Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
38 The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
39 )))
40
41 (((
42 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
43 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
44
45 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
46 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
47 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2 Specifications ==
57
58 (% style="color:#037691" %)**Hardware System:**
59
60 * STM32L072xxxx MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption:
63 ** Idle: 4mA@12v
64 ** 20dB Transmit: 34mA@12v
65 * Operating Temperature: -40 ~~ 85 Degree, No Dew
66
67 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
68
69 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
70 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
71 * 2 x Relay Output (5A@250VAC / 30VDC)
72 * 2 x 0~~20mA Analog Input (res:0.01mA)
73 * 2 x 0~~30V Analog Input (res:0.01v)
74 * Power Input 7~~ 24V DC. 
75
76 (% style="color:#037691" %)**LoRa Spec:**
77
78 * Frequency Range:
79 ** Band 1 (HF): 862 ~~ 1020 Mhz
80 ** Band 2 (LF): 410 ~~ 528 Mhz
81 * 168 dB maximum link budget.
82 * +20 dBm - 100 mW constant RF output vs.
83 * +14 dBm high efficiency PA.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Low RX current of 10.3 mA, 200 nA register retention.
89 * Fully integrated synthesizer with a resolution of 61 Hz.
90 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
91 * Built-in bit synchronizer for clock recovery.
92 * Preamble detection.
93 * 127 dB Dynamic Range RSSI.
94 * Automatic RF Sense and CAD with ultra-fast AFC.
95 * Packet engine up to 256 bytes with CRC.
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol
100 * Optional Customized LoRa Protocol
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRa Downlink
104 * Firmware upgradable via program port
105 * Counting
106
107 == 1.4 Applications ==
108
109 * Smart Buildings & Home Automation
110 * Logistics and Supply Chain Management
111 * Smart Metering
112 * Smart Agriculture
113 * Smart Cities
114 * Smart Factory
115
116 == 1.5 Hardware Variants ==
117
118
119 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
120 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
121 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
122 (% style="text-align:center" %)
123 [[image:image-20230424115112-1.png||height="106" width="58"]]
124 )))|(% style="width:334px" %)(((
125 * 2 x Digital Input (Bi-direction)
126 * 2 x Digital Output
127 * 2 x Relay Output (5A@250VAC / 30VDC)
128 * 2 x 0~~20mA Analog Input (res:0.01mA)
129 * 2 x 0~~30V Analog Input (res:0.01v)
130 * 1 x Counting Port
131 )))
132
133 = 2. Powering ON the Device =
134
135 (% style="line-height:1.38" %)
136 (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The LT-22222-L controller can be powered by a 7–24V DC power source.
137
138 * (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect VIN to Power Input V+ and GND to Power Input V- to power the LT-22222-L controller.
139 * (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect the positive wire of the power supply to the VIN screw terminal and the negative wire to the GND screw terminal.
140
141 (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The power indicator (PWR) LED will turn on when the device is properly powered.
142
143
144 [[image:1653297104069-180.png]]
145
146
147 = 3. Operation Mode =
148
149 == 3.1 How does it work? ==
150
151 (((
152 The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
153
154 For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
155 )))
156
157 (((
158 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
159 )))
160
161
162 == 3.2 Example to join LoRaWAN network ==
163
164
165 (((
166 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
167
168
169 )))
170
171 [[image:image-20220523172350-1.png||height="266" width="864"]]
172
173
174 (((
175 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
176
177
178 )))
179
180 (((
181 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
182 )))
183
184 (((
185 Each LT is shipped with a sticker with the default device EUI as below:
186 )))
187
188 [[image:image-20230425173427-2.png||height="246" width="530"]]
189
190
191 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
192
193 **Add APP EUI in the application.**
194
195 [[image:1653297955910-247.png||height="321" width="716"]]
196
197
198 **Add APP KEY and DEV EUI**
199
200 [[image:1653298023685-319.png]]
201
202
203 (((
204 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
205
206
207 )))
208
209 [[image:1653298044601-602.png||height="405" width="709"]]
210
211
212 == 3.3 Uplink Payload ==
213
214
215 There are five working modes + one interrupt mode on LT for different type application:
216
217 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
218
219 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
220
221 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
222
223 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
224
225 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
226
227 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
228
229 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
230
231
232 (((
233 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
234
235 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
236 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
237 |Value|(((
238 AVI1 voltage
239 )))|(((
240 AVI2 voltage
241 )))|(((
242 ACI1 Current
243 )))|(((
244 ACI2 Current
245 )))|DIDORO*|(((
246 Reserve
247 )))|MOD
248 )))
249
250 (((
251 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
252
253 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
255 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
256 )))
257
258 * RO is for relay. ROx=1 : close, ROx=0 always open.
259 * DI is for digital input. DIx=1: high or float, DIx=0: low.
260 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
261
262 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
263
264 For example if payload is: [[image:image-20220523175847-2.png]]
265
266
267 **The value for the interface is:  **
268
269 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
270
271 AVI2 channel voltage is 0x04AC/1000=1.196V
272
273 ACI1 channel current is 0x1310/1000=4.880mA
274
275 ACI2 channel current is 0x1300/1000=4.864mA
276
277 The last byte 0xAA= 10101010(B) means
278
279 * [1] RO1 relay channel is close and the RO1 LED is ON.
280 * [0] RO2 relay channel is open and RO2 LED is OFF;
281
282 **LT22222-L:**
283
284 * [1] DI2 channel is high input and DI2 LED is ON;
285 * [0] DI1 channel is low input;
286
287 * [0] DO3 channel output state
288 ** DO3 is float in case no load between DO3 and V+.;
289 ** DO3 is high in case there is load between DO3 and V+.
290 ** DO3 LED is off in both case
291 * [1] DO2 channel output is low and DO2 LED is ON.
292 * [0] DO1 channel output state
293 ** DO1 is float in case no load between DO1 and V+.;
294 ** DO1 is high in case there is load between DO1 and V+.
295 ** DO1 LED is off in both case
296
297 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
298
299
300 (((
301 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
302 )))
303
304 (((
305 Total : 11 bytes payload
306
307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
308 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
309 |Value|COUNT1|COUNT2 |DIDORO*|(((
310 Reserve
311 )))|MOD
312 )))
313
314 (((
315 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
316
317 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
319 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
320
321 RO is for relay. ROx=1 : close , ROx=0 always open.
322 )))
323
324 * FIRST: Indicate this is the first packet after join network.
325 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
326
327 (((
328 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
329
330
331 )))
332
333 (((
334 **To use counting mode, please run:**
335 )))
336
337 (((
338 (% class="box infomessage" %)
339 (((
340 **AT+MOD=2**
341
342 **ATZ**
343 )))
344 )))
345
346 (((
347
348
349 (% style="color:#4f81bd" %)**AT Commands for counting:**
350 )))
351
352 (((
353 **For LT22222-L:**
354
355 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
356
357 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
358
359 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
360
361 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
362
363 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
364
365 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
366 )))
367
368
369 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
370
371
372 **LT22222-L**: This mode the DI1 is used as a counting pin.
373
374 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
375 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
376 |Value|COUNT1|(((
377 ACI1 Current
378 )))|(((
379 ACI2 Current
380 )))|DIDORO*|Reserve|MOD
381
382 (((
383 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
384
385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
387 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
388 )))
389
390 * RO is for relay. ROx=1 : close, ROx=0 always open.
391 * FIRST: Indicate this is the first packet after join network.
392 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
393
394 (((
395 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
396 )))
397
398
399 (((
400 **To use counting mode, please run:**
401 )))
402
403 (((
404 (% class="box infomessage" %)
405 (((
406 **AT+MOD=3**
407
408 **ATZ**
409 )))
410 )))
411
412 (((
413 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
414 )))
415
416
417 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
418
419
420 (((
421 **LT22222-L**: This mode the DI1 is used as a counting pin.
422 )))
423
424 (((
425 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
426
427 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
429 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
430 Reserve
431 )))|MOD
432 )))
433
434 (((
435 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
436
437 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
439 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
440 )))
441
442 * RO is for relay. ROx=1 : close, ROx=0 always open.
443 * FIRST: Indicate this is the first packet after join network.
444 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
445
446 (((
447 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
448
449
450 )))
451
452 (((
453 **To use this mode, please run:**
454 )))
455
456 (((
457 (% class="box infomessage" %)
458 (((
459 **AT+MOD=4**
460
461 **ATZ**
462 )))
463 )))
464
465 (((
466 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
467 )))
468
469 (((
470 **Plus below command for AVI1 Counting:**
471
472 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
473
474 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
475
476 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
477
478 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
479 )))
480
481
482 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
483
484
485 **LT22222-L**: This mode the DI1 is used as a counting pin.
486
487 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
488 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
489 |Value|(((
490 AVI1 voltage
491 )))|(((
492 AVI2 voltage
493 )))|(((
494 ACI1 Current
495 )))|COUNT1|DIDORO*|(((
496 Reserve
497 )))|MOD
498
499 (((
500 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
501
502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
504 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
505 )))
506
507 * RO is for relay. ROx=1 : close, ROx=0 always open.
508 * FIRST: Indicate this is the first packet after join network.
509 * (((
510 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
511 )))
512
513 (((
514 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
515 )))
516
517 (((
518 **To use this mode, please run:**
519 )))
520
521 (((
522 (% class="box infomessage" %)
523 (((
524 **AT+MOD=5**
525
526 **ATZ**
527 )))
528 )))
529
530 (((
531 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
532 )))
533
534
535 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
536
537
538 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
539
540 For example, if user has configured below commands:
541
542 * **AT+MOD=1 ** **~-~->**  The normal working mode
543 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
544
545 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
546
547 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
548 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
549
550 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
551
552
553 (% style="color:#4f81bd" %)**Trigger base on voltage**:
554
555 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
556
557
558 **Example:**
559
560 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
561
562 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
563
564
565
566 (% style="color:#4f81bd" %)**Trigger base on current**:
567
568 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
569
570
571 **Example:**
572
573 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
574
575
576
577 (% style="color:#4f81bd" %)**Trigger base on DI status**:
578
579 DI status trigger Flag.
580
581 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
582
583
584 **Example:**
585
586 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
587
588
589 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
590
591 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
592
593 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
594
595 AA: Code for this downlink Command:
596
597 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
598
599 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
600
601 yy2 yy2: AC1 or AV1 high limit.
602
603 yy3 yy3: AC2 or AV2 low limit.
604
605 Yy4 yy4: AC2 or AV2 high limit.
606
607
608 **Example1**: AA 00 13 88 00 00 00 00 00 00
609
610 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
611
612
613 **Example2**: AA 02 01 00
614
615 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
616
617
618
619 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
620
621 MOD6 Payload : total 11 bytes payload
622
623 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
624 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
625 |Value|(((
626 TRI_A FLAG
627 )))|(((
628 TRI_A Status
629 )))|(((
630 TRI_DI FLAG+STA
631 )))|Reserve|Enable/Disable MOD6|(((
632 MOD(6)
633 )))
634
635 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
636
637 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
638 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
639 |(((
640 AV1_LOW
641 )))|(((
642 AV1_HIGH
643 )))|(((
644 AV2_LOW
645 )))|(((
646 AV2_HIGH
647 )))|(((
648 AC1_LOW
649 )))|(((
650 AC1_HIGH
651 )))|(((
652 AC2_LOW
653 )))|(((
654 AC2_HIGH
655 )))
656
657 * Each bits shows if the corresponding trigger has been configured.
658
659 **Example:**
660
661 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
662
663
664 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
667 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
668 |(((
669 AV1_LOW
670 )))|(((
671 AV1_HIGH
672 )))|(((
673 AV2_LOW
674 )))|(((
675 AV2_HIGH
676 )))|(((
677 AC1_LOW
678 )))|(((
679 AC1_HIGH
680 )))|(((
681 AC2_LOW
682 )))|(((
683 AC2_HIGH
684 )))
685
686 * Each bits shows which status has been trigger on this uplink.
687
688 **Example:**
689
690 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
691
692
693 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
694
695 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
696 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
697 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
698
699 * Each bits shows which status has been trigger on this uplink.
700
701 **Example:**
702
703 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
704
705 00000101: Means both DI1 and DI2 trigger are enabled.
706
707
708 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
709
710 Downlink command to poll MOD6 status:
711
712 **AB 06**
713
714 When device got this command, it will send the MOD6 payload.
715
716
717 === 3.3.7 Payload Decoder ===
718
719 (((
720
721
722 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
723 )))
724
725
726 == 3.4 ​Configure LT via AT or Downlink ==
727
728
729 (((
730 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
731 )))
732
733 (((
734 (((
735 There are two kinds of Commands:
736 )))
737 )))
738
739 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
740
741 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
742
743 === 3.4.1 Common Commands ===
744
745
746 (((
747 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
748 )))
749
750
751 === 3.4.2 Sensor related commands ===
752
753 ==== 3.4.2.1 Set Transmit Interval ====
754
755
756 Set device uplink interval.
757
758 * (% style="color:#037691" %)**AT Command:**
759
760 (% style="color:blue" %)**AT+TDC=N **
761
762
763 **Example: **AT+TDC=30000. Means set interval to 30 seconds
764
765
766 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
767
768 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
769
770
771
772 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
773
774
775 Set work mode.
776
777 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
778
779 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
780
781 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
782
783 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
784
785
786
787 ==== 3.4.2.3 Poll an uplink ====
788
789
790 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
791
792 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
793
794 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
795
796 **Example**: 0x08FF, ask device to send an Uplink
797
798
799
800 ==== 3.4.2.4 Enable Trigger Mode ====
801
802
803 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
804
805 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
806
807 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
808
809 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
813
814 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
815
816
817
818 ==== 3.4.2.5 Poll trigger settings ====
819
820
821 Poll trigger settings
822
823 * (% style="color:#037691" %)**AT Command:**
824
825 There is no AT Command for this feature.
826
827 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
828
829 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
830
831
832
833 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
834
835
836 Enable Disable DI1/DI2/DI2 as trigger,
837
838 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839
840 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
841
842
843 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
844
845 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
846
847
848
849 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
850
851
852 Set DI1 or DI3(for LT-33222-L) trigger.
853
854 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
855
856 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
857
858 (% style="color:red" %)**b :** (%%)delay timing.
859
860 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
861
862
863 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
864
865 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
866
867
868
869 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
870
871
872 Set DI2 trigger.
873
874 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
875
876 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
877
878 (% style="color:red" %)**b :** (%%)delay timing.
879
880 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
884
885 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
886
887
888
889 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
890
891
892 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
893
894 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
895
896 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
897
898 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
899
900
901
902 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
903
904
905 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
906
907 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
908
909 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
910
911 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
912
913
914
915 ==== 3.4.2.11 Trigger – Set minimum interval ====
916
917
918 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
919
920 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
921
922 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
923
924 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
925
926 (((
927 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
928 )))
929
930
931
932 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
933
934
935 * (% style="color:#037691" %)**AT Command**
936
937 There is no AT Command to control Digital Output
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
941
942 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
943
944 (((
945 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
946 )))
947
948 (((
949 01: Low,  00: High ,  11: No action
950
951 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
952 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
953 |02  01  00  11|Low|High|No Action
954 |02  00  11  01|High|No Action|Low
955 |02  11  01  00|No Action|Low|High
956 )))
957
958 (((
959 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
960 )))
961
962 (((
963 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
964 )))
965
966
967
968 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
969
970
971 * (% style="color:#037691" %)**AT Command**
972
973 There is no AT Command to control Digital Output
974
975
976 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
977
978 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
979
980
981 This is to control the digital output time of DO pin. Include four bytes:
982
983 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
984
985 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
986
987 01: DO pins will change back to original state after timeout.
988
989 00: DO pins will change to an inverter state after timeout 
990
991
992 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
995 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
996 |0x01|DO1 set to low
997 |0x00|DO1 set to high
998 |0x11|DO1 NO Action
999
1000 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1001
1002 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1003 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1004 |0x01|DO2 set to low
1005 |0x00|DO2 set to high
1006 |0x11|DO2 NO Action
1007
1008 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1009
1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1011 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1012 |0x01|DO3 set to low
1013 |0x00|DO3 set to high
1014 |0x11|DO3 NO Action
1015
1016 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1017
1018
1019 (% style="color:red" %)**Note: **
1020
1021 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1022
1023 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1024
1025 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1026
1027
1028 **Example payload:**
1029
1030 **~1. A9 01 01 01 01 07 D0**
1031
1032 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1033
1034 **2. A9 01 00 01 11 07 D0**
1035
1036 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1037
1038 **3. A9 00 00 00 00 07 D0**
1039
1040 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1041
1042 **4. A9 00 11 01 00 07 D0**
1043
1044 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1045
1046
1047
1048 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1049
1050
1051 * (% style="color:#037691" %)**AT Command:**
1052
1053 There is no AT Command to control Relay Output
1054
1055
1056 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1057
1058 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1059
1060
1061 (((
1062 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1063 )))
1064
1065 (((
1066 00: Close ,  01: Open , 11: No action
1067
1068 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1069 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1070 |03  00  11|Open|No Action
1071 |03  01  11|Close|No Action
1072 |03  11  00|No Action|Open
1073 |03  11  01|No Action|Close
1074 |03  00  00|Open|Open
1075 |03  01  01|Close|Close
1076 |03  01  00|Close|Open
1077 |03  00  01|Open|Close
1078 )))
1079
1080 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1081
1082
1083
1084 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1085
1086
1087 * (% style="color:#037691" %)**AT Command:**
1088
1089 There is no AT Command to control Relay Output
1090
1091
1092 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1093
1094 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1095
1096
1097 This is to control the relay output time of relay. Include four bytes:
1098
1099 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1100
1101 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1102
1103 01: Relays will change back to original state after timeout.
1104
1105 00: Relays will change to an inverter state after timeout
1106
1107
1108 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1109
1110 [[image:image-20221008095908-1.png||height="364" width="564"]]
1111
1112
1113 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1114
1115
1116 (% style="color:red" %)**Note:**
1117
1118 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1119
1120 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1121
1122
1123 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1124
1125
1126 **Example payload:**
1127
1128 **~1. 05 01 11 07 D0**
1129
1130 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1131
1132 **2. 05 01 10 07 D0**
1133
1134 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1135
1136 **3. 05 00 01 07 D0**
1137
1138 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1139
1140 **4. 05 00 00 07 D0**
1141
1142 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1143
1144
1145
1146 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1147
1148
1149 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1150
1151 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1152
1153 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1154
1155 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1156
1157
1158
1159 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1160
1161
1162 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1163
1164 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1165
1166 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1167
1168
1169 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1170
1171 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1172
1173
1174
1175 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1176
1177
1178 Clear counting for counting mode
1179
1180 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1181
1182 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1183
1184 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1185
1186
1187
1188 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1189
1190
1191 * (% style="color:#037691" %)**AT Command:**
1192
1193 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1194
1195
1196 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1197
1198 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1199
1200 (((
1201 range: aa bb cc:0 to 16777215,  (unit:second)
1202 )))
1203
1204
1205
1206 ==== 3.4.2.20 Reset save RO DO state ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**
1210
1211 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1212
1213 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1217
1218 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1219
1220
1221
1222 ==== 3.4.2.21 Encrypted payload ====
1223
1224
1225 * (% style="color:#037691" %)**AT Command:**
1226
1227 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1228
1229 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1230
1231
1232
1233 ==== 3.4.2.22 Get sensor value ====
1234
1235
1236 * (% style="color:#037691" %)**AT Command:**
1237
1238 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1239
1240 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1241
1242
1243
1244 ==== 3.4.2.23 Resets the downlink packet count ====
1245
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1250
1251 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1252
1253
1254
1255 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1256
1257
1258 * (% style="color:#037691" %)**AT Command:**
1259
1260 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1261
1262 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1263
1264
1265 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1266
1267 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1268
1269
1270
1271 ==== 3.4.2.25 Copy downlink to uplink ====
1272
1273
1274 * (% style="color:#037691" %)**AT Command**(%%)**:**
1275
1276 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1277
1278 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1279
1280
1281 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1282
1283 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1284
1285
1286
1287 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1288
1289 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1290
1291
1292
1293 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1294
1295
1296 * (((
1297 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1298
1299 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1300
1301
1302 )))
1303
1304 **Example:**
1305
1306 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1307
1308
1309 == 3.5 Integrate with Mydevice ==
1310
1311
1312 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1313
1314 (((
1315 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1316 )))
1317
1318 (((
1319 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1320
1321
1322 )))
1323
1324 [[image:image-20220719105525-1.png||height="377" width="677"]]
1325
1326
1327
1328 [[image:image-20220719110247-2.png||height="388" width="683"]]
1329
1330
1331 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1332
1333 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1334
1335 Search under The things network
1336
1337 [[image:1653356838789-523.png||height="337" width="740"]]
1338
1339
1340 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1341
1342 [[image:image-20220524094909-1.png||height="335" width="729"]]
1343
1344
1345 [[image:image-20220524094909-2.png||height="337" width="729"]]
1346
1347
1348 [[image:image-20220524094909-3.png||height="338" width="727"]]
1349
1350
1351 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1352
1353
1354 [[image:image-20220524094909-5.png||height="341" width="734"]]
1355
1356
1357 == 3.6 Interface Detail ==
1358
1359 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1360
1361
1362 Support NPN Type sensor
1363
1364 [[image:1653356991268-289.png]]
1365
1366
1367 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1368
1369
1370 (((
1371 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1372 )))
1373
1374 (((
1375 (((
1376 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1377
1378
1379 )))
1380 )))
1381
1382 [[image:1653357170703-587.png]]
1383
1384 (((
1385 (((
1386 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1387 )))
1388 )))
1389
1390 (((
1391
1392 )))
1393
1394 (((
1395 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1396 )))
1397
1398 (((
1399 This type of sensor will output a low signal GND when active.
1400 )))
1401
1402 * (((
1403 Connect sensor's output to DI1-
1404 )))
1405 * (((
1406 Connect sensor's VCC to DI1+.
1407 )))
1408
1409 (((
1410 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1411 )))
1412
1413 (((
1414 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1415 )))
1416
1417 (((
1418 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1419 )))
1420
1421 (((
1422
1423 )))
1424
1425 (((
1426 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1427 )))
1428
1429 (((
1430 This type of sensor will output a high signal (example 24v) when active.
1431 )))
1432
1433 * (((
1434 Connect sensor's output to DI1+
1435 )))
1436 * (((
1437 Connect sensor's GND DI1-.
1438 )))
1439
1440 (((
1441 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1442 )))
1443
1444 (((
1445 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1446 )))
1447
1448 (((
1449 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1450 )))
1451
1452 (((
1453
1454 )))
1455
1456 (((
1457 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1458 )))
1459
1460 (((
1461 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1462 )))
1463
1464 * (((
1465 Connect sensor's output to DI1+ with a serial 50K resistor
1466 )))
1467 * (((
1468 Connect sensor's GND DI1-.
1469 )))
1470
1471 (((
1472 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1473 )))
1474
1475 (((
1476 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1477 )))
1478
1479 (((
1480 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1481 )))
1482
1483
1484 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1485
1486 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1487
1488 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1489
1490 [[image:image-20230616235145-1.png]]
1491
1492 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1493
1494 [[image:image-20240219115718-1.png]]
1495
1496
1497 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1498
1499
1500 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1501
1502 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1503
1504 [[image:1653357531600-905.png]]
1505
1506
1507 === 3.6.4 Analog Input Interface ===
1508
1509
1510 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1511
1512
1513 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1514
1515 [[image:1653357592296-182.png]]
1516
1517 Example to connect a 4~~20mA sensor
1518
1519 We take the wind speed sensor as an example for reference only.
1520
1521
1522 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1523
1524 (% style="color:red" %)**Red:  12~~24v**
1525
1526 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1527
1528 **Black:  GND**
1529
1530 **Connection diagram:**
1531
1532 [[image:1653357640609-758.png]]
1533
1534 [[image:1653357648330-671.png||height="155" width="733"]]
1535
1536
1537 Example connected to a regulated power supply to measure voltage
1538
1539 [[image:image-20230608101532-1.png||height="606" width="447"]]
1540
1541 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1542
1543 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1544
1545
1546 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1547
1548 (% style="color:red" %)**Red:  12~~24v**
1549
1550 **Black:  GND**
1551
1552
1553 === 3.6.5 Relay Output ===
1554
1555
1556 (((
1557 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1558
1559 **Note**: RO pins go to Open(NO) when device is power off.
1560 )))
1561
1562 [[image:image-20220524100215-9.png]]
1563
1564
1565 [[image:image-20220524100215-10.png||height="382" width="723"]]
1566
1567
1568 == 3.7 LEDs Indicators ==
1569
1570
1571 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1572 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1573 |**PWR**|Always on if there is power
1574 |**TX**|(((
1575 (((
1576 Device boot: TX blinks 5 times.
1577 )))
1578
1579 (((
1580 Successful join network: TX ON for 5 seconds.
1581 )))
1582
1583 (((
1584 Transmit a LoRa packet: TX blinks once
1585 )))
1586 )))
1587 |**RX**|RX blinks once when receive a packet.
1588 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1589 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1590 |**DI1**|(((
1591 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1592 )))
1593 |**DI2**|(((
1594 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1595 )))
1596 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1597 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1598
1599 = 4. Use AT Command =
1600
1601 == 4.1 Access AT Command ==
1602
1603
1604 (((
1605 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1606 )))
1607
1608 [[image:1653358238933-385.png]]
1609
1610
1611 (((
1612 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1613 )))
1614
1615 [[image:1653358355238-883.png]]
1616
1617
1618 (((
1619 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1620 )))
1621
1622 (((
1623 AT+<CMD>?        : Help on <CMD>
1624 )))
1625
1626 (((
1627 AT+<CMD>         : Run <CMD>
1628 )))
1629
1630 (((
1631 AT+<CMD>=<value> : Set the value
1632 )))
1633
1634 (((
1635 AT+<CMD>=?       :  Get the value
1636 )))
1637
1638 (((
1639 ATZ: Trig a reset of the MCU
1640 )))
1641
1642 (((
1643 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1644 )))
1645
1646 (((
1647 AT+DEUI: Get or Set the Device EUI
1648 )))
1649
1650 (((
1651 AT+DADDR: Get or Set the Device Address
1652 )))
1653
1654 (((
1655 AT+APPKEY: Get or Set the Application Key
1656 )))
1657
1658 (((
1659 AT+NWKSKEY: Get or Set the Network Session Key
1660 )))
1661
1662 (((
1663 AT+APPSKEY:  Get or Set the Application Session Key
1664 )))
1665
1666 (((
1667 AT+APPEUI:  Get or Set the Application EUI
1668 )))
1669
1670 (((
1671 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1672 )))
1673
1674 (((
1675 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1676 )))
1677
1678 (((
1679 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1680 )))
1681
1682 (((
1683 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1684 )))
1685
1686 (((
1687 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1688 )))
1689
1690 (((
1691 AT+RX2FQ: Get or Set the Rx2 window frequency
1692 )))
1693
1694 (((
1695 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1696 )))
1697
1698 (((
1699 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1700 )))
1701
1702 (((
1703 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1704 )))
1705
1706 (((
1707 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1708 )))
1709
1710 (((
1711 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1712 )))
1713
1714 (((
1715 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1716 )))
1717
1718 (((
1719 AT+NWKID: Get or Set the Network ID
1720 )))
1721
1722 (((
1723 AT+FCU: Get or Set the Frame Counter Uplink
1724 )))
1725
1726 (((
1727 AT+FCD: Get or Set the Frame Counter Downlink
1728 )))
1729
1730 (((
1731 AT+CLASS: Get or Set the Device Class
1732 )))
1733
1734 (((
1735 AT+JOIN: Join network
1736 )))
1737
1738 (((
1739 AT+NJS: Get OTAA Join Status
1740 )))
1741
1742 (((
1743 AT+SENDB: Send hexadecimal data along with the application port
1744 )))
1745
1746 (((
1747 AT+SEND: Send text data along with the application port
1748 )))
1749
1750 (((
1751 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1752 )))
1753
1754 (((
1755 AT+RECV: Print last received data in raw format
1756 )))
1757
1758 (((
1759 AT+VER:  Get current image version and Frequency Band
1760 )))
1761
1762 (((
1763 AT+CFM: Get or Set the confirmation mode (0-1)
1764 )))
1765
1766 (((
1767 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1768 )))
1769
1770 (((
1771 AT+SNR: Get the SNR of the last received packet
1772 )))
1773
1774 (((
1775 AT+RSSI: Get the RSSI of the last received packet
1776 )))
1777
1778 (((
1779 AT+TDC: Get or set the application data transmission interval in ms
1780 )))
1781
1782 (((
1783 AT+PORT: Get or set the application port
1784 )))
1785
1786 (((
1787 AT+DISAT: Disable AT commands
1788 )))
1789
1790 (((
1791 AT+PWORD: Set password, max 9 digits
1792 )))
1793
1794 (((
1795 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1796 )))
1797
1798 (((
1799 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1800 )))
1801
1802 (((
1803 AT+CFG: Print all settings
1804 )))
1805
1806
1807 == 4.2 Common AT Command Sequence ==
1808
1809 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1810
1811 (((
1812
1813
1814 (((
1815 (% style="color:blue" %)**If device has not joined network yet:**
1816 )))
1817 )))
1818
1819 (((
1820 (% style="background-color:#dcdcdc" %)**123456**
1821 )))
1822
1823 (((
1824 (% style="background-color:#dcdcdc" %)**AT+FDR**
1825 )))
1826
1827 (((
1828 (% style="background-color:#dcdcdc" %)**123456**
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1833 )))
1834
1835 (((
1836 (% style="background-color:#dcdcdc" %)**ATZ**
1837 )))
1838
1839
1840 (((
1841 (% style="color:blue" %)**If device already joined network:**
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1846 )))
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %)**ATZ**
1850 )))
1851
1852
1853 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1854
1855 (((
1856
1857
1858 (((
1859 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1860 )))
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1873 )))
1874
1875 (((
1876 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1877 )))
1878
1879 (((
1880 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1905 )))
1906
1907 (((
1908 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1909
1910
1911 )))
1912
1913 (((
1914 (% style="color:red" %)**Note:**
1915 )))
1916
1917 (((
1918 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1919
1920 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1921
1922 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1923 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1924
1925 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1926 )))
1927
1928 (((
1929 [[image:1653359097980-169.png||height="188" width="729"]]
1930 )))
1931
1932
1933 === 4.2.3 Change to Class A ===
1934
1935
1936 (((
1937 (% style="color:blue" %)**If sensor JOINED:**
1938
1939 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1940
1941 (% style="background-color:#dcdcdc" %)**ATZ**
1942 )))
1943
1944
1945 = 5. Case Study =
1946
1947 == 5.1 Counting how many objects pass in Flow Line ==
1948
1949
1950 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1951
1952
1953 = 6. FAQ =
1954
1955 == 6.1 How to upgrade the image? ==
1956
1957
1958 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1959
1960 * Support new features
1961 * For bug fix
1962 * Change LoRaWAN bands.
1963
1964 Below shows the hardware connection for how to upload an image to the LT:
1965
1966 [[image:1653359603330-121.png]]
1967
1968
1969 (((
1970 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1971 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1972 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1973
1974
1975 (((
1976 (% style="color:blue" %)**For LT-22222-L**(%%):
1977 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1978 )))
1979
1980
1981 )))
1982
1983 [[image:image-20220524103407-12.png]]
1984
1985
1986 [[image:image-20220524103429-13.png]]
1987
1988
1989 [[image:image-20220524104033-15.png]]
1990
1991
1992 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1993
1994 [[image:1653360054704-518.png||height="186" width="745"]]
1995
1996
1997 (((
1998 (((
1999 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2000
2001
2002 )))
2003 )))
2004
2005 (((
2006 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2007 )))
2008
2009 (((
2010
2011
2012 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2013
2014
2015 )))
2016
2017 (((
2018 (((
2019 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2020 )))
2021 )))
2022
2023 (((
2024 (((
2025 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2026
2027
2028 )))
2029 )))
2030
2031 (((
2032 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2033
2034
2035 )))
2036
2037 (((
2038 [[image:1653360231087-571.png||height="401" width="727"]]
2039
2040
2041 )))
2042
2043 (((
2044 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2045 )))
2046
2047
2048
2049 (((
2050 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2051
2052
2053 )))
2054
2055 (((
2056 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2057
2058 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2059
2060 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2061
2062 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2063
2064 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2065
2066 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2067
2068 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2069
2070 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2071
2072 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2073 )))
2074
2075
2076 (((
2077 As shown in below:
2078 )))
2079
2080 [[image:1653360498588-932.png||height="485" width="726"]]
2081
2082
2083 == 6.4 How to change the uplink interval? ==
2084
2085
2086 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2087
2088
2089 == 6.5 Can I see counting event in Serial? ==
2090
2091
2092 (((
2093 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2094
2095
2096 == 6.6 Can i use point to point communication for LT-22222-L? ==
2097
2098
2099 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2100
2101
2102 )))
2103
2104 (((
2105 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2106
2107
2108 If the device is not shut down, but directly powered off.
2109
2110 It will default that this is a power-off state.
2111
2112 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2113
2114 After restart, the status before power failure will be read from flash.
2115
2116
2117 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2118
2119
2120 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2121
2122
2123 [[image:image-20221006170630-1.png||height="610" width="945"]]
2124
2125
2126 == 6.9 Can LT22222-L save RO state? ==
2127
2128
2129 Firmware version needs to be no less than 1.6.0.
2130
2131
2132 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2133
2134
2135 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2136
2137
2138 = 7. Trouble Shooting =
2139 )))
2140
2141 (((
2142 (((
2143 == 7.1 Downlink doesn't work, how to solve it? ==
2144
2145
2146 )))
2147 )))
2148
2149 (((
2150 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2151 )))
2152
2153 (((
2154
2155
2156 == 7.2 Have trouble to upload image. ==
2157
2158
2159 )))
2160
2161 (((
2162 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2163 )))
2164
2165 (((
2166
2167
2168 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2169
2170
2171 )))
2172
2173 (((
2174 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2175 )))
2176
2177
2178 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2179
2180
2181 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2182 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2183
2184
2185 = 8. Order Info =
2186
2187
2188 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2189
2190 (% style="color:#4f81bd" %)**XXX:**
2191
2192 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2193 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2194 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2195 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2196 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2197 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2198 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2199 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2200 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2201
2202 = 9. Packing Info =
2203
2204
2205 **Package Includes**:
2206
2207 * LT-22222-L I/O Controller x 1
2208 * Stick Antenna for LoRa RF part x 1
2209 * Bracket for controller x1
2210 * Program cable x 1
2211
2212 **Dimension and weight**:
2213
2214 * Device Size: 13.5 x 7 x 3 cm
2215 * Device Weight: 105g
2216 * Package Size / pcs : 14.5 x 8 x 5 cm
2217 * Weight / pcs : 170g
2218
2219 = 10. Support =
2220
2221
2222 * (((
2223 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2224 )))
2225 * (((
2226 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2227
2228
2229
2230 )))
2231
2232 = 11. Reference​​​​​ =
2233
2234
2235 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2236 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2237 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0