Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is LT Series I/O Controller ==
23
24 (((
25
26
27 (((
28 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. The LT-22222-L simplifies and enhances I/O monitoring and controlling.
29
30 The Dragino LT-22222-L I/O Controller is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
31 )))
32 )))
33
34 (((
35 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
36 )))
37
38 (((
39 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
40 The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
41 )))
42
43 (((
44 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
45 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46
47 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
48 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
49 * (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
50 )))
51
52 (((
53 [[image:1653295757274-912.png]]
54
55
56 )))
57
58 == 1.2 Specifications ==
59
60 (% style="color:#037691" %)**Hardware System:**
61
62 * STM32L072xxxx MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption:
65 ** Idle: 4mA@12v
66 ** 20dB Transmit: 34mA@12v
67 * Operating Temperature: -40 ~~ 85 Degree, No Dew
68
69 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
70
71 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
72 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
73 * 2 x Relay Output (5A@250VAC / 30VDC)
74 * 2 x 0~~20mA Analog Input (res:0.01mA)
75 * 2 x 0~~30V Analog Input (res:0.01v)
76 * Power Input 7~~ 24V DC. 
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range:
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 ** Band 2 (LF): 410 ~~ 528 Mhz
83 * 168 dB maximum link budget.
84 * +20 dBm - 100 mW constant RF output vs.
85 * +14 dBm high efficiency PA.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Low RX current of 10.3 mA, 200 nA register retention.
91 * Fully integrated synthesizer with a resolution of 61 Hz.
92 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
93 * Built-in bit synchronizer for clock recovery.
94 * Preamble detection.
95 * 127 dB Dynamic Range RSSI.
96 * Automatic RF Sense and CAD with ultra-fast AFC.
97 * Packet engine up to 256 bytes with CRC.
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol
102 * Optional Customized LoRa Protocol
103 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
104 * AT Commands to change parameters
105 * Remote configure parameters via LoRa Downlink
106 * Firmware upgradable via program port
107 * Counting
108
109 == 1.4 Applications ==
110
111 * Smart Buildings & Home Automation
112 * Logistics and Supply Chain Management
113 * Smart Metering
114 * Smart Agriculture
115 * Smart Cities
116 * Smart Factory
117
118 == 1.5 Hardware Variants ==
119
120
121 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
122 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
123 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
124 (% style="text-align:center" %)
125 [[image:image-20230424115112-1.png||height="106" width="58"]]
126 )))|(% style="width:334px" %)(((
127 * 2 x Digital Input (Bi-direction)
128 * 2 x Digital Output
129 * 2 x Relay Output (5A@250VAC / 30VDC)
130 * 2 x 0~~20mA Analog Input (res:0.01mA)
131 * 2 x 0~~30V Analog Input (res:0.01v)
132 * 1 x Counting Port
133 )))
134
135 = 2. Power ON Device =
136
137 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
138
139 PWR will on when device is properly powered.
140
141 [[image:1653297104069-180.png]]
142
143
144 = 3. Operation Mode =
145
146 == 3.1 How it works? ==
147
148
149 (((
150 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
151 )))
152
153 (((
154 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
155 )))
156
157
158 == 3.2 Example to join LoRaWAN network ==
159
160
161 (((
162 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
163
164
165 )))
166
167 [[image:image-20220523172350-1.png||height="266" width="864"]]
168
169
170 (((
171 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
172
173
174 )))
175
176 (((
177 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
178 )))
179
180 (((
181 Each LT is shipped with a sticker with the default device EUI as below:
182 )))
183
184 [[image:image-20230425173427-2.png||height="246" width="530"]]
185
186
187 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
188
189 **Add APP EUI in the application.**
190
191 [[image:1653297955910-247.png||height="321" width="716"]]
192
193
194 **Add APP KEY and DEV EUI**
195
196 [[image:1653298023685-319.png]]
197
198
199 (((
200 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
201
202
203 )))
204
205 [[image:1653298044601-602.png||height="405" width="709"]]
206
207
208 == 3.3 Uplink Payload ==
209
210
211 There are five working modes + one interrupt mode on LT for different type application:
212
213 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
214
215 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
216
217 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
218
219 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
220
221 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
222
223 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
224
225 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
226
227
228 (((
229 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
230
231 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
232 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
233 |Value|(((
234 AVI1 voltage
235 )))|(((
236 AVI2 voltage
237 )))|(((
238 ACI1 Current
239 )))|(((
240 ACI2 Current
241 )))|DIDORO*|(((
242 Reserve
243 )))|MOD
244 )))
245
246 (((
247 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
248
249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
251 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
252 )))
253
254 * RO is for relay. ROx=1 : close, ROx=0 always open.
255 * DI is for digital input. DIx=1: high or float, DIx=0: low.
256 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
257
258 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
259
260 For example if payload is: [[image:image-20220523175847-2.png]]
261
262
263 **The value for the interface is:  **
264
265 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
266
267 AVI2 channel voltage is 0x04AC/1000=1.196V
268
269 ACI1 channel current is 0x1310/1000=4.880mA
270
271 ACI2 channel current is 0x1300/1000=4.864mA
272
273 The last byte 0xAA= 10101010(B) means
274
275 * [1] RO1 relay channel is close and the RO1 LED is ON.
276 * [0] RO2 relay channel is open and RO2 LED is OFF;
277
278 **LT22222-L:**
279
280 * [1] DI2 channel is high input and DI2 LED is ON;
281 * [0] DI1 channel is low input;
282
283 * [0] DO3 channel output state
284 ** DO3 is float in case no load between DO3 and V+.;
285 ** DO3 is high in case there is load between DO3 and V+.
286 ** DO3 LED is off in both case
287 * [1] DO2 channel output is low and DO2 LED is ON.
288 * [0] DO1 channel output state
289 ** DO1 is float in case no load between DO1 and V+.;
290 ** DO1 is high in case there is load between DO1 and V+.
291 ** DO1 LED is off in both case
292
293 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
294
295
296 (((
297 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
298 )))
299
300 (((
301 Total : 11 bytes payload
302
303 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
304 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
305 |Value|COUNT1|COUNT2 |DIDORO*|(((
306 Reserve
307 )))|MOD
308 )))
309
310 (((
311 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
312
313 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
314 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
315 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
316
317 RO is for relay. ROx=1 : close , ROx=0 always open.
318 )))
319
320 * FIRST: Indicate this is the first packet after join network.
321 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
322
323 (((
324 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
325
326
327 )))
328
329 (((
330 **To use counting mode, please run:**
331 )))
332
333 (((
334 (% class="box infomessage" %)
335 (((
336 **AT+MOD=2**
337
338 **ATZ**
339 )))
340 )))
341
342 (((
343
344
345 (% style="color:#4f81bd" %)**AT Commands for counting:**
346 )))
347
348 (((
349 **For LT22222-L:**
350
351 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
352
353 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
354
355 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
356
357 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
358
359 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
360
361 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
362 )))
363
364
365 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
366
367
368 **LT22222-L**: This mode the DI1 is used as a counting pin.
369
370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
371 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
372 |Value|COUNT1|(((
373 ACI1 Current
374 )))|(((
375 ACI2 Current
376 )))|DIDORO*|Reserve|MOD
377
378 (((
379 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
380
381 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
382 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
383 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
384 )))
385
386 * RO is for relay. ROx=1 : close, ROx=0 always open.
387 * FIRST: Indicate this is the first packet after join network.
388 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
389
390 (((
391 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
392 )))
393
394
395 (((
396 **To use counting mode, please run:**
397 )))
398
399 (((
400 (% class="box infomessage" %)
401 (((
402 **AT+MOD=3**
403
404 **ATZ**
405 )))
406 )))
407
408 (((
409 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
410 )))
411
412
413 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
414
415
416 (((
417 **LT22222-L**: This mode the DI1 is used as a counting pin.
418 )))
419
420 (((
421 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
422
423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
424 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
425 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
426 Reserve
427 )))|MOD
428 )))
429
430 (((
431 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
432
433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
435 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
436 )))
437
438 * RO is for relay. ROx=1 : close, ROx=0 always open.
439 * FIRST: Indicate this is the first packet after join network.
440 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
441
442 (((
443 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
444
445
446 )))
447
448 (((
449 **To use this mode, please run:**
450 )))
451
452 (((
453 (% class="box infomessage" %)
454 (((
455 **AT+MOD=4**
456
457 **ATZ**
458 )))
459 )))
460
461 (((
462 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
463 )))
464
465 (((
466 **Plus below command for AVI1 Counting:**
467
468 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
469
470 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
471
472 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
473
474 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
475 )))
476
477
478 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
479
480
481 **LT22222-L**: This mode the DI1 is used as a counting pin.
482
483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
485 |Value|(((
486 AVI1 voltage
487 )))|(((
488 AVI2 voltage
489 )))|(((
490 ACI1 Current
491 )))|COUNT1|DIDORO*|(((
492 Reserve
493 )))|MOD
494
495 (((
496 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
497
498 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
499 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
500 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
501 )))
502
503 * RO is for relay. ROx=1 : close, ROx=0 always open.
504 * FIRST: Indicate this is the first packet after join network.
505 * (((
506 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
507 )))
508
509 (((
510 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
511 )))
512
513 (((
514 **To use this mode, please run:**
515 )))
516
517 (((
518 (% class="box infomessage" %)
519 (((
520 **AT+MOD=5**
521
522 **ATZ**
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530
531 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
532
533
534 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
535
536 For example, if user has configured below commands:
537
538 * **AT+MOD=1 ** **~-~->**  The normal working mode
539 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
540
541 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
542
543 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
544 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
545
546 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
547
548
549 (% style="color:#4f81bd" %)**Trigger base on voltage**:
550
551 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
552
553
554 **Example:**
555
556 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
557
558 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
559
560
561
562 (% style="color:#4f81bd" %)**Trigger base on current**:
563
564 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
565
566
567 **Example:**
568
569 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
570
571
572
573 (% style="color:#4f81bd" %)**Trigger base on DI status**:
574
575 DI status trigger Flag.
576
577 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
578
579
580 **Example:**
581
582 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
583
584
585 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
586
587 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
588
589 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
590
591 AA: Code for this downlink Command:
592
593 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
594
595 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
596
597 yy2 yy2: AC1 or AV1 high limit.
598
599 yy3 yy3: AC2 or AV2 low limit.
600
601 Yy4 yy4: AC2 or AV2 high limit.
602
603
604 **Example1**: AA 00 13 88 00 00 00 00 00 00
605
606 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607
608
609 **Example2**: AA 02 01 00
610
611 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
612
613
614
615 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
616
617 MOD6 Payload : total 11 bytes payload
618
619 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
620 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
621 |Value|(((
622 TRI_A FLAG
623 )))|(((
624 TRI_A Status
625 )))|(((
626 TRI_DI FLAG+STA
627 )))|Reserve|Enable/Disable MOD6|(((
628 MOD(6)
629 )))
630
631 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
632
633 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
634 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
635 |(((
636 AV1_LOW
637 )))|(((
638 AV1_HIGH
639 )))|(((
640 AV2_LOW
641 )))|(((
642 AV2_HIGH
643 )))|(((
644 AC1_LOW
645 )))|(((
646 AC1_HIGH
647 )))|(((
648 AC2_LOW
649 )))|(((
650 AC2_HIGH
651 )))
652
653 * Each bits shows if the corresponding trigger has been configured.
654
655 **Example:**
656
657 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
658
659
660 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
661
662 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
663 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
664 |(((
665 AV1_LOW
666 )))|(((
667 AV1_HIGH
668 )))|(((
669 AV2_LOW
670 )))|(((
671 AV2_HIGH
672 )))|(((
673 AC1_LOW
674 )))|(((
675 AC1_HIGH
676 )))|(((
677 AC2_LOW
678 )))|(((
679 AC2_HIGH
680 )))
681
682 * Each bits shows which status has been trigger on this uplink.
683
684 **Example:**
685
686 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
687
688
689 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
690
691 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
692 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
693 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
694
695 * Each bits shows which status has been trigger on this uplink.
696
697 **Example:**
698
699 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
700
701 00000101: Means both DI1 and DI2 trigger are enabled.
702
703
704 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
705
706 Downlink command to poll MOD6 status:
707
708 **AB 06**
709
710 When device got this command, it will send the MOD6 payload.
711
712
713 === 3.3.7 Payload Decoder ===
714
715 (((
716
717
718 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
719 )))
720
721
722 == 3.4 ​Configure LT via AT or Downlink ==
723
724
725 (((
726 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
727 )))
728
729 (((
730 (((
731 There are two kinds of Commands:
732 )))
733 )))
734
735 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
736
737 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
738
739 === 3.4.1 Common Commands ===
740
741
742 (((
743 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
744 )))
745
746
747 === 3.4.2 Sensor related commands ===
748
749 ==== 3.4.2.1 Set Transmit Interval ====
750
751
752 Set device uplink interval.
753
754 * (% style="color:#037691" %)**AT Command:**
755
756 (% style="color:blue" %)**AT+TDC=N **
757
758
759 **Example: **AT+TDC=30000. Means set interval to 30 seconds
760
761
762 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
763
764 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
765
766
767
768 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
769
770
771 Set work mode.
772
773 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
774
775 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
776
777 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
778
779 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
780
781
782
783 ==== 3.4.2.3 Poll an uplink ====
784
785
786 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
787
788 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
789
790 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798
799 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
800
801 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
802
803 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
804
805 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
806
807
808 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
809
810 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
811
812
813
814 ==== 3.4.2.5 Poll trigger settings ====
815
816
817 Poll trigger settings
818
819 * (% style="color:#037691" %)**AT Command:**
820
821 There is no AT Command for this feature.
822
823 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
824
825 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
826
827
828
829 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
830
831
832 Enable Disable DI1/DI2/DI2 as trigger,
833
834 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
835
836 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
837
838
839 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
840
841 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
842
843
844
845 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
846
847
848 Set DI1 or DI3(for LT-33222-L) trigger.
849
850 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
851
852 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
853
854 (% style="color:red" %)**b :** (%%)delay timing.
855
856 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
857
858
859 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
860
861 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
862
863
864
865 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
866
867
868 Set DI2 trigger.
869
870 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
871
872 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
873
874 (% style="color:red" %)**b :** (%%)delay timing.
875
876 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
877
878
879 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
880
881 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
882
883
884
885 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
886
887
888 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
889
890 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
893
894 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
895
896
897
898 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
899
900
901 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
904
905 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
906
907 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
908
909
910
911 ==== 3.4.2.11 Trigger – Set minimum interval ====
912
913
914 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
915
916 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
919
920 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
921
922 (((
923 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
924 )))
925
926
927
928 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
929
930
931 * (% style="color:#037691" %)**AT Command**
932
933 There is no AT Command to control Digital Output
934
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
937
938 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
939
940 (((
941 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
942 )))
943
944 (((
945 01: Low,  00: High ,  11: No action
946
947 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
949 |02  01  00  11|Low|High|No Action
950 |02  00  11  01|High|No Action|Low
951 |02  11  01  00|No Action|Low|High
952 )))
953
954 (((
955 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
956 )))
957
958 (((
959 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
960 )))
961
962
963
964 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
965
966
967 * (% style="color:#037691" %)**AT Command**
968
969 There is no AT Command to control Digital Output
970
971
972 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
973
974 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
975
976
977 This is to control the digital output time of DO pin. Include four bytes:
978
979 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
980
981 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
982
983 01: DO pins will change back to original state after timeout.
984
985 00: DO pins will change to an inverter state after timeout 
986
987
988 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
989
990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
991 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
992 |0x01|DO1 set to low
993 |0x00|DO1 set to high
994 |0x11|DO1 NO Action
995
996 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
997
998 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
999 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1000 |0x01|DO2 set to low
1001 |0x00|DO2 set to high
1002 |0x11|DO2 NO Action
1003
1004 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1005
1006 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1007 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1008 |0x01|DO3 set to low
1009 |0x00|DO3 set to high
1010 |0x11|DO3 NO Action
1011
1012 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1013
1014
1015 (% style="color:red" %)**Note: **
1016
1017 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1018
1019 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1020
1021 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1022
1023
1024 **Example payload:**
1025
1026 **~1. A9 01 01 01 01 07 D0**
1027
1028 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1029
1030 **2. A9 01 00 01 11 07 D0**
1031
1032 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1033
1034 **3. A9 00 00 00 00 07 D0**
1035
1036 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1037
1038 **4. A9 00 11 01 00 07 D0**
1039
1040 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1041
1042
1043
1044 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1045
1046
1047 * (% style="color:#037691" %)**AT Command:**
1048
1049 There is no AT Command to control Relay Output
1050
1051
1052 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1053
1054 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1055
1056
1057 (((
1058 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1059 )))
1060
1061 (((
1062 00: Close ,  01: Open , 11: No action
1063
1064 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1065 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1066 |03  00  11|Open|No Action
1067 |03  01  11|Close|No Action
1068 |03  11  00|No Action|Open
1069 |03  11  01|No Action|Close
1070 |03  00  00|Open|Open
1071 |03  01  01|Close|Close
1072 |03  01  00|Close|Open
1073 |03  00  01|Open|Close
1074 )))
1075
1076 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1077
1078
1079
1080 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1081
1082
1083 * (% style="color:#037691" %)**AT Command:**
1084
1085 There is no AT Command to control Relay Output
1086
1087
1088 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1089
1090 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1091
1092
1093 This is to control the relay output time of relay. Include four bytes:
1094
1095 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1096
1097 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1098
1099 01: Relays will change back to original state after timeout.
1100
1101 00: Relays will change to an inverter state after timeout
1102
1103
1104 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1105
1106 [[image:image-20221008095908-1.png||height="364" width="564"]]
1107
1108
1109 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1110
1111
1112 (% style="color:red" %)**Note:**
1113
1114 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1115
1116 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1117
1118
1119 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1120
1121
1122 **Example payload:**
1123
1124 **~1. 05 01 11 07 D0**
1125
1126 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1127
1128 **2. 05 01 10 07 D0**
1129
1130 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1131
1132 **3. 05 00 01 07 D0**
1133
1134 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1135
1136 **4. 05 00 00 07 D0**
1137
1138 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1139
1140
1141
1142 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1143
1144
1145 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1146
1147 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1148
1149 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1150
1151 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1152
1153
1154
1155 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1156
1157
1158 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1159
1160 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1161
1162 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1163
1164
1165 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1166
1167 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1168
1169
1170
1171 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1172
1173
1174 Clear counting for counting mode
1175
1176 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1177
1178 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1179
1180 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1181
1182
1183
1184 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1185
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1193
1194 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1195
1196 (((
1197 range: aa bb cc:0 to 16777215,  (unit:second)
1198 )))
1199
1200
1201
1202 ==== 3.4.2.20 Reset save RO DO state ====
1203
1204
1205 * (% style="color:#037691" %)**AT Command:**
1206
1207 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1208
1209 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1210
1211
1212 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1213
1214 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1215
1216
1217
1218 ==== 3.4.2.21 Encrypted payload ====
1219
1220
1221 * (% style="color:#037691" %)**AT Command:**
1222
1223 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1224
1225 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1226
1227
1228
1229 ==== 3.4.2.22 Get sensor value ====
1230
1231
1232 * (% style="color:#037691" %)**AT Command:**
1233
1234 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1235
1236 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1237
1238
1239
1240 ==== 3.4.2.23 Resets the downlink packet count ====
1241
1242
1243 * (% style="color:#037691" %)**AT Command:**
1244
1245 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1246
1247 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1248
1249
1250
1251 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1252
1253
1254 * (% style="color:#037691" %)**AT Command:**
1255
1256 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1257
1258 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1259
1260
1261 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1262
1263 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1264
1265
1266
1267 ==== 3.4.2.25 Copy downlink to uplink ====
1268
1269
1270 * (% style="color:#037691" %)**AT Command**(%%)**:**
1271
1272 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1273
1274 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1275
1276
1277 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1278
1279 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1280
1281
1282
1283 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1284
1285 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1286
1287
1288
1289 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1290
1291
1292 * (((
1293 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1294
1295 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1296
1297
1298 )))
1299
1300 **Example:**
1301
1302 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1303
1304
1305 == 3.5 Integrate with Mydevice ==
1306
1307
1308 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1309
1310 (((
1311 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1312 )))
1313
1314 (((
1315 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1316
1317
1318 )))
1319
1320 [[image:image-20220719105525-1.png||height="377" width="677"]]
1321
1322
1323
1324 [[image:image-20220719110247-2.png||height="388" width="683"]]
1325
1326
1327 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1328
1329 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1330
1331 Search under The things network
1332
1333 [[image:1653356838789-523.png||height="337" width="740"]]
1334
1335
1336 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1337
1338 [[image:image-20220524094909-1.png||height="335" width="729"]]
1339
1340
1341 [[image:image-20220524094909-2.png||height="337" width="729"]]
1342
1343
1344 [[image:image-20220524094909-3.png||height="338" width="727"]]
1345
1346
1347 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1348
1349
1350 [[image:image-20220524094909-5.png||height="341" width="734"]]
1351
1352
1353 == 3.6 Interface Detail ==
1354
1355 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1356
1357
1358 Support NPN Type sensor
1359
1360 [[image:1653356991268-289.png]]
1361
1362
1363 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1364
1365
1366 (((
1367 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1368 )))
1369
1370 (((
1371 (((
1372 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1373
1374
1375 )))
1376 )))
1377
1378 [[image:1653357170703-587.png]]
1379
1380 (((
1381 (((
1382 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1383 )))
1384 )))
1385
1386 (((
1387
1388 )))
1389
1390 (((
1391 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1392 )))
1393
1394 (((
1395 This type of sensor will output a low signal GND when active.
1396 )))
1397
1398 * (((
1399 Connect sensor's output to DI1-
1400 )))
1401 * (((
1402 Connect sensor's VCC to DI1+.
1403 )))
1404
1405 (((
1406 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1407 )))
1408
1409 (((
1410 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1411 )))
1412
1413 (((
1414 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1415 )))
1416
1417 (((
1418
1419 )))
1420
1421 (((
1422 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1423 )))
1424
1425 (((
1426 This type of sensor will output a high signal (example 24v) when active.
1427 )))
1428
1429 * (((
1430 Connect sensor's output to DI1+
1431 )))
1432 * (((
1433 Connect sensor's GND DI1-.
1434 )))
1435
1436 (((
1437 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1438 )))
1439
1440 (((
1441 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1442 )))
1443
1444 (((
1445 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1446 )))
1447
1448 (((
1449
1450 )))
1451
1452 (((
1453 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1454 )))
1455
1456 (((
1457 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1458 )))
1459
1460 * (((
1461 Connect sensor's output to DI1+ with a serial 50K resistor
1462 )))
1463 * (((
1464 Connect sensor's GND DI1-.
1465 )))
1466
1467 (((
1468 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1469 )))
1470
1471 (((
1472 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1473 )))
1474
1475 (((
1476 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1477 )))
1478
1479
1480 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1481
1482 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1483
1484 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1485
1486 [[image:image-20230616235145-1.png]]
1487
1488 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1489
1490 [[image:image-20240219115718-1.png]]
1491
1492
1493 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1494
1495
1496 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1497
1498 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1499
1500 [[image:1653357531600-905.png]]
1501
1502
1503 === 3.6.4 Analog Input Interface ===
1504
1505
1506 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1507
1508
1509 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1510
1511 [[image:1653357592296-182.png]]
1512
1513 Example to connect a 4~~20mA sensor
1514
1515 We take the wind speed sensor as an example for reference only.
1516
1517
1518 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1519
1520 (% style="color:red" %)**Red:  12~~24v**
1521
1522 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1523
1524 **Black:  GND**
1525
1526 **Connection diagram:**
1527
1528 [[image:1653357640609-758.png]]
1529
1530 [[image:1653357648330-671.png||height="155" width="733"]]
1531
1532
1533 Example connected to a regulated power supply to measure voltage
1534
1535 [[image:image-20230608101532-1.png||height="606" width="447"]]
1536
1537 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1538
1539 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1540
1541
1542 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1543
1544 (% style="color:red" %)**Red:  12~~24v**
1545
1546 **Black:  GND**
1547
1548
1549 === 3.6.5 Relay Output ===
1550
1551
1552 (((
1553 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1554
1555 **Note**: RO pins go to Open(NO) when device is power off.
1556 )))
1557
1558 [[image:image-20220524100215-9.png]]
1559
1560
1561 [[image:image-20220524100215-10.png||height="382" width="723"]]
1562
1563
1564 == 3.7 LEDs Indicators ==
1565
1566
1567 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1568 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1569 |**PWR**|Always on if there is power
1570 |**TX**|(((
1571 (((
1572 Device boot: TX blinks 5 times.
1573 )))
1574
1575 (((
1576 Successful join network: TX ON for 5 seconds.
1577 )))
1578
1579 (((
1580 Transmit a LoRa packet: TX blinks once
1581 )))
1582 )))
1583 |**RX**|RX blinks once when receive a packet.
1584 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1585 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1586 |**DI1**|(((
1587 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1588 )))
1589 |**DI2**|(((
1590 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1591 )))
1592 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1593 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1594
1595 = 4. Use AT Command =
1596
1597 == 4.1 Access AT Command ==
1598
1599
1600 (((
1601 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1602 )))
1603
1604 [[image:1653358238933-385.png]]
1605
1606
1607 (((
1608 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1609 )))
1610
1611 [[image:1653358355238-883.png]]
1612
1613
1614 (((
1615 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1616 )))
1617
1618 (((
1619 AT+<CMD>?        : Help on <CMD>
1620 )))
1621
1622 (((
1623 AT+<CMD>         : Run <CMD>
1624 )))
1625
1626 (((
1627 AT+<CMD>=<value> : Set the value
1628 )))
1629
1630 (((
1631 AT+<CMD>=?       :  Get the value
1632 )))
1633
1634 (((
1635 ATZ: Trig a reset of the MCU
1636 )))
1637
1638 (((
1639 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1640 )))
1641
1642 (((
1643 AT+DEUI: Get or Set the Device EUI
1644 )))
1645
1646 (((
1647 AT+DADDR: Get or Set the Device Address
1648 )))
1649
1650 (((
1651 AT+APPKEY: Get or Set the Application Key
1652 )))
1653
1654 (((
1655 AT+NWKSKEY: Get or Set the Network Session Key
1656 )))
1657
1658 (((
1659 AT+APPSKEY:  Get or Set the Application Session Key
1660 )))
1661
1662 (((
1663 AT+APPEUI:  Get or Set the Application EUI
1664 )))
1665
1666 (((
1667 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1668 )))
1669
1670 (((
1671 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1672 )))
1673
1674 (((
1675 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1676 )))
1677
1678 (((
1679 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1680 )))
1681
1682 (((
1683 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1684 )))
1685
1686 (((
1687 AT+RX2FQ: Get or Set the Rx2 window frequency
1688 )))
1689
1690 (((
1691 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1692 )))
1693
1694 (((
1695 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1696 )))
1697
1698 (((
1699 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1700 )))
1701
1702 (((
1703 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1704 )))
1705
1706 (((
1707 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1708 )))
1709
1710 (((
1711 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1712 )))
1713
1714 (((
1715 AT+NWKID: Get or Set the Network ID
1716 )))
1717
1718 (((
1719 AT+FCU: Get or Set the Frame Counter Uplink
1720 )))
1721
1722 (((
1723 AT+FCD: Get or Set the Frame Counter Downlink
1724 )))
1725
1726 (((
1727 AT+CLASS: Get or Set the Device Class
1728 )))
1729
1730 (((
1731 AT+JOIN: Join network
1732 )))
1733
1734 (((
1735 AT+NJS: Get OTAA Join Status
1736 )))
1737
1738 (((
1739 AT+SENDB: Send hexadecimal data along with the application port
1740 )))
1741
1742 (((
1743 AT+SEND: Send text data along with the application port
1744 )))
1745
1746 (((
1747 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1748 )))
1749
1750 (((
1751 AT+RECV: Print last received data in raw format
1752 )))
1753
1754 (((
1755 AT+VER:  Get current image version and Frequency Band
1756 )))
1757
1758 (((
1759 AT+CFM: Get or Set the confirmation mode (0-1)
1760 )))
1761
1762 (((
1763 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1764 )))
1765
1766 (((
1767 AT+SNR: Get the SNR of the last received packet
1768 )))
1769
1770 (((
1771 AT+RSSI: Get the RSSI of the last received packet
1772 )))
1773
1774 (((
1775 AT+TDC: Get or set the application data transmission interval in ms
1776 )))
1777
1778 (((
1779 AT+PORT: Get or set the application port
1780 )))
1781
1782 (((
1783 AT+DISAT: Disable AT commands
1784 )))
1785
1786 (((
1787 AT+PWORD: Set password, max 9 digits
1788 )))
1789
1790 (((
1791 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1792 )))
1793
1794 (((
1795 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1796 )))
1797
1798 (((
1799 AT+CFG: Print all settings
1800 )))
1801
1802
1803 == 4.2 Common AT Command Sequence ==
1804
1805 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1806
1807 (((
1808
1809
1810 (((
1811 (% style="color:blue" %)**If device has not joined network yet:**
1812 )))
1813 )))
1814
1815 (((
1816 (% style="background-color:#dcdcdc" %)**123456**
1817 )))
1818
1819 (((
1820 (% style="background-color:#dcdcdc" %)**AT+FDR**
1821 )))
1822
1823 (((
1824 (% style="background-color:#dcdcdc" %)**123456**
1825 )))
1826
1827 (((
1828 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %)**ATZ**
1833 )))
1834
1835
1836 (((
1837 (% style="color:blue" %)**If device already joined network:**
1838 )))
1839
1840 (((
1841 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %)**ATZ**
1846 )))
1847
1848
1849 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1850
1851 (((
1852
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1856 )))
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1873 )))
1874
1875 (((
1876 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1877 )))
1878
1879 (((
1880 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1905
1906
1907 )))
1908
1909 (((
1910 (% style="color:red" %)**Note:**
1911 )))
1912
1913 (((
1914 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1915
1916 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1917
1918 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1919 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1920
1921 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1922 )))
1923
1924 (((
1925 [[image:1653359097980-169.png||height="188" width="729"]]
1926 )))
1927
1928
1929 === 4.2.3 Change to Class A ===
1930
1931
1932 (((
1933 (% style="color:blue" %)**If sensor JOINED:**
1934
1935 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1936
1937 (% style="background-color:#dcdcdc" %)**ATZ**
1938 )))
1939
1940
1941 = 5. Case Study =
1942
1943 == 5.1 Counting how many objects pass in Flow Line ==
1944
1945
1946 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1947
1948
1949 = 6. FAQ =
1950
1951 == 6.1 How to upgrade the image? ==
1952
1953
1954 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1955
1956 * Support new features
1957 * For bug fix
1958 * Change LoRaWAN bands.
1959
1960 Below shows the hardware connection for how to upload an image to the LT:
1961
1962 [[image:1653359603330-121.png]]
1963
1964
1965 (((
1966 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1967 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1968 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1969
1970
1971 (((
1972 (% style="color:blue" %)**For LT-22222-L**(%%):
1973 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1974 )))
1975
1976
1977 )))
1978
1979 [[image:image-20220524103407-12.png]]
1980
1981
1982 [[image:image-20220524103429-13.png]]
1983
1984
1985 [[image:image-20220524104033-15.png]]
1986
1987
1988 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1989
1990 [[image:1653360054704-518.png||height="186" width="745"]]
1991
1992
1993 (((
1994 (((
1995 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1996
1997
1998 )))
1999 )))
2000
2001 (((
2002 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2003 )))
2004
2005 (((
2006
2007
2008 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2009
2010
2011 )))
2012
2013 (((
2014 (((
2015 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2016 )))
2017 )))
2018
2019 (((
2020 (((
2021 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2022
2023
2024 )))
2025 )))
2026
2027 (((
2028 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2029
2030
2031 )))
2032
2033 (((
2034 [[image:1653360231087-571.png||height="401" width="727"]]
2035
2036
2037 )))
2038
2039 (((
2040 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2041 )))
2042
2043
2044
2045 (((
2046 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2047
2048
2049 )))
2050
2051 (((
2052 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2053
2054 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2055
2056 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2057
2058 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2059
2060 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2061
2062 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2063
2064 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2065
2066 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2067
2068 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2069 )))
2070
2071
2072 (((
2073 As shown in below:
2074 )))
2075
2076 [[image:1653360498588-932.png||height="485" width="726"]]
2077
2078
2079 == 6.4 How to change the uplink interval? ==
2080
2081
2082 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2083
2084
2085 == 6.5 Can I see counting event in Serial? ==
2086
2087
2088 (((
2089 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2090
2091
2092 == 6.6 Can i use point to point communication for LT-22222-L? ==
2093
2094
2095 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2096
2097
2098 )))
2099
2100 (((
2101 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2102
2103
2104 If the device is not shut down, but directly powered off.
2105
2106 It will default that this is a power-off state.
2107
2108 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2109
2110 After restart, the status before power failure will be read from flash.
2111
2112
2113 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2114
2115
2116 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2117
2118
2119 [[image:image-20221006170630-1.png||height="610" width="945"]]
2120
2121
2122 == 6.9 Can LT22222-L save RO state? ==
2123
2124
2125 Firmware version needs to be no less than 1.6.0.
2126
2127
2128 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2129
2130
2131 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2132
2133
2134 = 7. Trouble Shooting =
2135 )))
2136
2137 (((
2138 (((
2139 == 7.1 Downlink doesn't work, how to solve it? ==
2140
2141
2142 )))
2143 )))
2144
2145 (((
2146 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2147 )))
2148
2149 (((
2150
2151
2152 == 7.2 Have trouble to upload image. ==
2153
2154
2155 )))
2156
2157 (((
2158 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2159 )))
2160
2161 (((
2162
2163
2164 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2165
2166
2167 )))
2168
2169 (((
2170 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2171 )))
2172
2173
2174 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2175
2176
2177 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2178 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2179
2180
2181 = 8. Order Info =
2182
2183
2184 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2185
2186 (% style="color:#4f81bd" %)**XXX:**
2187
2188 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2189 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2190 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2191 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2192 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2193 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2194 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2195 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2196 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2197
2198 = 9. Packing Info =
2199
2200
2201 **Package Includes**:
2202
2203 * LT-22222-L I/O Controller x 1
2204 * Stick Antenna for LoRa RF part x 1
2205 * Bracket for controller x1
2206 * Program cable x 1
2207
2208 **Dimension and weight**:
2209
2210 * Device Size: 13.5 x 7 x 3 cm
2211 * Device Weight: 105g
2212 * Package Size / pcs : 14.5 x 8 x 5 cm
2213 * Weight / pcs : 170g
2214
2215 = 10. Support =
2216
2217
2218 * (((
2219 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2220 )))
2221 * (((
2222 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2223
2224
2225
2226 )))
2227
2228 = 11. Reference​​​​​ =
2229
2230
2231 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2232 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2233 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0