Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degree, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches with your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches with your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278
279 (((
280 In working mode MOD1, the uplink payload includes a total of 9 bytes. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
281
282 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 |Value|(((
285 AVI1 voltage
286 )))|(((
287 AVI2 voltage
288 )))|(((
289 ACI1 Current
290 )))|(((
291 ACI2 Current
292 )))|DIDORO*|(((
293 Reserve
294 )))|MOD
295 )))
296
297 (((
298 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte ,as shown below
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 )))
304
305 * RO is for relay. ROx=1 : closed, ROx=0 always open.
306 * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308
309 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
310
311 For example, if the payload is: [[image:image-20220523175847-2.png]]
312
313
314 **The interface values can be calculated as follows:  **
315
316 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317
318 AVI2 channel voltage is 0x04AC/1000=1.196V
319
320 ACI1 channel current is 0x1310/1000=4.880mA
321
322 ACI2 channel current is 0x1300/1000=4.864mA
323
324 The last byte 0xAA= 10101010(B) means
325
326 * [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 * [0] RO2 relay channel is open, and RO2 LED is OFF.
328
329 **LT22222-L:**
330
331 * [1] DI2 channel is high input and DI2 LED is ON.
332 * [0] DI1 channel is low input.
333
334 * [0] DO3 channel output state
335 ** DO3 is float in case no load between DO3 and V+.
336 ** DO3 is high in case there is load between DO3 and V+.
337 ** DO3 LED is off in both case
338 * [1] DO2 channel output is low and DO2 LED is ON.
339 * [0] DO1 channel output state
340 ** DO1 is float in case no load between DO1 and V+.
341 ** DO1 is high in case there is load between DO1 and V+.
342 ** DO1 LED is off in both case.
343
344 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
345
346
347 (((
348 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
349 )))
350
351 (((
352 Total : 11 bytes payload
353
354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
355 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
356 |Value|COUNT1|COUNT2 |DIDORO*|(((
357 Reserve
358 )))|MOD
359 )))
360
361 (((
362 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
363
364 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
365 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
366 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
367
368 RO is for relay. ROx=1 : close , ROx=0 always open.
369 )))
370
371 * FIRST: Indicate this is the first packet after join network.
372 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
373
374 (((
375 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
376
377
378 )))
379
380 (((
381 **To use counting mode, please run:**
382 )))
383
384 (((
385 (% class="box infomessage" %)
386 (((
387 **AT+MOD=2**
388
389 **ATZ**
390 )))
391 )))
392
393 (((
394
395
396 (% style="color:#4f81bd" %)**AT Commands for counting:**
397 )))
398
399 (((
400 **For LT22222-L:**
401
402 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
403
404 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
405
406 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
407
408 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
409
410 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
411
412 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
413 )))
414
415
416 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417
418
419 **LT22222-L**: This mode the DI1 is used as a counting pin.
420
421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
422 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
423 |Value|COUNT1|(((
424 ACI1 Current
425 )))|(((
426 ACI2 Current
427 )))|DIDORO*|Reserve|MOD
428
429 (((
430 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
431
432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
434 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
435 )))
436
437 * RO is for relay. ROx=1 : close, ROx=0 always open.
438 * FIRST: Indicate this is the first packet after join network.
439 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
440
441 (((
442 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
443 )))
444
445
446 (((
447 **To use counting mode, please run:**
448 )))
449
450 (((
451 (% class="box infomessage" %)
452 (((
453 **AT+MOD=3**
454
455 **ATZ**
456 )))
457 )))
458
459 (((
460 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
461 )))
462
463
464 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
465
466
467 (((
468 **LT22222-L**: This mode the DI1 is used as a counting pin.
469 )))
470
471 (((
472 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
473
474 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
475 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
476 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
477 Reserve
478 )))|MOD
479 )))
480
481 (((
482 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
485 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
486 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 )))
488
489 * RO is for relay. ROx=1 : close, ROx=0 always open.
490 * FIRST: Indicate this is the first packet after join network.
491 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
492
493 (((
494 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
495
496
497 )))
498
499 (((
500 **To use this mode, please run:**
501 )))
502
503 (((
504 (% class="box infomessage" %)
505 (((
506 **AT+MOD=4**
507
508 **ATZ**
509 )))
510 )))
511
512 (((
513 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
514 )))
515
516 (((
517 **Plus below command for AVI1 Counting:**
518
519 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
520
521 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
522
523 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
526 )))
527
528
529 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
530
531
532 **LT22222-L**: This mode the DI1 is used as a counting pin.
533
534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
536 |Value|(((
537 AVI1 voltage
538 )))|(((
539 AVI2 voltage
540 )))|(((
541 ACI1 Current
542 )))|COUNT1|DIDORO*|(((
543 Reserve
544 )))|MOD
545
546 (((
547 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
548
549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
550 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
551 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
552 )))
553
554 * RO is for relay. ROx=1 : close, ROx=0 always open.
555 * FIRST: Indicate this is the first packet after join network.
556 * (((
557 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
558 )))
559
560 (((
561 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
562 )))
563
564 (((
565 **To use this mode, please run:**
566 )))
567
568 (((
569 (% class="box infomessage" %)
570 (((
571 **AT+MOD=5**
572
573 **ATZ**
574 )))
575 )))
576
577 (((
578 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
579 )))
580
581
582 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
583
584
585 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
586
587 For example, if user has configured below commands:
588
589 * **AT+MOD=1 ** **~-~->**  The normal working mode
590 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
591
592 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
593
594 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
595 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
596
597 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
598
599
600 (% style="color:#4f81bd" %)**Trigger base on voltage**:
601
602 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
603
604
605 **Example:**
606
607 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
608
609 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
610
611
612
613 (% style="color:#4f81bd" %)**Trigger base on current**:
614
615 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
616
617
618 **Example:**
619
620 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
621
622
623
624 (% style="color:#4f81bd" %)**Trigger base on DI status**:
625
626 DI status trigger Flag.
627
628 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
629
630
631 **Example:**
632
633 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
634
635
636 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
637
638 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
639
640 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
641
642 AA: Code for this downlink Command:
643
644 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
645
646 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
647
648 yy2 yy2: AC1 or AV1 high limit.
649
650 yy3 yy3: AC2 or AV2 low limit.
651
652 Yy4 yy4: AC2 or AV2 high limit.
653
654
655 **Example1**: AA 00 13 88 00 00 00 00 00 00
656
657 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
658
659
660 **Example2**: AA 02 01 00
661
662 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
663
664
665
666 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
667
668 MOD6 Payload : total 11 bytes payload
669
670 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
671 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
672 |Value|(((
673 TRI_A FLAG
674 )))|(((
675 TRI_A Status
676 )))|(((
677 TRI_DI FLAG+STA
678 )))|Reserve|Enable/Disable MOD6|(((
679 MOD(6)
680 )))
681
682 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
683
684 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
685 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
686 |(((
687 AV1_LOW
688 )))|(((
689 AV1_HIGH
690 )))|(((
691 AV2_LOW
692 )))|(((
693 AV2_HIGH
694 )))|(((
695 AC1_LOW
696 )))|(((
697 AC1_HIGH
698 )))|(((
699 AC2_LOW
700 )))|(((
701 AC2_HIGH
702 )))
703
704 * Each bits shows if the corresponding trigger has been configured.
705
706 **Example:**
707
708 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
709
710
711 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
712
713 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
714 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
715 |(((
716 AV1_LOW
717 )))|(((
718 AV1_HIGH
719 )))|(((
720 AV2_LOW
721 )))|(((
722 AV2_HIGH
723 )))|(((
724 AC1_LOW
725 )))|(((
726 AC1_HIGH
727 )))|(((
728 AC2_LOW
729 )))|(((
730 AC2_HIGH
731 )))
732
733 * Each bits shows which status has been trigger on this uplink.
734
735 **Example:**
736
737 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
738
739
740 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
741
742 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
743 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
744 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
745
746 * Each bits shows which status has been trigger on this uplink.
747
748 **Example:**
749
750 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
751
752 00000101: Means both DI1 and DI2 trigger are enabled.
753
754
755 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
756
757 Downlink command to poll MOD6 status:
758
759 **AB 06**
760
761 When device got this command, it will send the MOD6 payload.
762
763
764 === 3.3.7 Payload Decoder ===
765
766 (((
767
768
769 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
770 )))
771
772
773 == 3.4 ​Configure LT via AT or Downlink ==
774
775
776 (((
777 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
778 )))
779
780 (((
781 (((
782 There are two kinds of Commands:
783 )))
784 )))
785
786 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
787
788 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
789
790 === 3.4.1 Common Commands ===
791
792
793 (((
794 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
795 )))
796
797
798 === 3.4.2 Sensor related commands ===
799
800 ==== 3.4.2.1 Set Transmit Interval ====
801
802
803 Set device uplink interval.
804
805 * (% style="color:#037691" %)**AT Command:**
806
807 (% style="color:blue" %)**AT+TDC=N **
808
809
810 **Example: **AT+TDC=30000. Means set interval to 30 seconds
811
812
813 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
814
815 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
816
817
818
819 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
820
821
822 Set work mode.
823
824 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
825
826 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
827
828 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
829
830 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
831
832
833
834 ==== 3.4.2.3 Poll an uplink ====
835
836
837 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
838
839 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
840
841 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
842
843 **Example**: 0x08FF, ask device to send an Uplink
844
845
846
847 ==== 3.4.2.4 Enable Trigger Mode ====
848
849
850 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851
852 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
853
854 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
855
856 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
857
858
859 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
860
861 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
862
863
864
865 ==== 3.4.2.5 Poll trigger settings ====
866
867
868 Poll trigger settings
869
870 * (% style="color:#037691" %)**AT Command:**
871
872 There is no AT Command for this feature.
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
875
876 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877
878
879
880 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
881
882
883 Enable Disable DI1/DI2/DI2 as trigger,
884
885 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
886
887 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
891
892 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
893
894
895
896 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
897
898
899 Set DI1 or DI3(for LT-33222-L) trigger.
900
901 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
902
903 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
904
905 (% style="color:red" %)**b :** (%%)delay timing.
906
907 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
908
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
911
912 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
913
914
915
916 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
917
918
919 Set DI2 trigger.
920
921 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
922
923 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924
925 (% style="color:red" %)**b :** (%%)delay timing.
926
927 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
931
932 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
933
934
935
936 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
937
938
939 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
940
941 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
942
943 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
944
945 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
946
947
948
949 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
950
951
952 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
953
954 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
955
956 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
957
958 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
959
960
961
962 ==== 3.4.2.11 Trigger – Set minimum interval ====
963
964
965 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966
967 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
968
969 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
970
971 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
972
973 (((
974 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
975 )))
976
977
978
979 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
980
981
982 * (% style="color:#037691" %)**AT Command**
983
984 There is no AT Command to control Digital Output
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
988
989 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
990
991 (((
992 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
993 )))
994
995 (((
996 01: Low,  00: High ,  11: No action
997
998 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
999 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1000 |02  01  00  11|Low|High|No Action
1001 |02  00  11  01|High|No Action|Low
1002 |02  11  01  00|No Action|Low|High
1003 )))
1004
1005 (((
1006 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1007 )))
1008
1009 (((
1010 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1011 )))
1012
1013
1014
1015 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1016
1017
1018 * (% style="color:#037691" %)**AT Command**
1019
1020 There is no AT Command to control Digital Output
1021
1022
1023 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1024
1025 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1026
1027
1028 This is to control the digital output time of DO pin. Include four bytes:
1029
1030 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1031
1032 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1033
1034 01: DO pins will change back to original state after timeout.
1035
1036 00: DO pins will change to an inverter state after timeout 
1037
1038
1039 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1040
1041 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1042 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1043 |0x01|DO1 set to low
1044 |0x00|DO1 set to high
1045 |0x11|DO1 NO Action
1046
1047 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1048
1049 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1050 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1051 |0x01|DO2 set to low
1052 |0x00|DO2 set to high
1053 |0x11|DO2 NO Action
1054
1055 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1058 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1059 |0x01|DO3 set to low
1060 |0x00|DO3 set to high
1061 |0x11|DO3 NO Action
1062
1063 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1064
1065
1066 (% style="color:red" %)**Note: **
1067
1068 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1069
1070 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1071
1072 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1073
1074
1075 **Example payload:**
1076
1077 **~1. A9 01 01 01 01 07 D0**
1078
1079 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1080
1081 **2. A9 01 00 01 11 07 D0**
1082
1083 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1084
1085 **3. A9 00 00 00 00 07 D0**
1086
1087 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1088
1089 **4. A9 00 11 01 00 07 D0**
1090
1091 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1092
1093
1094
1095 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1096
1097
1098 * (% style="color:#037691" %)**AT Command:**
1099
1100 There is no AT Command to control Relay Output
1101
1102
1103 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1104
1105 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1106
1107
1108 (((
1109 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1110 )))
1111
1112 (((
1113 00: Close ,  01: Open , 11: No action
1114
1115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1116 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1117 |03  00  11|Open|No Action
1118 |03  01  11|Close|No Action
1119 |03  11  00|No Action|Open
1120 |03  11  01|No Action|Close
1121 |03  00  00|Open|Open
1122 |03  01  01|Close|Close
1123 |03  01  00|Close|Open
1124 |03  00  01|Open|Close
1125 )))
1126
1127 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1128
1129
1130
1131 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1132
1133
1134 * (% style="color:#037691" %)**AT Command:**
1135
1136 There is no AT Command to control Relay Output
1137
1138
1139 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1140
1141 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1142
1143
1144 This is to control the relay output time of relay. Include four bytes:
1145
1146 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1147
1148 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1149
1150 01: Relays will change back to original state after timeout.
1151
1152 00: Relays will change to an inverter state after timeout
1153
1154
1155 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1156
1157 [[image:image-20221008095908-1.png||height="364" width="564"]]
1158
1159
1160 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1161
1162
1163 (% style="color:red" %)**Note:**
1164
1165 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1166
1167 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1168
1169
1170 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1171
1172
1173 **Example payload:**
1174
1175 **~1. 05 01 11 07 D0**
1176
1177 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1178
1179 **2. 05 01 10 07 D0**
1180
1181 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1182
1183 **3. 05 00 01 07 D0**
1184
1185 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1186
1187 **4. 05 00 00 07 D0**
1188
1189 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1190
1191
1192
1193 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1194
1195
1196 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197
1198 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199
1200 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1201
1202 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1203
1204
1205
1206 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1210
1211 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1212
1213 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1217
1218 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1219
1220
1221
1222 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1223
1224
1225 Clear counting for counting mode
1226
1227 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1228
1229 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1230
1231 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1232
1233
1234
1235 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236
1237
1238 * (% style="color:#037691" %)**AT Command:**
1239
1240 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1241
1242
1243 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1244
1245 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1246
1247 (((
1248 range: aa bb cc:0 to 16777215,  (unit:second)
1249 )))
1250
1251
1252
1253 ==== 3.4.2.20 Reset save RO DO state ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1259
1260 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1261
1262
1263 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1264
1265 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1266
1267
1268
1269 ==== 3.4.2.21 Encrypted payload ====
1270
1271
1272 * (% style="color:#037691" %)**AT Command:**
1273
1274 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1275
1276 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1277
1278
1279
1280 ==== 3.4.2.22 Get sensor value ====
1281
1282
1283 * (% style="color:#037691" %)**AT Command:**
1284
1285 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1286
1287 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1288
1289
1290
1291 ==== 3.4.2.23 Resets the downlink packet count ====
1292
1293
1294 * (% style="color:#037691" %)**AT Command:**
1295
1296 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1297
1298 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1299
1300
1301
1302 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1308
1309 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1310
1311
1312 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1313
1314 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1315
1316
1317
1318 ==== 3.4.2.25 Copy downlink to uplink ====
1319
1320
1321 * (% style="color:#037691" %)**AT Command**(%%)**:**
1322
1323 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1324
1325 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1326
1327
1328 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1329
1330 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1331
1332
1333
1334 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1335
1336 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1337
1338
1339
1340 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1341
1342
1343 * (((
1344 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1345
1346 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1347
1348
1349 )))
1350
1351 **Example:**
1352
1353 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1354
1355
1356 == 3.5 Integrating with ThingsEye.io ==
1357
1358 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1359
1360 === 3.5.1 Configuring The Things Stack Sandbox ===
1361
1362 * Go to your Application and select MQTT under Integrations.
1363 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1364 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1365
1366 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1367
1368 === 3.5.2 Configuring ThingsEye.io ===
1369
1370 * Login to your thingsEye.io account.
1371 * Under the Integrations center, click Integrations.
1372 * Click the Add integration button (the button with the + symbol).
1373
1374 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1375
1376
1377 On the Add integration page configure the following:
1378
1379 Basic settings:
1380
1381 * Select The Things Stack Community from the Integration type list.
1382 * Enter a suitable name for your integration in the Name box or keep the default name.
1383 * Click the Next button.
1384
1385 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1386
1387 Uplink Data converter:
1388
1389 * Click the Create New button if it is not selected by default.
1390 * Click the JavaScript button.
1391 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1392 * Click the Next button.
1393
1394 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1395
1396 Downlink Data converter (this is an optional step):
1397
1398 * Click the Create new button if it is not selected by default.
1399 * Click the JavaScript button.
1400 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1401 * Click the Next button.
1402
1403 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1404
1405 Connection:
1406
1407 * Choose Region from the Host type.
1408 * Enter the cluster of your The Things Stack in the Region textbox.
1409 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1410 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1411 * Click the Add button.
1412
1413 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1414
1415
1416 Your integration is added to the integrations list and it will display on the Integrations page.
1417
1418 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1419
1420
1421 == 3.6 Interface Detail ==
1422
1423 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1424
1425
1426 Support NPN Type sensor
1427
1428 [[image:1653356991268-289.png]]
1429
1430
1431 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432
1433
1434 (((
1435 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 )))
1437
1438 (((
1439 (((
1440 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441
1442
1443 )))
1444 )))
1445
1446 [[image:1653357170703-587.png]]
1447
1448 (((
1449 (((
1450 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 )))
1452 )))
1453
1454 (((
1455
1456 )))
1457
1458 (((
1459 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 )))
1461
1462 (((
1463 This type of sensor will output a low signal GND when active.
1464 )))
1465
1466 * (((
1467 Connect sensor's output to DI1-
1468 )))
1469 * (((
1470 Connect sensor's VCC to DI1+.
1471 )))
1472
1473 (((
1474 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1475 )))
1476
1477 (((
1478 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1479 )))
1480
1481 (((
1482 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 )))
1484
1485 (((
1486
1487 )))
1488
1489 (((
1490 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 )))
1492
1493 (((
1494 This type of sensor will output a high signal (example 24v) when active.
1495 )))
1496
1497 * (((
1498 Connect sensor's output to DI1+
1499 )))
1500 * (((
1501 Connect sensor's GND DI1-.
1502 )))
1503
1504 (((
1505 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 )))
1507
1508 (((
1509 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1510 )))
1511
1512 (((
1513 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 )))
1515
1516 (((
1517
1518 )))
1519
1520 (((
1521 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 )))
1523
1524 (((
1525 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 )))
1527
1528 * (((
1529 Connect sensor's output to DI1+ with a serial 50K resistor
1530 )))
1531 * (((
1532 Connect sensor's GND DI1-.
1533 )))
1534
1535 (((
1536 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 )))
1538
1539 (((
1540 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1541 )))
1542
1543 (((
1544 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 )))
1546
1547
1548 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549
1550 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551
1552 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553
1554 [[image:image-20230616235145-1.png]]
1555
1556 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1557
1558 [[image:image-20240219115718-1.png]]
1559
1560
1561 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1562
1563
1564 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1565
1566 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1567
1568 [[image:1653357531600-905.png]]
1569
1570
1571 === 3.6.4 Analog Input Interface ===
1572
1573
1574 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575
1576
1577 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1578
1579 [[image:1653357592296-182.png]]
1580
1581 Example to connect a 4~~20mA sensor
1582
1583 We take the wind speed sensor as an example for reference only.
1584
1585
1586 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1587
1588 (% style="color:red" %)**Red:  12~~24v**
1589
1590 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1591
1592 **Black:  GND**
1593
1594 **Connection diagram:**
1595
1596 [[image:1653357640609-758.png]]
1597
1598 [[image:1653357648330-671.png||height="155" width="733"]]
1599
1600
1601 Example connected to a regulated power supply to measure voltage
1602
1603 [[image:image-20230608101532-1.png||height="606" width="447"]]
1604
1605 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1606
1607 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1608
1609
1610 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611
1612 (% style="color:red" %)**Red:  12~~24v**
1613
1614 **Black:  GND**
1615
1616
1617 === 3.6.5 Relay Output ===
1618
1619
1620 (((
1621 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622
1623 **Note**: RO pins go to Open(NO) when device is power off.
1624 )))
1625
1626 [[image:image-20220524100215-9.png]]
1627
1628
1629 [[image:image-20220524100215-10.png||height="382" width="723"]]
1630
1631
1632 == 3.7 LEDs Indicators ==
1633
1634
1635 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1636 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1637 |**PWR**|Always on if there is power
1638 |**TX**|(((
1639 (((
1640 Device boot: TX blinks 5 times.
1641 )))
1642
1643 (((
1644 Successful join network: TX ON for 5 seconds.
1645 )))
1646
1647 (((
1648 Transmit a LoRa packet: TX blinks once
1649 )))
1650 )))
1651 |**RX**|RX blinks once when receive a packet.
1652 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1653 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1654 |**DI1**|(((
1655 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1656 )))
1657 |**DI2**|(((
1658 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1659 )))
1660 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1661 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1662
1663 = 4. Use AT Command =
1664
1665 == 4.1 Access AT Command ==
1666
1667
1668 (((
1669 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 )))
1671
1672 [[image:1653358238933-385.png]]
1673
1674
1675 (((
1676 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 )))
1678
1679 [[image:1653358355238-883.png]]
1680
1681
1682 (((
1683 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 )))
1685
1686 (((
1687 AT+<CMD>?        : Help on <CMD>
1688 )))
1689
1690 (((
1691 AT+<CMD>         : Run <CMD>
1692 )))
1693
1694 (((
1695 AT+<CMD>=<value> : Set the value
1696 )))
1697
1698 (((
1699 AT+<CMD>=?       :  Get the value
1700 )))
1701
1702 (((
1703 ATZ: Trig a reset of the MCU
1704 )))
1705
1706 (((
1707 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1708 )))
1709
1710 (((
1711 AT+DEUI: Get or Set the Device EUI
1712 )))
1713
1714 (((
1715 AT+DADDR: Get or Set the Device Address
1716 )))
1717
1718 (((
1719 AT+APPKEY: Get or Set the Application Key
1720 )))
1721
1722 (((
1723 AT+NWKSKEY: Get or Set the Network Session Key
1724 )))
1725
1726 (((
1727 AT+APPSKEY:  Get or Set the Application Session Key
1728 )))
1729
1730 (((
1731 AT+APPEUI:  Get or Set the Application EUI
1732 )))
1733
1734 (((
1735 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1736 )))
1737
1738 (((
1739 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1740 )))
1741
1742 (((
1743 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1744 )))
1745
1746 (((
1747 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1748 )))
1749
1750 (((
1751 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1752 )))
1753
1754 (((
1755 AT+RX2FQ: Get or Set the Rx2 window frequency
1756 )))
1757
1758 (((
1759 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1760 )))
1761
1762 (((
1763 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1764 )))
1765
1766 (((
1767 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1768 )))
1769
1770 (((
1771 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1772 )))
1773
1774 (((
1775 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1776 )))
1777
1778 (((
1779 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1780 )))
1781
1782 (((
1783 AT+NWKID: Get or Set the Network ID
1784 )))
1785
1786 (((
1787 AT+FCU: Get or Set the Frame Counter Uplink
1788 )))
1789
1790 (((
1791 AT+FCD: Get or Set the Frame Counter Downlink
1792 )))
1793
1794 (((
1795 AT+CLASS: Get or Set the Device Class
1796 )))
1797
1798 (((
1799 AT+JOIN: Join network
1800 )))
1801
1802 (((
1803 AT+NJS: Get OTAA Join Status
1804 )))
1805
1806 (((
1807 AT+SENDB: Send hexadecimal data along with the application port
1808 )))
1809
1810 (((
1811 AT+SEND: Send text data along with the application port
1812 )))
1813
1814 (((
1815 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1816 )))
1817
1818 (((
1819 AT+RECV: Print last received data in raw format
1820 )))
1821
1822 (((
1823 AT+VER:  Get current image version and Frequency Band
1824 )))
1825
1826 (((
1827 AT+CFM: Get or Set the confirmation mode (0-1)
1828 )))
1829
1830 (((
1831 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1832 )))
1833
1834 (((
1835 AT+SNR: Get the SNR of the last received packet
1836 )))
1837
1838 (((
1839 AT+RSSI: Get the RSSI of the last received packet
1840 )))
1841
1842 (((
1843 AT+TDC: Get or set the application data transmission interval in ms
1844 )))
1845
1846 (((
1847 AT+PORT: Get or set the application port
1848 )))
1849
1850 (((
1851 AT+DISAT: Disable AT commands
1852 )))
1853
1854 (((
1855 AT+PWORD: Set password, max 9 digits
1856 )))
1857
1858 (((
1859 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1860 )))
1861
1862 (((
1863 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1864 )))
1865
1866 (((
1867 AT+CFG: Print all settings
1868 )))
1869
1870
1871 == 4.2 Common AT Command Sequence ==
1872
1873 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1874
1875 (((
1876
1877
1878 (((
1879 (% style="color:blue" %)**If device has not joined network yet:**
1880 )))
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)**123456**
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)**AT+FDR**
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)**123456**
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)**ATZ**
1901 )))
1902
1903
1904 (((
1905 (% style="color:blue" %)**If device already joined network:**
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)**ATZ**
1914 )))
1915
1916
1917 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1918
1919 (((
1920
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1924 )))
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1933 )))
1934
1935 (((
1936 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1937 )))
1938
1939 (((
1940 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1941 )))
1942
1943 (((
1944 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1945 )))
1946
1947 (((
1948 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1949 )))
1950
1951 (((
1952 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1953 )))
1954
1955 (((
1956 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1957 )))
1958
1959 (((
1960 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1961 )))
1962
1963 (((
1964 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1973
1974
1975 )))
1976
1977 (((
1978 (% style="color:red" %)**Note:**
1979 )))
1980
1981 (((
1982 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1983
1984 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1985
1986 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1987 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1988
1989 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1990 )))
1991
1992 (((
1993 [[image:1653359097980-169.png||height="188" width="729"]]
1994 )))
1995
1996
1997 === 4.2.3 Change to Class A ===
1998
1999
2000 (((
2001 (% style="color:blue" %)**If sensor JOINED:**
2002
2003 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2004
2005 (% style="background-color:#dcdcdc" %)**ATZ**
2006 )))
2007
2008
2009 = 5. Case Study =
2010
2011 == 5.1 Counting how many objects pass in Flow Line ==
2012
2013
2014 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2015
2016
2017 = 6. FAQ =
2018
2019 == 6.1 How to upgrade the image? ==
2020
2021
2022 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2023
2024 * Support new features
2025 * For bug fix
2026 * Change LoRaWAN bands.
2027
2028 Below shows the hardware connection for how to upload an image to the LT:
2029
2030 [[image:1653359603330-121.png]]
2031
2032
2033 (((
2034 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2035 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2036 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037
2038
2039 (((
2040 (% style="color:blue" %)**For LT-22222-L**(%%):
2041 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2042 )))
2043
2044
2045 )))
2046
2047 [[image:image-20220524103407-12.png]]
2048
2049
2050 [[image:image-20220524103429-13.png]]
2051
2052
2053 [[image:image-20220524104033-15.png]]
2054
2055
2056 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2057
2058 [[image:1653360054704-518.png||height="186" width="745"]]
2059
2060
2061 (((
2062 (((
2063 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2064
2065
2066 )))
2067 )))
2068
2069 (((
2070 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2071 )))
2072
2073 (((
2074
2075
2076 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2077
2078
2079 )))
2080
2081 (((
2082 (((
2083 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2084 )))
2085 )))
2086
2087 (((
2088 (((
2089 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2090
2091
2092 )))
2093 )))
2094
2095 (((
2096 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2097
2098
2099 )))
2100
2101 (((
2102 [[image:1653360231087-571.png||height="401" width="727"]]
2103
2104
2105 )))
2106
2107 (((
2108 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2109 )))
2110
2111
2112
2113 (((
2114 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2115
2116
2117 )))
2118
2119 (((
2120 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2121
2122 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2123
2124 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2125
2126 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2127
2128 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2129
2130 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2131
2132 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2133
2134 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2135
2136 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2137 )))
2138
2139
2140 (((
2141 As shown in below:
2142 )))
2143
2144 [[image:1653360498588-932.png||height="485" width="726"]]
2145
2146
2147 == 6.4 How to change the uplink interval? ==
2148
2149
2150 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2151
2152
2153 == 6.5 Can I see counting event in Serial? ==
2154
2155
2156 (((
2157 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2158
2159
2160 == 6.6 Can i use point to point communication for LT-22222-L? ==
2161
2162
2163 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2164
2165
2166 )))
2167
2168 (((
2169 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2170
2171
2172 If the device is not shut down, but directly powered off.
2173
2174 It will default that this is a power-off state.
2175
2176 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2177
2178 After restart, the status before power failure will be read from flash.
2179
2180
2181 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2182
2183
2184 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2185
2186
2187 [[image:image-20221006170630-1.png||height="610" width="945"]]
2188
2189
2190 == 6.9 Can LT22222-L save RO state? ==
2191
2192
2193 Firmware version needs to be no less than 1.6.0.
2194
2195
2196 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2197
2198
2199 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2200
2201
2202 = 7. Trouble Shooting =
2203 )))
2204
2205 (((
2206 (((
2207 == 7.1 Downlink doesn't work, how to solve it? ==
2208
2209
2210 )))
2211 )))
2212
2213 (((
2214 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2215 )))
2216
2217 (((
2218
2219
2220 == 7.2 Have trouble to upload image. ==
2221
2222
2223 )))
2224
2225 (((
2226 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2227 )))
2228
2229 (((
2230
2231
2232 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2233
2234
2235 )))
2236
2237 (((
2238 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2239 )))
2240
2241
2242 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2243
2244
2245 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2246 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2247
2248
2249 = 8. Order Info =
2250
2251
2252 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2253
2254 (% style="color:#4f81bd" %)**XXX:**
2255
2256 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2257 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2258 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2259 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2260 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2261 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2262 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2263 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2264 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2265
2266 = 9. Packing Info =
2267
2268
2269 **Package Includes**:
2270
2271 * LT-22222-L I/O Controller x 1
2272 * Stick Antenna for LoRa RF part x 1
2273 * Bracket for controller x1
2274 * Program cable x 1
2275
2276 **Dimension and weight**:
2277
2278 * Device Size: 13.5 x 7 x 3 cm
2279 * Device Weight: 105g
2280 * Package Size / pcs : 14.5 x 8 x 5 cm
2281 * Weight / pcs : 170g
2282
2283 = 10. Support =
2284
2285
2286 * (((
2287 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2288 )))
2289 * (((
2290 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2291
2292
2293
2294 )))
2295
2296 = 11. Reference​​​​​ =
2297
2298
2299 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2300 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2301 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0