Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degree, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches with your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specified manually** option.
233 ** Select the **Frequency plan** that matches with your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 ** Select **Over the air activation (OTAA)** option under **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 ** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 ** Enter **DevEUI** in the **DevEUI** field.
241 ** Enter **AppKey** in the **AppKey** field.
242 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 ** Under **After registration**, select the **View registered end device** option.
244
245 ==== Joining ====
246
247 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
248
249 [[image:1653298044601-602.png||height="405" width="709"]]
250
251
252 == 3.3 Uplink Payload ==
253
254
255 There are five working modes + one interrupt mode on LT for different type application:
256
257 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
258
259 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
260
261 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
262
263 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
264
265 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
266
267 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
268
269 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
270
271
272 (((
273 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
274
275 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
276 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
277 |Value|(((
278 AVI1 voltage
279 )))|(((
280 AVI2 voltage
281 )))|(((
282 ACI1 Current
283 )))|(((
284 ACI2 Current
285 )))|DIDORO*|(((
286 Reserve
287 )))|MOD
288 )))
289
290 (((
291 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
292
293 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
294 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
296 )))
297
298 * RO is for relay. ROx=1 : close, ROx=0 always open.
299 * DI is for digital input. DIx=1: high or float, DIx=0: low.
300 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
301
302 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
303
304 For example if payload is: [[image:image-20220523175847-2.png]]
305
306
307 **The value for the interface is:  **
308
309 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
310
311 AVI2 channel voltage is 0x04AC/1000=1.196V
312
313 ACI1 channel current is 0x1310/1000=4.880mA
314
315 ACI2 channel current is 0x1300/1000=4.864mA
316
317 The last byte 0xAA= 10101010(B) means
318
319 * [1] RO1 relay channel is close and the RO1 LED is ON.
320 * [0] RO2 relay channel is open and RO2 LED is OFF;
321
322 **LT22222-L:**
323
324 * [1] DI2 channel is high input and DI2 LED is ON;
325 * [0] DI1 channel is low input;
326
327 * [0] DO3 channel output state
328 ** DO3 is float in case no load between DO3 and V+.;
329 ** DO3 is high in case there is load between DO3 and V+.
330 ** DO3 LED is off in both case
331 * [1] DO2 channel output is low and DO2 LED is ON.
332 * [0] DO1 channel output state
333 ** DO1 is float in case no load between DO1 and V+.;
334 ** DO1 is high in case there is load between DO1 and V+.
335 ** DO1 LED is off in both case
336
337 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
338
339
340 (((
341 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
342 )))
343
344 (((
345 Total : 11 bytes payload
346
347 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
349 |Value|COUNT1|COUNT2 |DIDORO*|(((
350 Reserve
351 )))|MOD
352 )))
353
354 (((
355 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
356
357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
358 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
360
361 RO is for relay. ROx=1 : close , ROx=0 always open.
362 )))
363
364 * FIRST: Indicate this is the first packet after join network.
365 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
366
367 (((
368 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
369
370
371 )))
372
373 (((
374 **To use counting mode, please run:**
375 )))
376
377 (((
378 (% class="box infomessage" %)
379 (((
380 **AT+MOD=2**
381
382 **ATZ**
383 )))
384 )))
385
386 (((
387
388
389 (% style="color:#4f81bd" %)**AT Commands for counting:**
390 )))
391
392 (((
393 **For LT22222-L:**
394
395 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
396
397 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
398
399 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
400
401 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
402
403 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
404
405 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
406 )))
407
408
409 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410
411
412 **LT22222-L**: This mode the DI1 is used as a counting pin.
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
416 |Value|COUNT1|(((
417 ACI1 Current
418 )))|(((
419 ACI2 Current
420 )))|DIDORO*|Reserve|MOD
421
422 (((
423 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
424
425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
428 )))
429
430 * RO is for relay. ROx=1 : close, ROx=0 always open.
431 * FIRST: Indicate this is the first packet after join network.
432 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433
434 (((
435 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
436 )))
437
438
439 (((
440 **To use counting mode, please run:**
441 )))
442
443 (((
444 (% class="box infomessage" %)
445 (((
446 **AT+MOD=3**
447
448 **ATZ**
449 )))
450 )))
451
452 (((
453 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
454 )))
455
456
457 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
458
459
460 (((
461 **LT22222-L**: This mode the DI1 is used as a counting pin.
462 )))
463
464 (((
465 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
466
467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
468 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
469 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
470 Reserve
471 )))|MOD
472 )))
473
474 (((
475 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
476
477 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
480 )))
481
482 * RO is for relay. ROx=1 : close, ROx=0 always open.
483 * FIRST: Indicate this is the first packet after join network.
484 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
485
486 (((
487 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
488
489
490 )))
491
492 (((
493 **To use this mode, please run:**
494 )))
495
496 (((
497 (% class="box infomessage" %)
498 (((
499 **AT+MOD=4**
500
501 **ATZ**
502 )))
503 )))
504
505 (((
506 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
507 )))
508
509 (((
510 **Plus below command for AVI1 Counting:**
511
512 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
513
514 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
515
516 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
517
518 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
519 )))
520
521
522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523
524
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526
527 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
528 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
529 |Value|(((
530 AVI1 voltage
531 )))|(((
532 AVI2 voltage
533 )))|(((
534 ACI1 Current
535 )))|COUNT1|DIDORO*|(((
536 Reserve
537 )))|MOD
538
539 (((
540 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
541
542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
543 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
544 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
545 )))
546
547 * RO is for relay. ROx=1 : close, ROx=0 always open.
548 * FIRST: Indicate this is the first packet after join network.
549 * (((
550 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
551 )))
552
553 (((
554 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
555 )))
556
557 (((
558 **To use this mode, please run:**
559 )))
560
561 (((
562 (% class="box infomessage" %)
563 (((
564 **AT+MOD=5**
565
566 **ATZ**
567 )))
568 )))
569
570 (((
571 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
572 )))
573
574
575 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
576
577
578 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
579
580 For example, if user has configured below commands:
581
582 * **AT+MOD=1 ** **~-~->**  The normal working mode
583 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
584
585 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
586
587 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
589
590 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
591
592
593 (% style="color:#4f81bd" %)**Trigger base on voltage**:
594
595 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
596
597
598 **Example:**
599
600 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
601
602 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
603
604
605
606 (% style="color:#4f81bd" %)**Trigger base on current**:
607
608 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
609
610
611 **Example:**
612
613 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
614
615
616
617 (% style="color:#4f81bd" %)**Trigger base on DI status**:
618
619 DI status trigger Flag.
620
621 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
622
623
624 **Example:**
625
626 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
627
628
629 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
630
631 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
632
633 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
634
635 AA: Code for this downlink Command:
636
637 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
638
639 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
640
641 yy2 yy2: AC1 or AV1 high limit.
642
643 yy3 yy3: AC2 or AV2 low limit.
644
645 Yy4 yy4: AC2 or AV2 high limit.
646
647
648 **Example1**: AA 00 13 88 00 00 00 00 00 00
649
650 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
651
652
653 **Example2**: AA 02 01 00
654
655 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
656
657
658
659 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
660
661 MOD6 Payload : total 11 bytes payload
662
663 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
664 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
665 |Value|(((
666 TRI_A FLAG
667 )))|(((
668 TRI_A Status
669 )))|(((
670 TRI_DI FLAG+STA
671 )))|Reserve|Enable/Disable MOD6|(((
672 MOD(6)
673 )))
674
675 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
676
677 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
678 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
679 |(((
680 AV1_LOW
681 )))|(((
682 AV1_HIGH
683 )))|(((
684 AV2_LOW
685 )))|(((
686 AV2_HIGH
687 )))|(((
688 AC1_LOW
689 )))|(((
690 AC1_HIGH
691 )))|(((
692 AC2_LOW
693 )))|(((
694 AC2_HIGH
695 )))
696
697 * Each bits shows if the corresponding trigger has been configured.
698
699 **Example:**
700
701 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702
703
704 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
705
706 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
707 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
708 |(((
709 AV1_LOW
710 )))|(((
711 AV1_HIGH
712 )))|(((
713 AV2_LOW
714 )))|(((
715 AV2_HIGH
716 )))|(((
717 AC1_LOW
718 )))|(((
719 AC1_HIGH
720 )))|(((
721 AC2_LOW
722 )))|(((
723 AC2_HIGH
724 )))
725
726 * Each bits shows which status has been trigger on this uplink.
727
728 **Example:**
729
730 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
731
732
733 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
734
735 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
736 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
737 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
738
739 * Each bits shows which status has been trigger on this uplink.
740
741 **Example:**
742
743 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
744
745 00000101: Means both DI1 and DI2 trigger are enabled.
746
747
748 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
749
750 Downlink command to poll MOD6 status:
751
752 **AB 06**
753
754 When device got this command, it will send the MOD6 payload.
755
756
757 === 3.3.7 Payload Decoder ===
758
759 (((
760
761
762 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
763 )))
764
765
766 == 3.4 ​Configure LT via AT or Downlink ==
767
768
769 (((
770 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
771 )))
772
773 (((
774 (((
775 There are two kinds of Commands:
776 )))
777 )))
778
779 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
780
781 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
782
783 === 3.4.1 Common Commands ===
784
785
786 (((
787 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
788 )))
789
790
791 === 3.4.2 Sensor related commands ===
792
793 ==== 3.4.2.1 Set Transmit Interval ====
794
795
796 Set device uplink interval.
797
798 * (% style="color:#037691" %)**AT Command:**
799
800 (% style="color:blue" %)**AT+TDC=N **
801
802
803 **Example: **AT+TDC=30000. Means set interval to 30 seconds
804
805
806 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
807
808 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
809
810
811
812 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
813
814
815 Set work mode.
816
817 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
818
819 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
820
821 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
822
823 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
824
825
826
827 ==== 3.4.2.3 Poll an uplink ====
828
829
830 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
831
832 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
833
834 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
835
836 **Example**: 0x08FF, ask device to send an Uplink
837
838
839
840 ==== 3.4.2.4 Enable Trigger Mode ====
841
842
843 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
844
845 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
846
847 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
848
849 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
850
851
852 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
853
854 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
855
856
857
858 ==== 3.4.2.5 Poll trigger settings ====
859
860
861 Poll trigger settings
862
863 * (% style="color:#037691" %)**AT Command:**
864
865 There is no AT Command for this feature.
866
867 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
868
869 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
870
871
872
873 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
874
875
876 Enable Disable DI1/DI2/DI2 as trigger,
877
878 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
879
880 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
884
885 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
886
887
888
889 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
890
891
892 Set DI1 or DI3(for LT-33222-L) trigger.
893
894 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
895
896 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
897
898 (% style="color:red" %)**b :** (%%)delay timing.
899
900 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
901
902
903 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
904
905 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
906
907
908
909 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
910
911
912 Set DI2 trigger.
913
914 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
915
916 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
917
918 (% style="color:red" %)**b :** (%%)delay timing.
919
920 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
921
922
923 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
924
925 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
926
927
928
929 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
930
931
932 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
933
934 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
937
938 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
939
940
941
942 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
943
944
945 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
946
947 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
948
949 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
950
951 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
952
953
954
955 ==== 3.4.2.11 Trigger – Set minimum interval ====
956
957
958 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
959
960 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
961
962 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
963
964 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
965
966 (((
967 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
968 )))
969
970
971
972 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
973
974
975 * (% style="color:#037691" %)**AT Command**
976
977 There is no AT Command to control Digital Output
978
979
980 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
981
982 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
983
984 (((
985 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
986 )))
987
988 (((
989 01: Low,  00: High ,  11: No action
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
993 |02  01  00  11|Low|High|No Action
994 |02  00  11  01|High|No Action|Low
995 |02  11  01  00|No Action|Low|High
996 )))
997
998 (((
999 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1000 )))
1001
1002 (((
1003 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1004 )))
1005
1006
1007
1008 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1009
1010
1011 * (% style="color:#037691" %)**AT Command**
1012
1013 There is no AT Command to control Digital Output
1014
1015
1016 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1017
1018 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1019
1020
1021 This is to control the digital output time of DO pin. Include four bytes:
1022
1023 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1024
1025 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1026
1027 01: DO pins will change back to original state after timeout.
1028
1029 00: DO pins will change to an inverter state after timeout 
1030
1031
1032 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1033
1034 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1035 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1036 |0x01|DO1 set to low
1037 |0x00|DO1 set to high
1038 |0x11|DO1 NO Action
1039
1040 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1041
1042 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1043 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1044 |0x01|DO2 set to low
1045 |0x00|DO2 set to high
1046 |0x11|DO2 NO Action
1047
1048 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1049
1050 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1051 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1052 |0x01|DO3 set to low
1053 |0x00|DO3 set to high
1054 |0x11|DO3 NO Action
1055
1056 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1057
1058
1059 (% style="color:red" %)**Note: **
1060
1061 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1062
1063 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1064
1065 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1066
1067
1068 **Example payload:**
1069
1070 **~1. A9 01 01 01 01 07 D0**
1071
1072 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1073
1074 **2. A9 01 00 01 11 07 D0**
1075
1076 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1077
1078 **3. A9 00 00 00 00 07 D0**
1079
1080 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1081
1082 **4. A9 00 11 01 00 07 D0**
1083
1084 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1085
1086
1087
1088 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1089
1090
1091 * (% style="color:#037691" %)**AT Command:**
1092
1093 There is no AT Command to control Relay Output
1094
1095
1096 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1097
1098 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1099
1100
1101 (((
1102 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1103 )))
1104
1105 (((
1106 00: Close ,  01: Open , 11: No action
1107
1108 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1109 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1110 |03  00  11|Open|No Action
1111 |03  01  11|Close|No Action
1112 |03  11  00|No Action|Open
1113 |03  11  01|No Action|Close
1114 |03  00  00|Open|Open
1115 |03  01  01|Close|Close
1116 |03  01  00|Close|Open
1117 |03  00  01|Open|Close
1118 )))
1119
1120 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1121
1122
1123
1124 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1125
1126
1127 * (% style="color:#037691" %)**AT Command:**
1128
1129 There is no AT Command to control Relay Output
1130
1131
1132 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1133
1134 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1135
1136
1137 This is to control the relay output time of relay. Include four bytes:
1138
1139 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1140
1141 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1142
1143 01: Relays will change back to original state after timeout.
1144
1145 00: Relays will change to an inverter state after timeout
1146
1147
1148 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1149
1150 [[image:image-20221008095908-1.png||height="364" width="564"]]
1151
1152
1153 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1154
1155
1156 (% style="color:red" %)**Note:**
1157
1158 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1159
1160 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1161
1162
1163 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1164
1165
1166 **Example payload:**
1167
1168 **~1. 05 01 11 07 D0**
1169
1170 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1171
1172 **2. 05 01 10 07 D0**
1173
1174 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1175
1176 **3. 05 00 01 07 D0**
1177
1178 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1179
1180 **4. 05 00 00 07 D0**
1181
1182 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1183
1184
1185
1186 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1187
1188
1189 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1190
1191 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1192
1193 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1194
1195 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1196
1197
1198
1199 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1200
1201
1202 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1203
1204 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1205
1206 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1207
1208
1209 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1210
1211 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1212
1213
1214
1215 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1216
1217
1218 Clear counting for counting mode
1219
1220 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1221
1222 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1223
1224 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1225
1226
1227
1228 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1229
1230
1231 * (% style="color:#037691" %)**AT Command:**
1232
1233 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1234
1235
1236 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1237
1238 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1239
1240 (((
1241 range: aa bb cc:0 to 16777215,  (unit:second)
1242 )))
1243
1244
1245
1246 ==== 3.4.2.20 Reset save RO DO state ====
1247
1248
1249 * (% style="color:#037691" %)**AT Command:**
1250
1251 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1252
1253 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1254
1255
1256 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1257
1258 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1259
1260
1261
1262 ==== 3.4.2.21 Encrypted payload ====
1263
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1268
1269 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1270
1271
1272
1273 ==== 3.4.2.22 Get sensor value ====
1274
1275
1276 * (% style="color:#037691" %)**AT Command:**
1277
1278 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1279
1280 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1281
1282
1283
1284 ==== 3.4.2.23 Resets the downlink packet count ====
1285
1286
1287 * (% style="color:#037691" %)**AT Command:**
1288
1289 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1290
1291 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1292
1293
1294
1295 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1296
1297
1298 * (% style="color:#037691" %)**AT Command:**
1299
1300 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1301
1302 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1303
1304
1305 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1306
1307 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1308
1309
1310
1311 ==== 3.4.2.25 Copy downlink to uplink ====
1312
1313
1314 * (% style="color:#037691" %)**AT Command**(%%)**:**
1315
1316 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1317
1318 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1319
1320
1321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1322
1323 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1324
1325
1326
1327 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1328
1329 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1330
1331
1332
1333 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1334
1335
1336 * (((
1337 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1338
1339 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1340
1341
1342 )))
1343
1344 **Example:**
1345
1346 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1347
1348
1349 == 3.5 Integrating with ThingsEye.io ==
1350
1351 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1352
1353 === 3.5.1 Configuring The Things Stack Sandbox ===
1354
1355 * Go to your Application and select MQTT under Integrations.
1356 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1357 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1358
1359 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1360
1361 === 3.5.2 Configuring ThingsEye.io ===
1362
1363 * Login to your thingsEye.io account.
1364 * Under the Integrations center, click Integrations.
1365 * Click the Add integration button (the button with the + symbol).
1366
1367 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1368
1369
1370 On the Add integration page configure the following:
1371
1372 Basic settings:
1373
1374 * Select The Things Stack Community from the Integration type list.
1375 * Enter a suitable name for your integration in the Name box or keep the default name.
1376 * Click the Next button.
1377
1378 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1379
1380 Uplink Data converter:
1381
1382 * Click the Create New button if it is not selected by default.
1383 * Click the JavaScript button.
1384 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1385 * Click the Next button.
1386
1387 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1388
1389 Downlink Data converter (this is an optional step):
1390
1391 * Click the Create new button if it is not selected by default.
1392 * Click the JavaScript button.
1393 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 * Click the Next button.
1395
1396 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1397
1398 Connection:
1399
1400 * Choose Region from the Host type.
1401 * Enter the cluster of your The Things Stack in the Region textbox.
1402 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1403 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1404 * Click the Add button.
1405
1406 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1407
1408
1409 Your integration is added to the integrations list and it will display on the Integrations page.
1410
1411 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1412
1413
1414 == 3.6 Interface Detail ==
1415
1416 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1417
1418
1419 Support NPN Type sensor
1420
1421 [[image:1653356991268-289.png]]
1422
1423
1424 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1425
1426
1427 (((
1428 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1429 )))
1430
1431 (((
1432 (((
1433 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1434
1435
1436 )))
1437 )))
1438
1439 [[image:1653357170703-587.png]]
1440
1441 (((
1442 (((
1443 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1444 )))
1445 )))
1446
1447 (((
1448
1449 )))
1450
1451 (((
1452 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1453 )))
1454
1455 (((
1456 This type of sensor will output a low signal GND when active.
1457 )))
1458
1459 * (((
1460 Connect sensor's output to DI1-
1461 )))
1462 * (((
1463 Connect sensor's VCC to DI1+.
1464 )))
1465
1466 (((
1467 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1468 )))
1469
1470 (((
1471 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1472 )))
1473
1474 (((
1475 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1476 )))
1477
1478 (((
1479
1480 )))
1481
1482 (((
1483 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1484 )))
1485
1486 (((
1487 This type of sensor will output a high signal (example 24v) when active.
1488 )))
1489
1490 * (((
1491 Connect sensor's output to DI1+
1492 )))
1493 * (((
1494 Connect sensor's GND DI1-.
1495 )))
1496
1497 (((
1498 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1499 )))
1500
1501 (((
1502 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1503 )))
1504
1505 (((
1506 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1507 )))
1508
1509 (((
1510
1511 )))
1512
1513 (((
1514 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1515 )))
1516
1517 (((
1518 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1519 )))
1520
1521 * (((
1522 Connect sensor's output to DI1+ with a serial 50K resistor
1523 )))
1524 * (((
1525 Connect sensor's GND DI1-.
1526 )))
1527
1528 (((
1529 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1530 )))
1531
1532 (((
1533 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1534 )))
1535
1536 (((
1537 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1538 )))
1539
1540
1541 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1542
1543 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1544
1545 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1546
1547 [[image:image-20230616235145-1.png]]
1548
1549 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1550
1551 [[image:image-20240219115718-1.png]]
1552
1553
1554 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1555
1556
1557 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1558
1559 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1560
1561 [[image:1653357531600-905.png]]
1562
1563
1564 === 3.6.4 Analog Input Interface ===
1565
1566
1567 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1568
1569
1570 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1571
1572 [[image:1653357592296-182.png]]
1573
1574 Example to connect a 4~~20mA sensor
1575
1576 We take the wind speed sensor as an example for reference only.
1577
1578
1579 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1580
1581 (% style="color:red" %)**Red:  12~~24v**
1582
1583 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1584
1585 **Black:  GND**
1586
1587 **Connection diagram:**
1588
1589 [[image:1653357640609-758.png]]
1590
1591 [[image:1653357648330-671.png||height="155" width="733"]]
1592
1593
1594 Example connected to a regulated power supply to measure voltage
1595
1596 [[image:image-20230608101532-1.png||height="606" width="447"]]
1597
1598 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1599
1600 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1601
1602
1603 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1604
1605 (% style="color:red" %)**Red:  12~~24v**
1606
1607 **Black:  GND**
1608
1609
1610 === 3.6.5 Relay Output ===
1611
1612
1613 (((
1614 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1615
1616 **Note**: RO pins go to Open(NO) when device is power off.
1617 )))
1618
1619 [[image:image-20220524100215-9.png]]
1620
1621
1622 [[image:image-20220524100215-10.png||height="382" width="723"]]
1623
1624
1625 == 3.7 LEDs Indicators ==
1626
1627
1628 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1629 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1630 |**PWR**|Always on if there is power
1631 |**TX**|(((
1632 (((
1633 Device boot: TX blinks 5 times.
1634 )))
1635
1636 (((
1637 Successful join network: TX ON for 5 seconds.
1638 )))
1639
1640 (((
1641 Transmit a LoRa packet: TX blinks once
1642 )))
1643 )))
1644 |**RX**|RX blinks once when receive a packet.
1645 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1647 |**DI1**|(((
1648 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1649 )))
1650 |**DI2**|(((
1651 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1652 )))
1653 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1655
1656 = 4. Use AT Command =
1657
1658 == 4.1 Access AT Command ==
1659
1660
1661 (((
1662 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1663 )))
1664
1665 [[image:1653358238933-385.png]]
1666
1667
1668 (((
1669 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1670 )))
1671
1672 [[image:1653358355238-883.png]]
1673
1674
1675 (((
1676 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1677 )))
1678
1679 (((
1680 AT+<CMD>?        : Help on <CMD>
1681 )))
1682
1683 (((
1684 AT+<CMD>         : Run <CMD>
1685 )))
1686
1687 (((
1688 AT+<CMD>=<value> : Set the value
1689 )))
1690
1691 (((
1692 AT+<CMD>=?       :  Get the value
1693 )))
1694
1695 (((
1696 ATZ: Trig a reset of the MCU
1697 )))
1698
1699 (((
1700 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1701 )))
1702
1703 (((
1704 AT+DEUI: Get or Set the Device EUI
1705 )))
1706
1707 (((
1708 AT+DADDR: Get or Set the Device Address
1709 )))
1710
1711 (((
1712 AT+APPKEY: Get or Set the Application Key
1713 )))
1714
1715 (((
1716 AT+NWKSKEY: Get or Set the Network Session Key
1717 )))
1718
1719 (((
1720 AT+APPSKEY:  Get or Set the Application Session Key
1721 )))
1722
1723 (((
1724 AT+APPEUI:  Get or Set the Application EUI
1725 )))
1726
1727 (((
1728 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1729 )))
1730
1731 (((
1732 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1733 )))
1734
1735 (((
1736 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1737 )))
1738
1739 (((
1740 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1741 )))
1742
1743 (((
1744 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1745 )))
1746
1747 (((
1748 AT+RX2FQ: Get or Set the Rx2 window frequency
1749 )))
1750
1751 (((
1752 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1753 )))
1754
1755 (((
1756 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1757 )))
1758
1759 (((
1760 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1761 )))
1762
1763 (((
1764 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1765 )))
1766
1767 (((
1768 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1769 )))
1770
1771 (((
1772 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1773 )))
1774
1775 (((
1776 AT+NWKID: Get or Set the Network ID
1777 )))
1778
1779 (((
1780 AT+FCU: Get or Set the Frame Counter Uplink
1781 )))
1782
1783 (((
1784 AT+FCD: Get or Set the Frame Counter Downlink
1785 )))
1786
1787 (((
1788 AT+CLASS: Get or Set the Device Class
1789 )))
1790
1791 (((
1792 AT+JOIN: Join network
1793 )))
1794
1795 (((
1796 AT+NJS: Get OTAA Join Status
1797 )))
1798
1799 (((
1800 AT+SENDB: Send hexadecimal data along with the application port
1801 )))
1802
1803 (((
1804 AT+SEND: Send text data along with the application port
1805 )))
1806
1807 (((
1808 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1809 )))
1810
1811 (((
1812 AT+RECV: Print last received data in raw format
1813 )))
1814
1815 (((
1816 AT+VER:  Get current image version and Frequency Band
1817 )))
1818
1819 (((
1820 AT+CFM: Get or Set the confirmation mode (0-1)
1821 )))
1822
1823 (((
1824 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1825 )))
1826
1827 (((
1828 AT+SNR: Get the SNR of the last received packet
1829 )))
1830
1831 (((
1832 AT+RSSI: Get the RSSI of the last received packet
1833 )))
1834
1835 (((
1836 AT+TDC: Get or set the application data transmission interval in ms
1837 )))
1838
1839 (((
1840 AT+PORT: Get or set the application port
1841 )))
1842
1843 (((
1844 AT+DISAT: Disable AT commands
1845 )))
1846
1847 (((
1848 AT+PWORD: Set password, max 9 digits
1849 )))
1850
1851 (((
1852 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1853 )))
1854
1855 (((
1856 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1857 )))
1858
1859 (((
1860 AT+CFG: Print all settings
1861 )))
1862
1863
1864 == 4.2 Common AT Command Sequence ==
1865
1866 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1867
1868 (((
1869
1870
1871 (((
1872 (% style="color:blue" %)**If device has not joined network yet:**
1873 )))
1874 )))
1875
1876 (((
1877 (% style="background-color:#dcdcdc" %)**123456**
1878 )))
1879
1880 (((
1881 (% style="background-color:#dcdcdc" %)**AT+FDR**
1882 )))
1883
1884 (((
1885 (% style="background-color:#dcdcdc" %)**123456**
1886 )))
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1890 )))
1891
1892 (((
1893 (% style="background-color:#dcdcdc" %)**ATZ**
1894 )))
1895
1896
1897 (((
1898 (% style="color:blue" %)**If device already joined network:**
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)**ATZ**
1907 )))
1908
1909
1910 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1911
1912 (((
1913
1914
1915 (((
1916 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1917 )))
1918 )))
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1922 )))
1923
1924 (((
1925 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1926 )))
1927
1928 (((
1929 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1930 )))
1931
1932 (((
1933 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1954 )))
1955
1956 (((
1957 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1958 )))
1959
1960 (((
1961 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1962 )))
1963
1964 (((
1965 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1966
1967
1968 )))
1969
1970 (((
1971 (% style="color:red" %)**Note:**
1972 )))
1973
1974 (((
1975 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1976
1977 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1978
1979 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1980 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1981
1982 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1983 )))
1984
1985 (((
1986 [[image:1653359097980-169.png||height="188" width="729"]]
1987 )))
1988
1989
1990 === 4.2.3 Change to Class A ===
1991
1992
1993 (((
1994 (% style="color:blue" %)**If sensor JOINED:**
1995
1996 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1997
1998 (% style="background-color:#dcdcdc" %)**ATZ**
1999 )))
2000
2001
2002 = 5. Case Study =
2003
2004 == 5.1 Counting how many objects pass in Flow Line ==
2005
2006
2007 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2008
2009
2010 = 6. FAQ =
2011
2012 == 6.1 How to upgrade the image? ==
2013
2014
2015 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2016
2017 * Support new features
2018 * For bug fix
2019 * Change LoRaWAN bands.
2020
2021 Below shows the hardware connection for how to upload an image to the LT:
2022
2023 [[image:1653359603330-121.png]]
2024
2025
2026 (((
2027 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2028 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2029 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2030
2031
2032 (((
2033 (% style="color:blue" %)**For LT-22222-L**(%%):
2034 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2035 )))
2036
2037
2038 )))
2039
2040 [[image:image-20220524103407-12.png]]
2041
2042
2043 [[image:image-20220524103429-13.png]]
2044
2045
2046 [[image:image-20220524104033-15.png]]
2047
2048
2049 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2050
2051 [[image:1653360054704-518.png||height="186" width="745"]]
2052
2053
2054 (((
2055 (((
2056 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2057
2058
2059 )))
2060 )))
2061
2062 (((
2063 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2064 )))
2065
2066 (((
2067
2068
2069 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2070
2071
2072 )))
2073
2074 (((
2075 (((
2076 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2077 )))
2078 )))
2079
2080 (((
2081 (((
2082 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2083
2084
2085 )))
2086 )))
2087
2088 (((
2089 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2090
2091
2092 )))
2093
2094 (((
2095 [[image:1653360231087-571.png||height="401" width="727"]]
2096
2097
2098 )))
2099
2100 (((
2101 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2102 )))
2103
2104
2105
2106 (((
2107 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2108
2109
2110 )))
2111
2112 (((
2113 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2114
2115 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2116
2117 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2118
2119 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2120
2121 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2122
2123 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2124
2125 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2126
2127 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2128
2129 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2130 )))
2131
2132
2133 (((
2134 As shown in below:
2135 )))
2136
2137 [[image:1653360498588-932.png||height="485" width="726"]]
2138
2139
2140 == 6.4 How to change the uplink interval? ==
2141
2142
2143 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2144
2145
2146 == 6.5 Can I see counting event in Serial? ==
2147
2148
2149 (((
2150 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2151
2152
2153 == 6.6 Can i use point to point communication for LT-22222-L? ==
2154
2155
2156 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2157
2158
2159 )))
2160
2161 (((
2162 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2163
2164
2165 If the device is not shut down, but directly powered off.
2166
2167 It will default that this is a power-off state.
2168
2169 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2170
2171 After restart, the status before power failure will be read from flash.
2172
2173
2174 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2175
2176
2177 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2178
2179
2180 [[image:image-20221006170630-1.png||height="610" width="945"]]
2181
2182
2183 == 6.9 Can LT22222-L save RO state? ==
2184
2185
2186 Firmware version needs to be no less than 1.6.0.
2187
2188
2189 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2190
2191
2192 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2193
2194
2195 = 7. Trouble Shooting =
2196 )))
2197
2198 (((
2199 (((
2200 == 7.1 Downlink doesn't work, how to solve it? ==
2201
2202
2203 )))
2204 )))
2205
2206 (((
2207 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2208 )))
2209
2210 (((
2211
2212
2213 == 7.2 Have trouble to upload image. ==
2214
2215
2216 )))
2217
2218 (((
2219 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2220 )))
2221
2222 (((
2223
2224
2225 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2226
2227
2228 )))
2229
2230 (((
2231 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2232 )))
2233
2234
2235 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2236
2237
2238 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2239 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2240
2241
2242 = 8. Order Info =
2243
2244
2245 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2246
2247 (% style="color:#4f81bd" %)**XXX:**
2248
2249 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2250 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2251 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2252 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2253 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2254 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2255 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2256 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2257 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2258
2259 = 9. Packing Info =
2260
2261
2262 **Package Includes**:
2263
2264 * LT-22222-L I/O Controller x 1
2265 * Stick Antenna for LoRa RF part x 1
2266 * Bracket for controller x1
2267 * Program cable x 1
2268
2269 **Dimension and weight**:
2270
2271 * Device Size: 13.5 x 7 x 3 cm
2272 * Device Weight: 105g
2273 * Package Size / pcs : 14.5 x 8 x 5 cm
2274 * Weight / pcs : 170g
2275
2276 = 10. Support =
2277
2278
2279 * (((
2280 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2281 )))
2282 * (((
2283 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2284
2285
2286
2287 )))
2288
2289 = 11. Reference​​​​​ =
2290
2291
2292 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2293 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2294 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0