Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is LT Series I/O Controller ==
23
24 (((
25
26
27 (((
28 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 )))
30 )))
31
32 (((
33 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
34 )))
35
36 (((
37 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 )))
39
40 (((
41 The use environment includes:
42 )))
43
44 (((
45 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 )))
47
48 (((
49 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
50
51
52 )))
53
54 (((
55 [[image:1653295757274-912.png]]
56
57
58 )))
59
60 == 1.2 Specifications ==
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12v
68 ** 20dB Transmit: 34mA@12v
69 * Operating Temperature: -40 ~~ 85 Degree, No Dew
70
71
72 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
73
74 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
75 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
76 * 2 x Relay Output (5A@250VAC / 30VDC)
77 * 2 x 0~~20mA Analog Input (res:0.01mA)
78 * 2 x 0~~30V Analog Input (res:0.01v)
79 * Power Input 7~~ 24V DC. 
80
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range:
85 ** Band 1 (HF): 862 ~~ 1020 Mhz
86 ** Band 2 (LF): 410 ~~ 528 Mhz
87 * 168 dB maximum link budget.
88 * +20 dBm - 100 mW constant RF output vs.
89 * +14 dBm high efficiency PA.
90 * Programmable bit rate up to 300 kbps.
91 * High sensitivity: down to -148 dBm.
92 * Bullet-proof front end: IIP3 = -12.5 dBm.
93 * Excellent blocking immunity.
94 * Low RX current of 10.3 mA, 200 nA register retention.
95 * Fully integrated synthesizer with a resolution of 61 Hz.
96 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
97 * Built-in bit synchronizer for clock recovery.
98 * Preamble detection.
99 * 127 dB Dynamic Range RSSI.
100 * Automatic RF Sense and CAD with ultra-fast AFC.
101 * Packet engine up to 256 bytes with CRC.
102
103 == 1.3 Features ==
104
105 * LoRaWAN Class A & Class C protocol
106 * Optional Customized LoRa Protocol
107 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
108 * AT Commands to change parameters
109 * Remote configure parameters via LoRa Downlink
110 * Firmware upgradable via program port
111 * Counting
112
113 == 1.4 Applications ==
114
115 * Smart Buildings & Home Automation
116 * Logistics and Supply Chain Management
117 * Smart Metering
118 * Smart Agriculture
119 * Smart Cities
120 * Smart Factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
126 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
127 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
128 (% style="text-align:center" %)
129 [[image:image-20230424115112-1.png||height="106" width="58"]]
130 )))|(% style="width:334px" %)(((
131 * 2 x Digital Input (Bi-direction)
132 * 2 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Power ON Device =
140
141 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
142
143 PWR will on when device is properly powered.
144
145 [[image:1653297104069-180.png]]
146
147
148 = 3. Operation Mode =
149
150 == 3.1 How it works? ==
151
152
153 (((
154 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
155 )))
156
157 (((
158 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
159 )))
160
161
162 == 3.2 Example to join LoRaWAN network ==
163
164
165 (((
166 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
167
168
169 )))
170
171 [[image:image-20220523172350-1.png||height="266" width="864"]]
172
173
174 (((
175 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
176
177
178 )))
179
180 (((
181 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
182 )))
183
184 (((
185 Each LT is shipped with a sticker with the default device EUI as below:
186 )))
187
188 [[image:image-20230425173427-2.png||height="246" width="530"]]
189
190
191 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
192
193 **Add APP EUI in the application.**
194
195 [[image:1653297955910-247.png||height="321" width="716"]]
196
197
198 **Add APP KEY and DEV EUI**
199
200 [[image:1653298023685-319.png]]
201
202
203 (((
204 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
205
206
207 )))
208
209 [[image:1653298044601-602.png||height="405" width="709"]]
210
211
212 == 3.3 Uplink Payload ==
213
214
215 There are five working modes + one interrupt mode on LT for different type application:
216
217 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
218
219 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
220
221 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
222
223 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
224
225 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
226
227 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
228
229 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
230
231
232 (((
233 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
234
235 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
236 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
237 |Value|(((
238 AVI1 voltage
239 )))|(((
240 AVI2 voltage
241 )))|(((
242 ACI1 Current
243 )))|(((
244 ACI2 Current
245 )))|DIDORO*|(((
246 Reserve
247 )))|MOD
248 )))
249
250 (((
251 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
252
253 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
255 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
256 )))
257
258 * RO is for relay. ROx=1 : close, ROx=0 always open.
259 * DI is for digital input. DIx=1: high or float, DIx=0: low.
260 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
261
262 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
263
264 For example if payload is: [[image:image-20220523175847-2.png]]
265
266
267 **The value for the interface is:  **
268
269 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
270
271 AVI2 channel voltage is 0x04AC/1000=1.196V
272
273 ACI1 channel current is 0x1310/1000=4.880mA
274
275 ACI2 channel current is 0x1300/1000=4.864mA
276
277 The last byte 0xAA= 10101010(B) means
278
279 * [1] RO1 relay channel is close and the RO1 LED is ON.
280 * [0] RO2 relay channel is open and RO2 LED is OFF;
281
282 **LT22222-L:**
283
284 * [1] DI2 channel is high input and DI2 LED is ON;
285 * [0] DI1 channel is low input;
286
287 * [0] DO3 channel output state
288 ** DO3 is float in case no load between DO3 and V+.;
289 ** DO3 is high in case there is load between DO3 and V+.
290 ** DO3 LED is off in both case
291 * [1] DO2 channel output is low and DO2 LED is ON.
292 * [0] DO1 channel output state
293 ** DO1 is float in case no load between DO1 and V+.;
294 ** DO1 is high in case there is load between DO1 and V+.
295 ** DO1 LED is off in both case
296
297 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
298
299
300 (((
301 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
302 )))
303
304 (((
305 Total : 11 bytes payload
306
307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
308 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
309 |Value|COUNT1|COUNT2 |DIDORO*|(((
310 Reserve
311 )))|MOD
312 )))
313
314 (((
315 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
316
317 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
319 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
320
321 RO is for relay. ROx=1 : close , ROx=0 always open.
322 )))
323
324 * FIRST: Indicate this is the first packet after join network.
325 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
326
327 (((
328 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
329
330
331 )))
332
333 (((
334 **To use counting mode, please run:**
335 )))
336
337 (((
338 (% class="box infomessage" %)
339 (((
340 **AT+MOD=2**
341
342 **ATZ**
343 )))
344 )))
345
346 (((
347
348
349 (% style="color:#4f81bd" %)**AT Commands for counting:**
350 )))
351
352 (((
353 **For LT22222-L:**
354
355 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
356
357 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
358
359 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
360
361 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
362
363 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
364
365 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
366 )))
367
368
369 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
370
371
372 **LT22222-L**: This mode the DI1 is used as a counting pin.
373
374 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
375 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
376 |Value|COUNT1|(((
377 ACI1 Current
378 )))|(((
379 ACI2 Current
380 )))|DIDORO*|Reserve|MOD
381
382 (((
383 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
384
385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
387 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
388 )))
389
390 * RO is for relay. ROx=1 : close, ROx=0 always open.
391 * FIRST: Indicate this is the first packet after join network.
392 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
393
394 (((
395 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
396 )))
397
398
399 (((
400 **To use counting mode, please run:**
401 )))
402
403 (((
404 (% class="box infomessage" %)
405 (((
406 **AT+MOD=3**
407
408 **ATZ**
409 )))
410 )))
411
412 (((
413 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
414 )))
415
416
417 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
418
419
420 (((
421 **LT22222-L**: This mode the DI1 is used as a counting pin.
422 )))
423
424 (((
425 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
426
427 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
429 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
430 Reserve
431 )))|MOD
432 )))
433
434 (((
435 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
436
437 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
439 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
440 )))
441
442 * RO is for relay. ROx=1 : close, ROx=0 always open.
443 * FIRST: Indicate this is the first packet after join network.
444 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
445
446 (((
447 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
448
449
450 )))
451
452 (((
453 **To use this mode, please run:**
454 )))
455
456 (((
457 (% class="box infomessage" %)
458 (((
459 **AT+MOD=4**
460
461 **ATZ**
462 )))
463 )))
464
465 (((
466 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
467 )))
468
469 (((
470 **Plus below command for AVI1 Counting:**
471
472 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
473
474 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
475
476 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
477
478 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
479 )))
480
481
482 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
483
484
485 **LT22222-L**: This mode the DI1 is used as a counting pin.
486
487 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
488 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
489 |Value|(((
490 AVI1 voltage
491 )))|(((
492 AVI2 voltage
493 )))|(((
494 ACI1 Current
495 )))|COUNT1|DIDORO*|(((
496 Reserve
497 )))|MOD
498
499 (((
500 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
501
502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
504 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
505 )))
506
507 * RO is for relay. ROx=1 : close, ROx=0 always open.
508 * FIRST: Indicate this is the first packet after join network.
509 * (((
510 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
511 )))
512
513 (((
514 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
515 )))
516
517 (((
518 **To use this mode, please run:**
519 )))
520
521 (((
522 (% class="box infomessage" %)
523 (((
524 **AT+MOD=5**
525
526 **ATZ**
527 )))
528 )))
529
530 (((
531 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
532 )))
533
534
535 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
536
537
538 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
539
540 For example, if user has configured below commands:
541
542 * **AT+MOD=1 ** **~-~->**  The normal working mode
543 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
544
545 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
546
547 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
548 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
549
550 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
551
552
553 (% style="color:#4f81bd" %)**Trigger base on voltage**:
554
555 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
556
557
558 **Example:**
559
560 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
561
562 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
563
564
565
566 (% style="color:#4f81bd" %)**Trigger base on current**:
567
568 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
569
570
571 **Example:**
572
573 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
574
575
576
577 (% style="color:#4f81bd" %)**Trigger base on DI status**:
578
579 DI status trigger Flag.
580
581 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
582
583
584 **Example:**
585
586 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
587
588
589 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
590
591 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
592
593 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
594
595 AA: Code for this downlink Command:
596
597 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
598
599 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
600
601 yy2 yy2: AC1 or AV1 high limit.
602
603 yy3 yy3: AC2 or AV2 low limit.
604
605 Yy4 yy4: AC2 or AV2 high limit.
606
607
608 **Example1**: AA 00 13 88 00 00 00 00 00 00
609
610 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
611
612
613 **Example2**: AA 02 01 00
614
615 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
616
617
618
619 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
620
621 MOD6 Payload : total 11 bytes payload
622
623 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
624 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
625 |Value|(((
626 TRI_A FLAG
627 )))|(((
628 TRI_A Status
629 )))|(((
630 TRI_DI FLAG+STA
631 )))|Reserve|Enable/Disable MOD6|(((
632 MOD(6)
633 )))
634
635 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
636
637 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
638 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
639 |(((
640 AV1_LOW
641 )))|(((
642 AV1_HIGH
643 )))|(((
644 AV2_LOW
645 )))|(((
646 AV2_HIGH
647 )))|(((
648 AC1_LOW
649 )))|(((
650 AC1_HIGH
651 )))|(((
652 AC2_LOW
653 )))|(((
654 AC2_HIGH
655 )))
656
657 * Each bits shows if the corresponding trigger has been configured.
658
659 **Example:**
660
661 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
662
663
664 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
667 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
668 |(((
669 AV1_LOW
670 )))|(((
671 AV1_HIGH
672 )))|(((
673 AV2_LOW
674 )))|(((
675 AV2_HIGH
676 )))|(((
677 AC1_LOW
678 )))|(((
679 AC1_HIGH
680 )))|(((
681 AC2_LOW
682 )))|(((
683 AC2_HIGH
684 )))
685
686 * Each bits shows which status has been trigger on this uplink.
687
688 **Example:**
689
690 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
691
692
693 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
694
695 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
696 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
697 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
698
699 * Each bits shows which status has been trigger on this uplink.
700
701 **Example:**
702
703 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
704
705 00000101: Means both DI1 and DI2 trigger are enabled.
706
707
708 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
709
710 Downlink command to poll MOD6 status:
711
712 **AB 06**
713
714 When device got this command, it will send the MOD6 payload.
715
716
717 === 3.3.7 Payload Decoder ===
718
719 (((
720
721
722 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
723 )))
724
725
726 == 3.4 ​Configure LT via AT or Downlink ==
727
728
729 (((
730 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
731 )))
732
733 (((
734 (((
735 There are two kinds of Commands:
736 )))
737 )))
738
739 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
740
741 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
742
743 === 3.4.1 Common Commands ===
744
745
746 (((
747 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
748 )))
749
750
751 === 3.4.2 Sensor related commands ===
752
753 ==== 3.4.2.1 Set Transmit Interval ====
754
755
756 Set device uplink interval.
757
758 * (% style="color:#037691" %)**AT Command:**
759
760 (% style="color:blue" %)**AT+TDC=N **
761
762
763 **Example: **AT+TDC=30000. Means set interval to 30 seconds
764
765
766 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
767
768 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
769
770
771
772 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
773
774
775 Set work mode.
776
777 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
778
779 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
780
781 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
782
783 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
784
785
786
787 ==== 3.4.2.3 Poll an uplink ====
788
789
790 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
791
792 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
793
794 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
795
796 **Example**: 0x08FF, ask device to send an Uplink
797
798
799
800 ==== 3.4.2.4 Enable Trigger Mode ====
801
802
803 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
804
805 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
806
807 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
808
809 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
813
814 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
815
816
817
818 ==== 3.4.2.5 Poll trigger settings ====
819
820
821 Poll trigger settings
822
823 * (% style="color:#037691" %)**AT Command:**
824
825 There is no AT Command for this feature.
826
827 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
828
829 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
830
831
832
833 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
834
835
836 Enable Disable DI1/DI2/DI2 as trigger,
837
838 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839
840 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
841
842
843 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
844
845 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
846
847
848
849 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
850
851
852 Set DI1 or DI3(for LT-33222-L) trigger.
853
854 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
855
856 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
857
858 (% style="color:red" %)**b :** (%%)delay timing.
859
860 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
861
862
863 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
864
865 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
866
867
868
869 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
870
871
872 Set DI2 trigger.
873
874 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
875
876 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
877
878 (% style="color:red" %)**b :** (%%)delay timing.
879
880 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
884
885 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
886
887
888
889 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
890
891
892 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
893
894 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
895
896 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
897
898 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
899
900
901
902 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
903
904
905 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
906
907 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
908
909 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
910
911 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
912
913
914
915 ==== 3.4.2.11 Trigger – Set minimum interval ====
916
917
918 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
919
920 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
921
922 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
923
924 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
925
926 (((
927 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
928 )))
929
930
931
932 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
933
934
935 * (% style="color:#037691" %)**AT Command**
936
937 There is no AT Command to control Digital Output
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
941
942 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
943
944 (((
945 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
946 )))
947
948 (((
949 01: Low,  00: High ,  11: No action
950
951 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
952 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
953 |02  01  00  11|Low|High|No Action
954 |02  00  11  01|High|No Action|Low
955 |02  11  01  00|No Action|Low|High
956 )))
957
958 (((
959 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
960 )))
961
962 (((
963 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
964 )))
965
966
967
968 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
969
970
971 * (% style="color:#037691" %)**AT Command**
972
973 There is no AT Command to control Digital Output
974
975
976 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
977
978 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
979
980
981 This is to control the digital output time of DO pin. Include four bytes:
982
983 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
984
985 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
986
987 01: DO pins will change back to original state after timeout.
988
989 00: DO pins will change to an inverter state after timeout 
990
991
992 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
995 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
996 |0x01|DO1 set to low
997 |0x00|DO1 set to high
998 |0x11|DO1 NO Action
999
1000 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1001
1002 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1003 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1004 |0x01|DO2 set to low
1005 |0x00|DO2 set to high
1006 |0x11|DO2 NO Action
1007
1008 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1009
1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1011 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1012 |0x01|DO3 set to low
1013 |0x00|DO3 set to high
1014 |0x11|DO3 NO Action
1015
1016 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1017
1018
1019 (% style="color:red" %)**Note: **
1020
1021 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1022
1023 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1024
1025 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1026
1027
1028 **Example payload:**
1029
1030 **~1. A9 01 01 01 01 07 D0**
1031
1032 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1033
1034 **2. A9 01 00 01 11 07 D0**
1035
1036 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1037
1038 **3. A9 00 00 00 00 07 D0**
1039
1040 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1041
1042 **4. A9 00 11 01 00 07 D0**
1043
1044 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1045
1046
1047
1048 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1049
1050
1051 * (% style="color:#037691" %)**AT Command:**
1052
1053 There is no AT Command to control Relay Output
1054
1055
1056 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1057
1058 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1059
1060
1061 (((
1062 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1063 )))
1064
1065 (((
1066 00: Close ,  01: Open , 11: No action
1067
1068 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1069 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1070 |03  00  11|Open|No Action
1071 |03  01  11|Close|No Action
1072 |03  11  00|No Action|Open
1073 |03  11  01|No Action|Close
1074 |03  00  00|Open|Open
1075 |03  01  01|Close|Close
1076 |03  01  00|Close|Open
1077 |03  00  01|Open|Close
1078 )))
1079
1080 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1081
1082
1083
1084 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1085
1086
1087 * (% style="color:#037691" %)**AT Command:**
1088
1089 There is no AT Command to control Relay Output
1090
1091
1092 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1093
1094 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1095
1096
1097 This is to control the relay output time of relay. Include four bytes:
1098
1099 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1100
1101 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1102
1103 01: Relays will change back to original state after timeout.
1104
1105 00: Relays will change to an inverter state after timeout
1106
1107
1108 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1109
1110 [[image:image-20221008095908-1.png||height="364" width="564"]]
1111
1112
1113 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1114
1115
1116 (% style="color:red" %)**Note:**
1117
1118 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1119
1120 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1121
1122
1123 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1124
1125
1126 **Example payload:**
1127
1128 **~1. 05 01 11 07 D0**
1129
1130 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1131
1132 **2. 05 01 10 07 D0**
1133
1134 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1135
1136 **3. 05 00 01 07 D0**
1137
1138 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1139
1140 **4. 05 00 00 07 D0**
1141
1142 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1143
1144
1145
1146 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1147
1148
1149 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1150
1151 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1152
1153 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1154
1155 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1156
1157
1158
1159 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1160
1161
1162 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1163
1164 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1165
1166 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1167
1168
1169 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1170
1171 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1172
1173
1174
1175 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1176
1177
1178 Clear counting for counting mode
1179
1180 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1181
1182 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1183
1184 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1185
1186
1187
1188 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1189
1190
1191 * (% style="color:#037691" %)**AT Command:**
1192
1193 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1194
1195
1196 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1197
1198 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1199
1200 (((
1201 range: aa bb cc:0 to 16777215,  (unit:second)
1202 )))
1203
1204
1205
1206 ==== 3.4.2.20 Reset save RO DO state ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**
1210
1211 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1212
1213 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1217
1218 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1219
1220
1221
1222 ==== 3.4.2.21 Encrypted payload ====
1223
1224
1225 * (% style="color:#037691" %)**AT Command:**
1226
1227 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1228
1229 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1230
1231
1232
1233 ==== 3.4.2.22 Get sensor value ====
1234
1235
1236 * (% style="color:#037691" %)**AT Command:**
1237
1238 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1239
1240 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1241
1242
1243
1244 ==== 3.4.2.23 Resets the downlink packet count ====
1245
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1250
1251 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1252
1253
1254
1255 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1256
1257
1258 * (% style="color:#037691" %)**AT Command:**
1259
1260 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1261
1262 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1263
1264
1265 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1266
1267 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1268
1269
1270
1271 ==== 3.4.2.25 Copy downlink to uplink ====
1272
1273
1274 * (% style="color:#037691" %)**AT Command**(%%)**:**
1275
1276 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1277
1278 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1279
1280
1281 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1282
1283 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1284
1285
1286
1287 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1288
1289 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1290
1291
1292
1293 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1294
1295
1296 * (((
1297 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1298
1299 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1300
1301
1302 )))
1303
1304 **Example:**
1305
1306 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1307
1308
1309 == 3.5 Integrate with Mydevice ==
1310
1311
1312 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1313
1314 (((
1315 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1316 )))
1317
1318 (((
1319 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1320
1321
1322 )))
1323
1324 [[image:image-20220719105525-1.png||height="377" width="677"]]
1325
1326
1327
1328 [[image:image-20220719110247-2.png||height="388" width="683"]]
1329
1330
1331 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1332
1333 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1334
1335 Search under The things network
1336
1337 [[image:1653356838789-523.png||height="337" width="740"]]
1338
1339
1340 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1341
1342 [[image:image-20220524094909-1.png||height="335" width="729"]]
1343
1344
1345 [[image:image-20220524094909-2.png||height="337" width="729"]]
1346
1347
1348 [[image:image-20220524094909-3.png||height="338" width="727"]]
1349
1350
1351 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1352
1353
1354 [[image:image-20220524094909-5.png||height="341" width="734"]]
1355
1356
1357 == 3.6 Interface Detail ==
1358
1359 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1360
1361
1362 Support NPN Type sensor
1363
1364 [[image:1653356991268-289.png]]
1365
1366
1367 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1368
1369
1370 (((
1371 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1372 )))
1373
1374 (((
1375 (((
1376 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1377
1378
1379 )))
1380 )))
1381
1382 [[image:1653357170703-587.png]]
1383
1384 (((
1385 (((
1386 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1387 )))
1388 )))
1389
1390 (((
1391
1392 )))
1393
1394 (((
1395 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1396 )))
1397
1398 (((
1399 This type of sensor will output a low signal GND when active.
1400 )))
1401
1402 * (((
1403 Connect sensor's output to DI1-
1404 )))
1405 * (((
1406 Connect sensor's VCC to DI1+.
1407 )))
1408
1409 (((
1410 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1411 )))
1412
1413 (((
1414 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1415 )))
1416
1417 (((
1418 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1419 )))
1420
1421 (((
1422
1423 )))
1424
1425 (((
1426 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1427 )))
1428
1429 (((
1430 This type of sensor will output a high signal (example 24v) when active.
1431 )))
1432
1433 * (((
1434 Connect sensor's output to DI1+
1435 )))
1436 * (((
1437 Connect sensor's GND DI1-.
1438 )))
1439
1440 (((
1441 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1442 )))
1443
1444 (((
1445 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1446 )))
1447
1448 (((
1449 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1450 )))
1451
1452 (((
1453
1454 )))
1455
1456 (((
1457 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1458 )))
1459
1460 (((
1461 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1462 )))
1463
1464 * (((
1465 Connect sensor's output to DI1+ with a serial 50K resistor
1466 )))
1467 * (((
1468 Connect sensor's GND DI1-.
1469 )))
1470
1471 (((
1472 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1473 )))
1474
1475 (((
1476 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1477 )))
1478
1479 (((
1480 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1481 )))
1482
1483
1484 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1485
1486 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1487
1488 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1489
1490 [[image:image-20230616235145-1.png]]
1491
1492 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1493
1494 [[image:image-20240219115718-1.png]]
1495
1496
1497 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1498
1499
1500 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1501
1502 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1503
1504 [[image:1653357531600-905.png]]
1505
1506
1507 === 3.6.4 Analog Input Interface ===
1508
1509
1510 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1511
1512
1513 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1514
1515 [[image:1653357592296-182.png]]
1516
1517 Example to connect a 4~~20mA sensor
1518
1519 We take the wind speed sensor as an example for reference only.
1520
1521
1522 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1523
1524 (% style="color:red" %)**Red:  12~~24v**
1525
1526 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1527
1528 **Black:  GND**
1529
1530 **Connection diagram:**
1531
1532 [[image:1653357640609-758.png]]
1533
1534 [[image:1653357648330-671.png||height="155" width="733"]]
1535
1536
1537 Example connected to a regulated power supply to measure voltage
1538
1539 [[image:image-20230608101532-1.png||height="606" width="447"]]
1540
1541 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1542
1543 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1544
1545
1546 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1547
1548 (% style="color:red" %)**Red:  12~~24v**
1549
1550 **Black:  GND**
1551
1552
1553 === 3.6.5 Relay Output ===
1554
1555
1556 (((
1557 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1558
1559 **Note**: RO pins go to Open(NO) when device is power off.
1560 )))
1561
1562 [[image:image-20220524100215-9.png]]
1563
1564
1565 [[image:image-20220524100215-10.png||height="382" width="723"]]
1566
1567
1568 == 3.7 LEDs Indicators ==
1569
1570
1571 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1572 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1573 |**PWR**|Always on if there is power
1574 |**SYS**|(((
1575 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1576 )))
1577 |**TX**|(((
1578 (((
1579 Device boot: TX blinks 5 times.
1580 )))
1581
1582 (((
1583 Successful join network: TX ON for 5 seconds.
1584 )))
1585
1586 (((
1587 Transmit a LoRa packet: TX blinks once
1588 )))
1589 )))
1590 |**RX**|RX blinks once when receive a packet.
1591 |**DO1**|
1592 |**DO2**|
1593 |**DO3**|
1594 |**DI2**|(((
1595 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1596 )))
1597 |**DI2**|(((
1598 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1599 )))
1600 |**DI2**|(((
1601 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1602 )))
1603 |**RO1**|
1604 |**RO2**|
1605
1606 = 4. Use AT Command =
1607
1608 == 4.1 Access AT Command ==
1609
1610
1611 (((
1612 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1613 )))
1614
1615 [[image:1653358238933-385.png]]
1616
1617
1618 (((
1619 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1620 )))
1621
1622 [[image:1653358355238-883.png]]
1623
1624
1625 (((
1626 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1627 )))
1628
1629 (((
1630 AT+<CMD>?        : Help on <CMD>
1631 )))
1632
1633 (((
1634 AT+<CMD>         : Run <CMD>
1635 )))
1636
1637 (((
1638 AT+<CMD>=<value> : Set the value
1639 )))
1640
1641 (((
1642 AT+<CMD>=?       :  Get the value
1643 )))
1644
1645 (((
1646 ATZ: Trig a reset of the MCU
1647 )))
1648
1649 (((
1650 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1651 )))
1652
1653 (((
1654 AT+DEUI: Get or Set the Device EUI
1655 )))
1656
1657 (((
1658 AT+DADDR: Get or Set the Device Address
1659 )))
1660
1661 (((
1662 AT+APPKEY: Get or Set the Application Key
1663 )))
1664
1665 (((
1666 AT+NWKSKEY: Get or Set the Network Session Key
1667 )))
1668
1669 (((
1670 AT+APPSKEY:  Get or Set the Application Session Key
1671 )))
1672
1673 (((
1674 AT+APPEUI:  Get or Set the Application EUI
1675 )))
1676
1677 (((
1678 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1679 )))
1680
1681 (((
1682 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1683 )))
1684
1685 (((
1686 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1687 )))
1688
1689 (((
1690 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1691 )))
1692
1693 (((
1694 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1695 )))
1696
1697 (((
1698 AT+RX2FQ: Get or Set the Rx2 window frequency
1699 )))
1700
1701 (((
1702 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1703 )))
1704
1705 (((
1706 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1707 )))
1708
1709 (((
1710 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1711 )))
1712
1713 (((
1714 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1715 )))
1716
1717 (((
1718 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1719 )))
1720
1721 (((
1722 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1723 )))
1724
1725 (((
1726 AT+NWKID: Get or Set the Network ID
1727 )))
1728
1729 (((
1730 AT+FCU: Get or Set the Frame Counter Uplink
1731 )))
1732
1733 (((
1734 AT+FCD: Get or Set the Frame Counter Downlink
1735 )))
1736
1737 (((
1738 AT+CLASS: Get or Set the Device Class
1739 )))
1740
1741 (((
1742 AT+JOIN: Join network
1743 )))
1744
1745 (((
1746 AT+NJS: Get OTAA Join Status
1747 )))
1748
1749 (((
1750 AT+SENDB: Send hexadecimal data along with the application port
1751 )))
1752
1753 (((
1754 AT+SEND: Send text data along with the application port
1755 )))
1756
1757 (((
1758 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1759 )))
1760
1761 (((
1762 AT+RECV: Print last received data in raw format
1763 )))
1764
1765 (((
1766 AT+VER:  Get current image version and Frequency Band
1767 )))
1768
1769 (((
1770 AT+CFM: Get or Set the confirmation mode (0-1)
1771 )))
1772
1773 (((
1774 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1775 )))
1776
1777 (((
1778 AT+SNR: Get the SNR of the last received packet
1779 )))
1780
1781 (((
1782 AT+RSSI: Get the RSSI of the last received packet
1783 )))
1784
1785 (((
1786 AT+TDC: Get or set the application data transmission interval in ms
1787 )))
1788
1789 (((
1790 AT+PORT: Get or set the application port
1791 )))
1792
1793 (((
1794 AT+DISAT: Disable AT commands
1795 )))
1796
1797 (((
1798 AT+PWORD: Set password, max 9 digits
1799 )))
1800
1801 (((
1802 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1803 )))
1804
1805 (((
1806 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1807 )))
1808
1809 (((
1810 AT+CFG: Print all settings
1811 )))
1812
1813
1814 == 4.2 Common AT Command Sequence ==
1815
1816 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1817
1818 (((
1819
1820
1821 (((
1822 (% style="color:blue" %)**If device has not joined network yet:**
1823 )))
1824 )))
1825
1826 (((
1827 (% style="background-color:#dcdcdc" %)**123456**
1828 )))
1829
1830 (((
1831 (% style="background-color:#dcdcdc" %)**AT+FDR**
1832 )))
1833
1834 (((
1835 (% style="background-color:#dcdcdc" %)**123456**
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)**ATZ**
1844 )))
1845
1846
1847 (((
1848 (% style="color:blue" %)**If device already joined network:**
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %)**ATZ**
1857 )))
1858
1859
1860 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1861
1862 (((
1863
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1867 )))
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1916
1917
1918 )))
1919
1920 (((
1921 (% style="color:red" %)**Note:**
1922 )))
1923
1924 (((
1925 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1926
1927 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1928
1929 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1930 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1931
1932 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1933 )))
1934
1935 (((
1936 [[image:1653359097980-169.png||height="188" width="729"]]
1937 )))
1938
1939
1940 === 4.2.3 Change to Class A ===
1941
1942
1943 (((
1944 (% style="color:blue" %)**If sensor JOINED:**
1945
1946 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1947
1948 (% style="background-color:#dcdcdc" %)**ATZ**
1949 )))
1950
1951
1952 = 5. Case Study =
1953
1954 == 5.1 Counting how many objects pass in Flow Line ==
1955
1956
1957 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1958
1959
1960 = 6. FAQ =
1961
1962 == 6.1 How to upgrade the image? ==
1963
1964
1965 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1966
1967 * Support new features
1968 * For bug fix
1969 * Change LoRaWAN bands.
1970
1971 Below shows the hardware connection for how to upload an image to the LT:
1972
1973 [[image:1653359603330-121.png]]
1974
1975
1976 (((
1977 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1978 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1979 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1980
1981
1982 (((
1983 (% style="color:blue" %)**For LT-22222-L**(%%):
1984 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1985 )))
1986
1987
1988 )))
1989
1990 [[image:image-20220524103407-12.png]]
1991
1992
1993 [[image:image-20220524103429-13.png]]
1994
1995
1996 [[image:image-20220524104033-15.png]]
1997
1998
1999 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2000
2001 [[image:1653360054704-518.png||height="186" width="745"]]
2002
2003
2004 (((
2005 (((
2006 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2007
2008
2009 )))
2010 )))
2011
2012 (((
2013 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2014 )))
2015
2016 (((
2017
2018
2019 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2020
2021
2022 )))
2023
2024 (((
2025 (((
2026 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2027 )))
2028 )))
2029
2030 (((
2031 (((
2032 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2033
2034
2035 )))
2036 )))
2037
2038 (((
2039 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2040
2041
2042 )))
2043
2044 (((
2045 [[image:1653360231087-571.png||height="401" width="727"]]
2046
2047
2048 )))
2049
2050 (((
2051 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2052 )))
2053
2054
2055
2056 (((
2057 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2058
2059
2060 )))
2061
2062 (((
2063 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2064
2065 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2066
2067 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2068
2069 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2070
2071 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2072
2073 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2074
2075 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2076
2077 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2078
2079 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2080 )))
2081
2082
2083 (((
2084 As shown in below:
2085 )))
2086
2087 [[image:1653360498588-932.png||height="485" width="726"]]
2088
2089
2090 == 6.4 How to change the uplink interval? ==
2091
2092
2093 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2094
2095
2096 == 6.5 Can I see counting event in Serial? ==
2097
2098
2099 (((
2100 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2101
2102
2103 == 6.6 Can i use point to point communication for LT-22222-L? ==
2104
2105
2106 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2107
2108
2109 )))
2110
2111 (((
2112 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2113
2114
2115 If the device is not shut down, but directly powered off.
2116
2117 It will default that this is a power-off state.
2118
2119 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2120
2121 After restart, the status before power failure will be read from flash.
2122
2123
2124 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2125
2126
2127 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2128
2129
2130 [[image:image-20221006170630-1.png||height="610" width="945"]]
2131
2132
2133 == 6.9 Can LT22222-L save RO state? ==
2134
2135
2136 Firmware version needs to be no less than 1.6.0.
2137
2138
2139 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2140
2141
2142 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2143
2144
2145 = 7. Trouble Shooting =
2146 )))
2147
2148 (((
2149 (((
2150 == 7.1 Downlink doesn't work, how to solve it? ==
2151
2152
2153 )))
2154 )))
2155
2156 (((
2157 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2158 )))
2159
2160 (((
2161
2162
2163 == 7.2 Have trouble to upload image. ==
2164
2165
2166 )))
2167
2168 (((
2169 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2170 )))
2171
2172 (((
2173
2174
2175 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2176
2177
2178 )))
2179
2180 (((
2181 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2182 )))
2183
2184
2185 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2186
2187
2188 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2189 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2190
2191
2192 = 8. Order Info =
2193
2194
2195 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2196
2197 (% style="color:#4f81bd" %)**XXX:**
2198
2199 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2200 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2201 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2202 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2203 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2204 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2205 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2206 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2207 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2208
2209 = 9. Packing Info =
2210
2211
2212 **Package Includes**:
2213
2214 * LT-22222-L I/O Controller x 1
2215 * Stick Antenna for LoRa RF part x 1
2216 * Bracket for controller x1
2217 * Program cable x 1
2218
2219 **Dimension and weight**:
2220
2221 * Device Size: 13.5 x 7 x 3 cm
2222 * Device Weight: 105g
2223 * Package Size / pcs : 14.5 x 8 x 5 cm
2224 * Weight / pcs : 170g
2225
2226 = 10. Support =
2227
2228
2229 * (((
2230 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2231 )))
2232 * (((
2233 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2234
2235
2236
2237 )))
2238
2239 = 11. Reference​​​​​ =
2240
2241
2242 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2243 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2244 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0