Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is LT Series I/O Controller ==
23
24 (((
25
26
27 (((
28 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 )))
30 )))
31
32 (((
33 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
34 )))
35
36 (((
37 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 )))
39
40 (((
41 The use environment includes:
42 )))
43
44 (((
45 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 )))
47
48 (((
49 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
50
51
52 )))
53
54 (((
55 [[image:1653295757274-912.png]]
56
57
58 )))
59
60 == 1.2 Specifications ==
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12v
68 ** 20dB Transmit: 34mA@12v
69 * Operating Temperature: -40 ~~ 85 Degree, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01v)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 Mhz
84 ** Band 2 (LF): 410 ~~ 528 Mhz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103 * LoRaWAN Class A & Class C protocol
104 * Optional Customized LoRa Protocol
105 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
106 * AT Commands to change parameters
107 * Remote configure parameters via LoRa Downlink
108 * Firmware upgradable via program port
109 * Counting
110
111 == 1.4 Applications ==
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120 == 1.5 Hardware Variants ==
121
122
123 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
124 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
125 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
126 (% style="text-align:center" %)
127 [[image:image-20230424115112-1.png||height="106" width="58"]]
128 )))|(% style="width:334px" %)(((
129 * 2 x Digital Input (Bi-direction)
130 * 2 x Digital Output
131 * 2 x Relay Output (5A@250VAC / 30VDC)
132 * 2 x 0~~20mA Analog Input (res:0.01mA)
133 * 2 x 0~~30V Analog Input (res:0.01v)
134 * 1 x Counting Port
135 )))
136
137 = 2. Power ON Device =
138
139 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
140
141 PWR will on when device is properly powered.
142
143 [[image:1653297104069-180.png]]
144
145
146 = 3. Operation Mode =
147
148 == 3.1 How it works? ==
149
150
151 (((
152 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
153 )))
154
155 (((
156 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
157 )))
158
159
160 == 3.2 Example to join LoRaWAN network ==
161
162
163 (((
164 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
165
166
167 )))
168
169 [[image:image-20220523172350-1.png||height="266" width="864"]]
170
171
172 (((
173 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
174
175
176 )))
177
178 (((
179 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
180 )))
181
182 (((
183 Each LT is shipped with a sticker with the default device EUI as below:
184 )))
185
186 [[image:image-20230425173427-2.png||height="246" width="530"]]
187
188
189 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
190
191 **Add APP EUI in the application.**
192
193 [[image:1653297955910-247.png||height="321" width="716"]]
194
195
196 **Add APP KEY and DEV EUI**
197
198 [[image:1653298023685-319.png]]
199
200
201 (((
202 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
203
204
205 )))
206
207 [[image:1653298044601-602.png||height="405" width="709"]]
208
209
210 == 3.3 Uplink Payload ==
211
212
213 There are five working modes + one interrupt mode on LT for different type application:
214
215 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
216
217 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
218
219 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
220
221 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
222
223 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
224
225 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
226
227 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
228
229
230 (((
231 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
232
233 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
235 |Value|(((
236 AVI1 voltage
237 )))|(((
238 AVI2 voltage
239 )))|(((
240 ACI1 Current
241 )))|(((
242 ACI2 Current
243 )))|DIDORO*|(((
244 Reserve
245 )))|MOD
246 )))
247
248 (((
249 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
250
251 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
252 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
253 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
254 )))
255
256 * RO is for relay. ROx=1 : close, ROx=0 always open.
257 * DI is for digital input. DIx=1: high or float, DIx=0: low.
258 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
259
260 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
261
262 For example if payload is: [[image:image-20220523175847-2.png]]
263
264
265 **The value for the interface is:  **
266
267 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
268
269 AVI2 channel voltage is 0x04AC/1000=1.196V
270
271 ACI1 channel current is 0x1310/1000=4.880mA
272
273 ACI2 channel current is 0x1300/1000=4.864mA
274
275 The last byte 0xAA= 10101010(B) means
276
277 * [1] RO1 relay channel is close and the RO1 LED is ON.
278 * [0] RO2 relay channel is open and RO2 LED is OFF;
279
280 **LT22222-L:**
281
282 * [1] DI2 channel is high input and DI2 LED is ON;
283 * [0] DI1 channel is low input;
284
285 * [0] DO3 channel output state
286 ** DO3 is float in case no load between DO3 and V+.;
287 ** DO3 is high in case there is load between DO3 and V+.
288 ** DO3 LED is off in both case
289 * [1] DO2 channel output is low and DO2 LED is ON.
290 * [0] DO1 channel output state
291 ** DO1 is float in case no load between DO1 and V+.;
292 ** DO1 is high in case there is load between DO1 and V+.
293 ** DO1 LED is off in both case
294
295 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
296
297
298 (((
299 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
300 )))
301
302 (((
303 Total : 11 bytes payload
304
305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
306 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
307 |Value|COUNT1|COUNT2 |DIDORO*|(((
308 Reserve
309 )))|MOD
310 )))
311
312 (((
313 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
314
315 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
317 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
318
319 RO is for relay. ROx=1 : close , ROx=0 always open.
320 )))
321
322 * FIRST: Indicate this is the first packet after join network.
323 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
324
325 (((
326 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
327
328
329 )))
330
331 (((
332 **To use counting mode, please run:**
333 )))
334
335 (((
336 (% class="box infomessage" %)
337 (((
338 **AT+MOD=2**
339
340 **ATZ**
341 )))
342 )))
343
344 (((
345
346
347 (% style="color:#4f81bd" %)**AT Commands for counting:**
348 )))
349
350 (((
351 **For LT22222-L:**
352
353 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
354
355 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
356
357 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
358
359 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
360
361 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
362
363 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
364 )))
365
366
367 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
368
369
370 **LT22222-L**: This mode the DI1 is used as a counting pin.
371
372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
373 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
374 |Value|COUNT1|(((
375 ACI1 Current
376 )))|(((
377 ACI2 Current
378 )))|DIDORO*|Reserve|MOD
379
380 (((
381 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
385 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
386 )))
387
388 * RO is for relay. ROx=1 : close, ROx=0 always open.
389 * FIRST: Indicate this is the first packet after join network.
390 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
391
392 (((
393 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
394 )))
395
396
397 (((
398 **To use counting mode, please run:**
399 )))
400
401 (((
402 (% class="box infomessage" %)
403 (((
404 **AT+MOD=3**
405
406 **ATZ**
407 )))
408 )))
409
410 (((
411 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
412 )))
413
414
415 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
416
417
418 (((
419 **LT22222-L**: This mode the DI1 is used as a counting pin.
420 )))
421
422 (((
423 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
424
425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
427 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
428 Reserve
429 )))|MOD
430 )))
431
432 (((
433 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
434
435 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
436 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
437 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
438 )))
439
440 * RO is for relay. ROx=1 : close, ROx=0 always open.
441 * FIRST: Indicate this is the first packet after join network.
442 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
443
444 (((
445 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
446
447
448 )))
449
450 (((
451 **To use this mode, please run:**
452 )))
453
454 (((
455 (% class="box infomessage" %)
456 (((
457 **AT+MOD=4**
458
459 **ATZ**
460 )))
461 )))
462
463 (((
464 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
465 )))
466
467 (((
468 **Plus below command for AVI1 Counting:**
469
470 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
471
472 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
473
474 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
475
476 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
477 )))
478
479
480 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
481
482
483 **LT22222-L**: This mode the DI1 is used as a counting pin.
484
485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
486 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
487 |Value|(((
488 AVI1 voltage
489 )))|(((
490 AVI2 voltage
491 )))|(((
492 ACI1 Current
493 )))|COUNT1|DIDORO*|(((
494 Reserve
495 )))|MOD
496
497 (((
498 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
501 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
502 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
503 )))
504
505 * RO is for relay. ROx=1 : close, ROx=0 always open.
506 * FIRST: Indicate this is the first packet after join network.
507 * (((
508 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
509 )))
510
511 (((
512 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
513 )))
514
515 (((
516 **To use this mode, please run:**
517 )))
518
519 (((
520 (% class="box infomessage" %)
521 (((
522 **AT+MOD=5**
523
524 **ATZ**
525 )))
526 )))
527
528 (((
529 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
530 )))
531
532
533 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
534
535
536 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
537
538 For example, if user has configured below commands:
539
540 * **AT+MOD=1 ** **~-~->**  The normal working mode
541 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
542
543 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
544
545 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
546 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
547
548 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
549
550
551 (% style="color:#4f81bd" %)**Trigger base on voltage**:
552
553 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
554
555
556 **Example:**
557
558 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
559
560 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
561
562
563
564 (% style="color:#4f81bd" %)**Trigger base on current**:
565
566 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
567
568
569 **Example:**
570
571 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
572
573
574
575 (% style="color:#4f81bd" %)**Trigger base on DI status**:
576
577 DI status trigger Flag.
578
579 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
580
581
582 **Example:**
583
584 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
585
586
587 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
588
589 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
590
591 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
592
593 AA: Code for this downlink Command:
594
595 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
596
597 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
598
599 yy2 yy2: AC1 or AV1 high limit.
600
601 yy3 yy3: AC2 or AV2 low limit.
602
603 Yy4 yy4: AC2 or AV2 high limit.
604
605
606 **Example1**: AA 00 13 88 00 00 00 00 00 00
607
608 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
609
610
611 **Example2**: AA 02 01 00
612
613 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
614
615
616
617 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
618
619 MOD6 Payload : total 11 bytes payload
620
621 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
622 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
623 |Value|(((
624 TRI_A FLAG
625 )))|(((
626 TRI_A Status
627 )))|(((
628 TRI_DI FLAG+STA
629 )))|Reserve|Enable/Disable MOD6|(((
630 MOD(6)
631 )))
632
633 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
634
635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
636 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
637 |(((
638 AV1_LOW
639 )))|(((
640 AV1_HIGH
641 )))|(((
642 AV2_LOW
643 )))|(((
644 AV2_HIGH
645 )))|(((
646 AC1_LOW
647 )))|(((
648 AC1_HIGH
649 )))|(((
650 AC2_LOW
651 )))|(((
652 AC2_HIGH
653 )))
654
655 * Each bits shows if the corresponding trigger has been configured.
656
657 **Example:**
658
659 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
660
661
662 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
663
664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
666 |(((
667 AV1_LOW
668 )))|(((
669 AV1_HIGH
670 )))|(((
671 AV2_LOW
672 )))|(((
673 AV2_HIGH
674 )))|(((
675 AC1_LOW
676 )))|(((
677 AC1_HIGH
678 )))|(((
679 AC2_LOW
680 )))|(((
681 AC2_HIGH
682 )))
683
684 * Each bits shows which status has been trigger on this uplink.
685
686 **Example:**
687
688 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
689
690
691 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
692
693 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
694 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
695 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
696
697 * Each bits shows which status has been trigger on this uplink.
698
699 **Example:**
700
701 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
702
703 00000101: Means both DI1 and DI2 trigger are enabled.
704
705
706 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
707
708 Downlink command to poll MOD6 status:
709
710 **AB 06**
711
712 When device got this command, it will send the MOD6 payload.
713
714
715 === 3.3.7 Payload Decoder ===
716
717 (((
718
719
720 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
721 )))
722
723
724 == 3.4 ​Configure LT via AT or Downlink ==
725
726
727 (((
728 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
729 )))
730
731 (((
732 (((
733 There are two kinds of Commands:
734 )))
735 )))
736
737 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
738
739 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
740
741 === 3.4.1 Common Commands ===
742
743
744 (((
745 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
746 )))
747
748
749 === 3.4.2 Sensor related commands ===
750
751 ==== 3.4.2.1 Set Transmit Interval ====
752
753
754 Set device uplink interval.
755
756 * (% style="color:#037691" %)**AT Command:**
757
758 (% style="color:blue" %)**AT+TDC=N **
759
760
761 **Example: **AT+TDC=30000. Means set interval to 30 seconds
762
763
764 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
765
766 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
767
768
769
770 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
771
772
773 Set work mode.
774
775 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
776
777 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
778
779 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
780
781 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
782
783
784
785 ==== 3.4.2.3 Poll an uplink ====
786
787
788 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
789
790 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
791
792 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
793
794 **Example**: 0x08FF, ask device to send an Uplink
795
796
797
798 ==== 3.4.2.4 Enable Trigger Mode ====
799
800
801 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
802
803 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
804
805 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
806
807 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
808
809
810 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
811
812 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
813
814
815
816 ==== 3.4.2.5 Poll trigger settings ====
817
818
819 Poll trigger settings
820
821 * (% style="color:#037691" %)**AT Command:**
822
823 There is no AT Command for this feature.
824
825 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
826
827 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
828
829
830
831 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
832
833
834 Enable Disable DI1/DI2/DI2 as trigger,
835
836 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
837
838 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
839
840
841 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
842
843 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
844
845
846
847 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
848
849
850 Set DI1 or DI3(for LT-33222-L) trigger.
851
852 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
853
854 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
855
856 (% style="color:red" %)**b :** (%%)delay timing.
857
858 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
859
860
861 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
862
863 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
864
865
866
867 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
868
869
870 Set DI2 trigger.
871
872 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
873
874 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
875
876 (% style="color:red" %)**b :** (%%)delay timing.
877
878 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
879
880
881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
882
883 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
884
885
886
887 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
888
889
890 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
891
892 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
893
894 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
895
896 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
897
898
899
900 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
901
902
903 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
904
905 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
908
909 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
910
911
912
913 ==== 3.4.2.11 Trigger – Set minimum interval ====
914
915
916 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
917
918 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
921
922 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
923
924 (((
925 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
926 )))
927
928
929
930 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
931
932
933 * (% style="color:#037691" %)**AT Command**
934
935 There is no AT Command to control Digital Output
936
937
938 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
939
940 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
941
942 (((
943 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
944 )))
945
946 (((
947 01: Low,  00: High ,  11: No action
948
949 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
950 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
951 |02  01  00  11|Low|High|No Action
952 |02  00  11  01|High|No Action|Low
953 |02  11  01  00|No Action|Low|High
954 )))
955
956 (((
957 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
958 )))
959
960 (((
961 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
962 )))
963
964
965
966 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
967
968
969 * (% style="color:#037691" %)**AT Command**
970
971 There is no AT Command to control Digital Output
972
973
974 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
975
976 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
977
978
979 This is to control the digital output time of DO pin. Include four bytes:
980
981 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
982
983 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
984
985 01: DO pins will change back to original state after timeout.
986
987 00: DO pins will change to an inverter state after timeout 
988
989
990 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
991
992 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
993 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
994 |0x01|DO1 set to low
995 |0x00|DO1 set to high
996 |0x11|DO1 NO Action
997
998 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
999
1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1001 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1002 |0x01|DO2 set to low
1003 |0x00|DO2 set to high
1004 |0x11|DO2 NO Action
1005
1006 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1007
1008 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1009 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1010 |0x01|DO3 set to low
1011 |0x00|DO3 set to high
1012 |0x11|DO3 NO Action
1013
1014 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1015
1016
1017 (% style="color:red" %)**Note: **
1018
1019 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1020
1021 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1022
1023 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1024
1025
1026 **Example payload:**
1027
1028 **~1. A9 01 01 01 01 07 D0**
1029
1030 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1031
1032 **2. A9 01 00 01 11 07 D0**
1033
1034 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1035
1036 **3. A9 00 00 00 00 07 D0**
1037
1038 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1039
1040 **4. A9 00 11 01 00 07 D0**
1041
1042 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1043
1044
1045
1046 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1047
1048
1049 * (% style="color:#037691" %)**AT Command:**
1050
1051 There is no AT Command to control Relay Output
1052
1053
1054 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1055
1056 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1057
1058
1059 (((
1060 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1061 )))
1062
1063 (((
1064 00: Close ,  01: Open , 11: No action
1065
1066 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1067 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1068 |03  00  11|Open|No Action
1069 |03  01  11|Close|No Action
1070 |03  11  00|No Action|Open
1071 |03  11  01|No Action|Close
1072 |03  00  00|Open|Open
1073 |03  01  01|Close|Close
1074 |03  01  00|Close|Open
1075 |03  00  01|Open|Close
1076 )))
1077
1078 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1079
1080
1081
1082 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1083
1084
1085 * (% style="color:#037691" %)**AT Command:**
1086
1087 There is no AT Command to control Relay Output
1088
1089
1090 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1091
1092 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1093
1094
1095 This is to control the relay output time of relay. Include four bytes:
1096
1097 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1098
1099 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1100
1101 01: Relays will change back to original state after timeout.
1102
1103 00: Relays will change to an inverter state after timeout
1104
1105
1106 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1107
1108 [[image:image-20221008095908-1.png||height="364" width="564"]]
1109
1110
1111 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1112
1113
1114 (% style="color:red" %)**Note:**
1115
1116 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1117
1118 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1119
1120
1121 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1122
1123
1124 **Example payload:**
1125
1126 **~1. 05 01 11 07 D0**
1127
1128 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1129
1130 **2. 05 01 10 07 D0**
1131
1132 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1133
1134 **3. 05 00 01 07 D0**
1135
1136 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1137
1138 **4. 05 00 00 07 D0**
1139
1140 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1141
1142
1143
1144 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1145
1146
1147 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1148
1149 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1150
1151 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1152
1153 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1154
1155
1156
1157 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1158
1159
1160 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1161
1162 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1163
1164 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1165
1166
1167 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1168
1169 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1170
1171
1172
1173 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1174
1175
1176 Clear counting for counting mode
1177
1178 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1181
1182 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1183
1184
1185
1186 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1187
1188
1189 * (% style="color:#037691" %)**AT Command:**
1190
1191 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1192
1193
1194 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1195
1196 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1197
1198 (((
1199 range: aa bb cc:0 to 16777215,  (unit:second)
1200 )))
1201
1202
1203
1204 ==== 3.4.2.20 Reset save RO DO state ====
1205
1206
1207 * (% style="color:#037691" %)**AT Command:**
1208
1209 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1210
1211 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1212
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1215
1216 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1217
1218
1219
1220 ==== 3.4.2.21 Encrypted payload ====
1221
1222
1223 * (% style="color:#037691" %)**AT Command:**
1224
1225 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1226
1227 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1228
1229
1230
1231 ==== 3.4.2.22 Get sensor value ====
1232
1233
1234 * (% style="color:#037691" %)**AT Command:**
1235
1236 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1237
1238 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1239
1240
1241
1242 ==== 3.4.2.23 Resets the downlink packet count ====
1243
1244
1245 * (% style="color:#037691" %)**AT Command:**
1246
1247 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1248
1249 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1250
1251
1252
1253 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1259
1260 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1261
1262
1263 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1264
1265 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1266
1267
1268
1269 ==== 3.4.2.25 Copy downlink to uplink ====
1270
1271
1272 * (% style="color:#037691" %)**AT Command**(%%)**:**
1273
1274 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1275
1276 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1277
1278
1279 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1280
1281 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1282
1283
1284
1285 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1286
1287 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1288
1289
1290
1291 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1292
1293
1294 * (((
1295 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1296
1297 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1298
1299
1300 )))
1301
1302 **Example:**
1303
1304 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1305
1306
1307 == 3.5 Integrate with Mydevice ==
1308
1309
1310 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1311
1312 (((
1313 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1314 )))
1315
1316 (((
1317 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1318
1319
1320 )))
1321
1322 [[image:image-20220719105525-1.png||height="377" width="677"]]
1323
1324
1325
1326 [[image:image-20220719110247-2.png||height="388" width="683"]]
1327
1328
1329 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1330
1331 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1332
1333 Search under The things network
1334
1335 [[image:1653356838789-523.png||height="337" width="740"]]
1336
1337
1338 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1339
1340 [[image:image-20220524094909-1.png||height="335" width="729"]]
1341
1342
1343 [[image:image-20220524094909-2.png||height="337" width="729"]]
1344
1345
1346 [[image:image-20220524094909-3.png||height="338" width="727"]]
1347
1348
1349 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1350
1351
1352 [[image:image-20220524094909-5.png||height="341" width="734"]]
1353
1354
1355 == 3.6 Interface Detail ==
1356
1357 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1358
1359
1360 Support NPN Type sensor
1361
1362 [[image:1653356991268-289.png]]
1363
1364
1365 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1366
1367
1368 (((
1369 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1370 )))
1371
1372 (((
1373 (((
1374 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1375
1376
1377 )))
1378 )))
1379
1380 [[image:1653357170703-587.png]]
1381
1382 (((
1383 (((
1384 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1385 )))
1386 )))
1387
1388 (((
1389
1390 )))
1391
1392 (((
1393 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1394 )))
1395
1396 (((
1397 This type of sensor will output a low signal GND when active.
1398 )))
1399
1400 * (((
1401 Connect sensor's output to DI1-
1402 )))
1403 * (((
1404 Connect sensor's VCC to DI1+.
1405 )))
1406
1407 (((
1408 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1409 )))
1410
1411 (((
1412 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1413 )))
1414
1415 (((
1416 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1417 )))
1418
1419 (((
1420
1421 )))
1422
1423 (((
1424 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1425 )))
1426
1427 (((
1428 This type of sensor will output a high signal (example 24v) when active.
1429 )))
1430
1431 * (((
1432 Connect sensor's output to DI1+
1433 )))
1434 * (((
1435 Connect sensor's GND DI1-.
1436 )))
1437
1438 (((
1439 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1440 )))
1441
1442 (((
1443 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1444 )))
1445
1446 (((
1447 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1448 )))
1449
1450 (((
1451
1452 )))
1453
1454 (((
1455 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1456 )))
1457
1458 (((
1459 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1460 )))
1461
1462 * (((
1463 Connect sensor's output to DI1+ with a serial 50K resistor
1464 )))
1465 * (((
1466 Connect sensor's GND DI1-.
1467 )))
1468
1469 (((
1470 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1471 )))
1472
1473 (((
1474 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1475 )))
1476
1477 (((
1478 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1479 )))
1480
1481
1482 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1483
1484 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1485
1486 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1487
1488 [[image:image-20230616235145-1.png]]
1489
1490 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1491
1492 [[image:image-20240219115718-1.png]]
1493
1494
1495 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1496
1497
1498 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1499
1500 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1501
1502 [[image:1653357531600-905.png]]
1503
1504
1505 === 3.6.4 Analog Input Interface ===
1506
1507
1508 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1509
1510
1511 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1512
1513 [[image:1653357592296-182.png]]
1514
1515 Example to connect a 4~~20mA sensor
1516
1517 We take the wind speed sensor as an example for reference only.
1518
1519
1520 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1521
1522 (% style="color:red" %)**Red:  12~~24v**
1523
1524 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1525
1526 **Black:  GND**
1527
1528 **Connection diagram:**
1529
1530 [[image:1653357640609-758.png]]
1531
1532 [[image:1653357648330-671.png||height="155" width="733"]]
1533
1534
1535 Example connected to a regulated power supply to measure voltage
1536
1537 [[image:image-20230608101532-1.png||height="606" width="447"]]
1538
1539 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1540
1541 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1542
1543
1544 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1545
1546 (% style="color:red" %)**Red:  12~~24v**
1547
1548 **Black:  GND**
1549
1550
1551 === 3.6.5 Relay Output ===
1552
1553
1554 (((
1555 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1556
1557 **Note**: RO pins go to Open(NO) when device is power off.
1558 )))
1559
1560 [[image:image-20220524100215-9.png]]
1561
1562
1563 [[image:image-20220524100215-10.png||height="382" width="723"]]
1564
1565
1566 == 3.7 LEDs Indicators ==
1567
1568
1569 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1570 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1571 |**PWR**|Always on if there is power
1572 |**TX**|(((
1573 (((
1574 Device boot: TX blinks 5 times.
1575 )))
1576
1577 (((
1578 Successful join network: TX ON for 5 seconds.
1579 )))
1580
1581 (((
1582 Transmit a LoRa packet: TX blinks once
1583 )))
1584 )))
1585 |**RX**|RX blinks once when receive a packet.
1586 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1587 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1588 |**DI1**|(((
1589 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1590 )))
1591 |**DI2**|(((
1592 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1593 )))
1594 |**RO1**|
1595 |**RO2**|
1596
1597 = 4. Use AT Command =
1598
1599 == 4.1 Access AT Command ==
1600
1601
1602 (((
1603 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1604 )))
1605
1606 [[image:1653358238933-385.png]]
1607
1608
1609 (((
1610 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1611 )))
1612
1613 [[image:1653358355238-883.png]]
1614
1615
1616 (((
1617 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1618 )))
1619
1620 (((
1621 AT+<CMD>?        : Help on <CMD>
1622 )))
1623
1624 (((
1625 AT+<CMD>         : Run <CMD>
1626 )))
1627
1628 (((
1629 AT+<CMD>=<value> : Set the value
1630 )))
1631
1632 (((
1633 AT+<CMD>=?       :  Get the value
1634 )))
1635
1636 (((
1637 ATZ: Trig a reset of the MCU
1638 )))
1639
1640 (((
1641 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1642 )))
1643
1644 (((
1645 AT+DEUI: Get or Set the Device EUI
1646 )))
1647
1648 (((
1649 AT+DADDR: Get or Set the Device Address
1650 )))
1651
1652 (((
1653 AT+APPKEY: Get or Set the Application Key
1654 )))
1655
1656 (((
1657 AT+NWKSKEY: Get or Set the Network Session Key
1658 )))
1659
1660 (((
1661 AT+APPSKEY:  Get or Set the Application Session Key
1662 )))
1663
1664 (((
1665 AT+APPEUI:  Get or Set the Application EUI
1666 )))
1667
1668 (((
1669 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1670 )))
1671
1672 (((
1673 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1674 )))
1675
1676 (((
1677 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1678 )))
1679
1680 (((
1681 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1682 )))
1683
1684 (((
1685 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1686 )))
1687
1688 (((
1689 AT+RX2FQ: Get or Set the Rx2 window frequency
1690 )))
1691
1692 (((
1693 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1694 )))
1695
1696 (((
1697 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1698 )))
1699
1700 (((
1701 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1702 )))
1703
1704 (((
1705 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1706 )))
1707
1708 (((
1709 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1710 )))
1711
1712 (((
1713 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1714 )))
1715
1716 (((
1717 AT+NWKID: Get or Set the Network ID
1718 )))
1719
1720 (((
1721 AT+FCU: Get or Set the Frame Counter Uplink
1722 )))
1723
1724 (((
1725 AT+FCD: Get or Set the Frame Counter Downlink
1726 )))
1727
1728 (((
1729 AT+CLASS: Get or Set the Device Class
1730 )))
1731
1732 (((
1733 AT+JOIN: Join network
1734 )))
1735
1736 (((
1737 AT+NJS: Get OTAA Join Status
1738 )))
1739
1740 (((
1741 AT+SENDB: Send hexadecimal data along with the application port
1742 )))
1743
1744 (((
1745 AT+SEND: Send text data along with the application port
1746 )))
1747
1748 (((
1749 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1750 )))
1751
1752 (((
1753 AT+RECV: Print last received data in raw format
1754 )))
1755
1756 (((
1757 AT+VER:  Get current image version and Frequency Band
1758 )))
1759
1760 (((
1761 AT+CFM: Get or Set the confirmation mode (0-1)
1762 )))
1763
1764 (((
1765 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1766 )))
1767
1768 (((
1769 AT+SNR: Get the SNR of the last received packet
1770 )))
1771
1772 (((
1773 AT+RSSI: Get the RSSI of the last received packet
1774 )))
1775
1776 (((
1777 AT+TDC: Get or set the application data transmission interval in ms
1778 )))
1779
1780 (((
1781 AT+PORT: Get or set the application port
1782 )))
1783
1784 (((
1785 AT+DISAT: Disable AT commands
1786 )))
1787
1788 (((
1789 AT+PWORD: Set password, max 9 digits
1790 )))
1791
1792 (((
1793 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1794 )))
1795
1796 (((
1797 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1798 )))
1799
1800 (((
1801 AT+CFG: Print all settings
1802 )))
1803
1804
1805 == 4.2 Common AT Command Sequence ==
1806
1807 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1808
1809 (((
1810
1811
1812 (((
1813 (% style="color:blue" %)**If device has not joined network yet:**
1814 )))
1815 )))
1816
1817 (((
1818 (% style="background-color:#dcdcdc" %)**123456**
1819 )))
1820
1821 (((
1822 (% style="background-color:#dcdcdc" %)**AT+FDR**
1823 )))
1824
1825 (((
1826 (% style="background-color:#dcdcdc" %)**123456**
1827 )))
1828
1829 (((
1830 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)**ATZ**
1835 )))
1836
1837
1838 (((
1839 (% style="color:blue" %)**If device already joined network:**
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)**ATZ**
1848 )))
1849
1850
1851 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1852
1853 (((
1854
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1858 )))
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1907
1908
1909 )))
1910
1911 (((
1912 (% style="color:red" %)**Note:**
1913 )))
1914
1915 (((
1916 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1917
1918 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1919
1920 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1921 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1922
1923 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1924 )))
1925
1926 (((
1927 [[image:1653359097980-169.png||height="188" width="729"]]
1928 )))
1929
1930
1931 === 4.2.3 Change to Class A ===
1932
1933
1934 (((
1935 (% style="color:blue" %)**If sensor JOINED:**
1936
1937 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1938
1939 (% style="background-color:#dcdcdc" %)**ATZ**
1940 )))
1941
1942
1943 = 5. Case Study =
1944
1945 == 5.1 Counting how many objects pass in Flow Line ==
1946
1947
1948 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1949
1950
1951 = 6. FAQ =
1952
1953 == 6.1 How to upgrade the image? ==
1954
1955
1956 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1957
1958 * Support new features
1959 * For bug fix
1960 * Change LoRaWAN bands.
1961
1962 Below shows the hardware connection for how to upload an image to the LT:
1963
1964 [[image:1653359603330-121.png]]
1965
1966
1967 (((
1968 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1969 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1970 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1971
1972
1973 (((
1974 (% style="color:blue" %)**For LT-22222-L**(%%):
1975 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1976 )))
1977
1978
1979 )))
1980
1981 [[image:image-20220524103407-12.png]]
1982
1983
1984 [[image:image-20220524103429-13.png]]
1985
1986
1987 [[image:image-20220524104033-15.png]]
1988
1989
1990 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1991
1992 [[image:1653360054704-518.png||height="186" width="745"]]
1993
1994
1995 (((
1996 (((
1997 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1998
1999
2000 )))
2001 )))
2002
2003 (((
2004 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2005 )))
2006
2007 (((
2008
2009
2010 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2011
2012
2013 )))
2014
2015 (((
2016 (((
2017 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2018 )))
2019 )))
2020
2021 (((
2022 (((
2023 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2024
2025
2026 )))
2027 )))
2028
2029 (((
2030 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2031
2032
2033 )))
2034
2035 (((
2036 [[image:1653360231087-571.png||height="401" width="727"]]
2037
2038
2039 )))
2040
2041 (((
2042 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2043 )))
2044
2045
2046
2047 (((
2048 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2049
2050
2051 )))
2052
2053 (((
2054 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2055
2056 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2057
2058 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2059
2060 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2061
2062 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2063
2064 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2065
2066 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2067
2068 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2069
2070 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2071 )))
2072
2073
2074 (((
2075 As shown in below:
2076 )))
2077
2078 [[image:1653360498588-932.png||height="485" width="726"]]
2079
2080
2081 == 6.4 How to change the uplink interval? ==
2082
2083
2084 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2085
2086
2087 == 6.5 Can I see counting event in Serial? ==
2088
2089
2090 (((
2091 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2092
2093
2094 == 6.6 Can i use point to point communication for LT-22222-L? ==
2095
2096
2097 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2098
2099
2100 )))
2101
2102 (((
2103 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2104
2105
2106 If the device is not shut down, but directly powered off.
2107
2108 It will default that this is a power-off state.
2109
2110 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2111
2112 After restart, the status before power failure will be read from flash.
2113
2114
2115 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2116
2117
2118 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2119
2120
2121 [[image:image-20221006170630-1.png||height="610" width="945"]]
2122
2123
2124 == 6.9 Can LT22222-L save RO state? ==
2125
2126
2127 Firmware version needs to be no less than 1.6.0.
2128
2129
2130 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2131
2132
2133 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2134
2135
2136 = 7. Trouble Shooting =
2137 )))
2138
2139 (((
2140 (((
2141 == 7.1 Downlink doesn't work, how to solve it? ==
2142
2143
2144 )))
2145 )))
2146
2147 (((
2148 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2149 )))
2150
2151 (((
2152
2153
2154 == 7.2 Have trouble to upload image. ==
2155
2156
2157 )))
2158
2159 (((
2160 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2161 )))
2162
2163 (((
2164
2165
2166 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2167
2168
2169 )))
2170
2171 (((
2172 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2173 )))
2174
2175
2176 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2177
2178
2179 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2180 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2181
2182
2183 = 8. Order Info =
2184
2185
2186 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2187
2188 (% style="color:#4f81bd" %)**XXX:**
2189
2190 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2191 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2192 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2193 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2194 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2195 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2196 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2197 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2198 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2199
2200 = 9. Packing Info =
2201
2202
2203 **Package Includes**:
2204
2205 * LT-22222-L I/O Controller x 1
2206 * Stick Antenna for LoRa RF part x 1
2207 * Bracket for controller x1
2208 * Program cable x 1
2209
2210 **Dimension and weight**:
2211
2212 * Device Size: 13.5 x 7 x 3 cm
2213 * Device Weight: 105g
2214 * Package Size / pcs : 14.5 x 8 x 5 cm
2215 * Weight / pcs : 170g
2216
2217 = 10. Support =
2218
2219
2220 * (((
2221 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2222 )))
2223 * (((
2224 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2225
2226
2227
2228 )))
2229
2230 = 11. Reference​​​​​ =
2231
2232
2233 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2234 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2235 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0