandbox ===
1358
1359 * Go to your Application and select MQTT under Integrations.
1360 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1361 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1362
1363 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1364
1365 === 3.5.2 Configuring ThingsEye.io ===
1366
1367 * Login to your thingsEye.io account.
1368 * Under the Integrations center, click Integrations.
1369 * Click the Add integration button (the button with the + symbol).
1370
1371 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1372
1373
1374 On the Add integration page configure the following:
1375
1376 Basic settings:
1377
1378 * Select The Things Stack Community from the Integration type list.
1379 * Enter a suitable name for your integration in the Name box or keep the default name.
1380 * Click the Next button.
1381
1382 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1383
1384 Uplink Data converter:
1385
1386 * Click the Create New button if it is not selected by default.
1387 * Click the JavaScript button.
1388 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1389 * Click the Next button.
1390
1391 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1392
1393 Downlink Data converter (this is an optional step):
1394
1395 * Click the Create new button if it is not selected by default.
1396 * Click the JavaScript button.
1397 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1398 * Click the Next button.
1399
1400 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1401
1402 Connection:
1403
1404 * Choose Region from the Host type.
1405 * Enter the cluster of your The Things Stack in the Region textbox.
1406 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1407 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1408 * Click the Add button.
1409
1410 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1411
1412
1413 Your integration is added to the integrations list and it will display on the Integrations page.
1414
1415 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1416
1417
1418 == 3.6 Interface Details ==
1419
1420 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1421
1422
1423 Support NPN-type sensor
1424
1425 [[image:1653356991268-289.png]]
1426
1427
1428 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1429
1430
1431 (((
1432 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1433 )))
1434
1435 (((
1436 (((
1437 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1438
1439
1440 )))
1441 )))
1442
1443 [[image:1653357170703-587.png]]
1444
1445 (((
1446 (((
1447 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1448 )))
1449 )))
1450
1451 (((
1452
1453 )))
1454
1455 (((
1456 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1457 )))
1458
1459 (((
1460 This type of sensor outputs a low (GND) signal when active.
1461 )))
1462
1463 * (((
1464 Connect the sensor's output to DI1-
1465 )))
1466 * (((
1467 Connect the sensor's VCC to DI1+.
1468 )))
1469
1470 (((
1471 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1472 )))
1473
1474 (((
1475 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1476 )))
1477
1478 (((
1479 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1480 )))
1481
1482 (((
1483
1484 )))
1485
1486 (((
1487 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1488 )))
1489
1490 (((
1491 This type of sensor outputs a high signal (e.g., 24V) when active.
1492 )))
1493
1494 * (((
1495 Connect the sensor's output to DI1+
1496 )))
1497 * (((
1498 Connect the sensor's GND DI1-.
1499 )))
1500
1501 (((
1502 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1503 )))
1504
1505 (((
1506 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1507 )))
1508
1509 (((
1510 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1511 )))
1512
1513 (((
1514
1515 )))
1516
1517 (((
1518 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1519 )))
1520
1521 (((
1522 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1523 )))
1524
1525 * (((
1526 Connect the sensor's output to DI1+ with a 50K resistor in series.
1527 )))
1528 * (((
1529 Connect the sensor's GND DI1-.
1530 )))
1531
1532 (((
1533 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1534 )))
1535
1536 (((
1537 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1538 )))
1539
1540 (((
1541 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1542 )))
1543
1544
1545 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1546
1547 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1548
1549 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1550
1551 [[image:image-20230616235145-1.png]]
1552
1553 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1554
1555 [[image:image-20240219115718-1.png]]
1556
1557
1558 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1559
1560
1561 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1562
1563 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1564
1565 [[image:1653357531600-905.png]]
1566
1567
1568 === 3.6.4 Analog Input Interfaces ===
1569
1570
1571 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1572
1573
1574 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1575
1576 [[image:1653357592296-182.png]]
1577
1578 Example: Connecting a 4~~20mA sensor
1579
1580 We will use the wind speed sensor as an example for reference only.
1581
1582
1583 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1584
1585 (% style="color:red" %)**Red:  12~~24V**
1586
1587 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1588
1589 **Black:  GND**
1590
1591 **Connection diagram:**
1592
1593 [[image:1653357640609-758.png]]
1594
1595 [[image:1653357648330-671.png||height="155" width="733"]]
1596
1597
1598 Example: Connecting to a regulated power supply to measure voltage
1599
1600 [[image:image-20230608101532-1.png||height="606" width="447"]]
1601
1602 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1603
1604 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1605
1606
1607 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1608
1609 (% style="color:red" %)**Red:  12~~24v**
1610
1611 **Black:  GND**
1612
1613
1614 === 3.6.5 Relay Output ===
1615
1616
1617 (((
1618 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1619
1620 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1621 )))
1622
1623 [[image:image-20220524100215-9.png]]
1624
1625
1626 [[image:image-20220524100215-10.png||height="382" width="723"]]
1627
1628
1629 == 3.7 LEDs Indicators ==
1630
1631
1632 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1633 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1634 |**PWR**|Always on if there is power
1635 |**TX**|(((
1636 (((
1637 Device boot: TX blinks 5 times.
1638 )))
1639
1640 (((
1641 Successful join network: TX ON for 5 seconds.
1642 )))
1643
1644 (((
1645 Transmit a LoRa packet: TX blinks once
1646 )))
1647 )))
1648 |**RX**|RX blinks once when receiving a packet.
1649 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1651 |**DI1**|(((
1652 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1653 )))
1654 |**DI2**|(((
1655 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1656 )))
1657 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1659
1660 = 4. Using AT Command =
1661
1662 == 4.1 Connecting the LT-22222-L to a computer ==
1663
1664
1665 (((
1666 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1667 )))
1668
1669 [[image:1653358238933-385.png]]
1670
1671
1672 (((
1673 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1674 )))
1675
1676 [[image:1653358355238-883.png]]
1677
1678
1679 (((
1680 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1681 )))
1682
1683 (((
1684 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685
1686 AT+<CMD>?        : Help on <CMD>
1687 )))
1688
1689 (((
1690 AT+<CMD>         : Run <CMD>
1691 )))
1692
1693 (((
1694 AT+<CMD>=<value> : Set the value
1695 )))
1696
1697 (((
1698 AT+<CMD>=?       :  Get the value
1699 )))
1700
1701 (((
1702 ATZ: Trig a reset of the MCU
1703 )))
1704
1705 (((
1706 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1707 )))
1708
1709 (((
1710 AT+DEUI: Get or Set the Device EUI
1711 )))
1712
1713 (((
1714 AT+DADDR: Get or Set the Device Address
1715 )))
1716
1717 (((
1718 AT+APPKEY: Get or Set the Application Key
1719 )))
1720
1721 (((
1722 AT+NWKSKEY: Get or Set the Network Session Key
1723 )))
1724
1725 (((
1726 AT+APPSKEY:  Get or Set the Application Session Key
1727 )))
1728
1729 (((
1730 AT+APPEUI:  Get or Set the Application EUI
1731 )))
1732
1733 (((
1734 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1735 )))
1736
1737 (((
1738 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1739 )))
1740
1741 (((
1742 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1743 )))
1744
1745 (((
1746 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1747 )))
1748
1749 (((
1750 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1751 )))
1752
1753 (((
1754 AT+RX2FQ: Get or Set the Rx2 window frequency
1755 )))
1756
1757 (((
1758 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1759 )))
1760
1761 (((
1762 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1763 )))
1764
1765 (((
1766 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1767 )))
1768
1769 (((
1770 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1771 )))
1772
1773 (((
1774 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1775 )))
1776
1777 (((
1778 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1779 )))
1780
1781 (((
1782 AT+NWKID: Get or Set the Network ID
1783 )))
1784
1785 (((
1786 AT+FCU: Get or Set the Frame Counter Uplink
1787 )))
1788
1789 (((
1790 AT+FCD: Get or Set the Frame Counter Downlink
1791 )))
1792
1793 (((
1794 AT+CLASS: Get or Set the Device Class
1795 )))
1796
1797 (((
1798 AT+JOIN: Join network
1799 )))
1800
1801 (((
1802 AT+NJS: Get OTAA Join Status
1803 )))
1804
1805 (((
1806 AT+SENDB: Send hexadecimal data along with the application port
1807 )))
1808
1809 (((
1810 AT+SEND: Send text data along with the application port
1811 )))
1812
1813 (((
1814 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1815 )))
1816
1817 (((
1818 AT+RECV: Print last received data in raw format
1819 )))
1820
1821 (((
1822 AT+VER:  Get current image version and Frequency Band
1823 )))
1824
1825 (((
1826 AT+CFM: Get or Set the confirmation mode (0-1)
1827 )))
1828
1829 (((
1830 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1831 )))
1832
1833 (((
1834 AT+SNR: Get the SNR of the last received packet
1835 )))
1836
1837 (((
1838 AT+RSSI: Get the RSSI of the last received packet
1839 )))
1840
1841 (((
1842 AT+TDC: Get or set the application data transmission interval in ms
1843 )))
1844
1845 (((
1846 AT+PORT: Get or set the application port
1847 )))
1848
1849 (((
1850 AT+DISAT: Disable AT commands
1851 )))
1852
1853 (((
1854 AT+PWORD: Set password, max 9 digits
1855 )))
1856
1857 (((
1858 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1859 )))
1860
1861 (((
1862 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1863 )))
1864
1865 (((
1866 AT+CFG: Print all settings
1867 )))
1868
1869
1870 == 4.2 Common AT Command Sequence ==
1871
1872 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1873
1874 (((
1875
1876
1877 (((
1878 (% style="color:blue" %)**If device has not joined network yet:**
1879 )))
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)**123456**
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)**AT+FDR**
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)**123456**
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)**ATZ**
1900 )))
1901
1902
1903 (((
1904 (% style="color:blue" %)**If device already joined network:**
1905 )))
1906
1907 (((
1908 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1909 )))
1910
1911 (((
1912 (% style="background-color:#dcdcdc" %)**ATZ**
1913 )))
1914
1915
1916 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1917
1918 (((
1919
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1923 )))
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1936 )))
1937
1938 (((
1939 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1956 )))
1957
1958 (((
1959 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1960 )))
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1964 )))
1965
1966 (((
1967 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1968 )))
1969
1970 (((
1971 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1972
1973
1974 )))
1975
1976 (((
1977 (% style="color:red" %)**Note:**
1978 )))
1979
1980 (((
1981 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1982
1983 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1984
1985 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1986 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1987
1988 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1989 )))
1990
1991 (((
1992 [[image:1653359097980-169.png||height="188" width="729"]]
1993 )))
1994
1995
1996 === 4.2.3 Change to Class A ===
1997
1998
1999 (((
2000 (% style="color:blue" %)**If sensor JOINED:**
2001
2002 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2003
2004 (% style="background-color:#dcdcdc" %)**ATZ**
2005 )))
2006
2007
2008 = 5. Case Study =
2009
2010 == 5.1 Counting how many objects pass in Flow Line ==
2011
2012
2013 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2014
2015
2016 = 6. FAQ =
2017
2018 == 6.1 How to upgrade the image? ==
2019
2020
2021 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2022
2023 * Support new features
2024 * For bug fix
2025 * Change LoRaWAN bands.
2026
2027 Below is the hardware connection for how to upload an image to the LT:
2028
2029 [[image:1653359603330-121.png]]
2030
2031
2032 (((
2033 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2034 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2035 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2036
2037
2038 (((
2039 (% style="color:blue" %)**For LT-22222-L**(%%):
2040 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2041 )))
2042
2043
2044 )))
2045
2046 [[image:image-20220524103407-12.png]]
2047
2048
2049 [[image:image-20220524103429-13.png]]
2050
2051
2052 [[image:image-20220524104033-15.png]]
2053
2054
2055 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2056
2057 [[image:1653360054704-518.png||height="186" width="745"]]
2058
2059
2060 (((
2061 (((
2062 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2063
2064
2065 )))
2066 )))
2067
2068 (((
2069 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2070 )))
2071
2072 (((
2073
2074
2075 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2076
2077
2078 )))
2079
2080 (((
2081 (((
2082 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2083 )))
2084 )))
2085
2086 (((
2087 (((
2088 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2089
2090
2091 )))
2092 )))
2093
2094 (((
2095 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2096
2097
2098 )))
2099
2100 (((
2101 [[image:1653360231087-571.png||height="401" width="727"]]
2102
2103
2104 )))
2105
2106 (((
2107 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2108 )))
2109
2110
2111
2112 (((
2113 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2114
2115
2116 )))
2117
2118 (((
2119 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2120
2121 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2122
2123 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2124
2125 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2126
2127 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2128
2129 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2130
2131 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2132
2133 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2134
2135 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2136 )))
2137
2138
2139 (((
2140 As shown in below:
2141 )))
2142
2143 [[image:1653360498588-932.png||height="485" width="726"]]
2144
2145
2146 == 6.4 How to change the uplink interval? ==
2147
2148
2149 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2150
2151
2152 == 6.5 Can I see counting event in Serial? ==
2153
2154
2155 (((
2156 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2157
2158
2159 == 6.6 Can i use point to point communication for LT-22222-L? ==
2160
2161
2162 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2163
2164
2165 )))
2166
2167 (((
2168 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2169
2170
2171 If the device is not shut down, but directly powered off.
2172
2173 It will default that this is a power-off state.
2174
2175 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2176
2177 After restart, the status before power failure will be read from flash.
2178
2179
2180 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2181
2182
2183 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2184
2185
2186 [[image:image-20221006170630-1.png||height="610" width="945"]]
2187
2188
2189 == 6.9 Can LT22222-L save RO state? ==
2190
2191
2192 Firmware version needs to be no less than 1.6.0.
2193
2194
2195 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2196
2197
2198 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2199
2200
2201 = 7. Trouble Shooting =
2202 )))
2203
2204 (((
2205 (((
2206 == 7.1 Downlink doesn't work, how to solve it? ==
2207
2208
2209 )))
2210 )))
2211
2212 (((
2213 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2214 )))
2215
2216 (((
2217
2218
2219 == 7.2 Have trouble to upload image. ==
2220
2221
2222 )))
2223
2224 (((
2225 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2226 )))
2227
2228 (((
2229
2230
2231 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2232
2233
2234 )))
2235
2236 (((
2237 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2238 )))
2239
2240
2241 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2242
2243
2244 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2245 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2246
2247
2248 = 8. Order Info =
2249
2250
2251 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2252
2253 (% style="color:#4f81bd" %)**XXX:**
2254
2255 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2256 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2257 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2258 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2259 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2260 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2261 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2262 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2263 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2264
2265 = 9. Packing Info =
2266
2267
2268 **Package Includes**:
2269
2270 * LT-22222-L I/O Controller x 1
2271 * Stick Antenna for LoRa RF part x 1
2272 * Bracket for controller x1
2273 * Program cable x 1
2274
2275 **Dimension and weight**:
2276
2277 * Device Size: 13.5 x 7 x 3 cm
2278 * Device Weight: 105g
2279 * Package Size / pcs : 14.5 x 8 x 5 cm
2280 * Weight / pcs : 170g
2281
2282 = 10. Support =
2283
2284
2285 * (((
2286 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2287 )))
2288 * (((
2289 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2290
2291
2292
2293 )))
2294
2295 = 11. Reference​​​​​ =
2296
2297
2298 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2299 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2300 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0