Version 126.6 by Xiaoling on 2023/06/19 15:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208
209
210 == 1.5 Hardware Variants ==
211
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
215 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 (% style="text-align:center" %)
217 [[image:image-20230424115112-1.png||height="106" width="58"]]
218 )))|(% style="width:334px" %)(((
219 * 2 x Digital Input (Bi-direction)
220 * 2 x Digital Output
221 * 2 x Relay Output (5A@250VAC / 30VDC)
222 * 2 x 0~~20mA Analog Input (res:0.01mA)
223 * 2 x 0~~30V Analog Input (res:0.01v)
224 * 1 x Counting Port
225 )))
226
227 = 2. Power ON Device =
228
229
230 (((
231 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 )))
233
234 (((
235 PWR will on when device is properly powered.
236
237
238 )))
239
240 [[image:1653297104069-180.png]]
241
242
243 = 3. Operation Mode =
244
245 == 3.1 How it works? ==
246
247
248 (((
249 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 )))
251
252 (((
253 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 )))
255
256
257 == 3.2 Example to join LoRaWAN network ==
258
259
260 (((
261 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
262
263
264 )))
265
266 [[image:image-20220523172350-1.png||height="266" width="864"]]
267
268
269 (((
270 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
271
272
273 )))
274
275 (((
276 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 )))
278
279 (((
280 Each LT is shipped with a sticker with the default device EUI as below:
281 )))
282
283 [[image:image-20230425173427-2.png||height="246" width="530"]]
284
285
286 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287
288 **Add APP EUI in the application.**
289
290 [[image:1653297955910-247.png||height="321" width="716"]]
291
292
293 **Add APP KEY and DEV EUI**
294
295 [[image:1653298023685-319.png]]
296
297
298
299 (((
300 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301
302
303 )))
304
305 [[image:1653298044601-602.png||height="405" width="709"]]
306
307
308 == 3.3 Uplink Payload ==
309
310
311 There are five working modes + one interrupt mode on LT for different type application:
312
313 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
314
315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316
317 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
318
319 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
320
321 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
322
323 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324
325 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326
327
328 (((
329 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
330
331 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
333 |Value|(((
334 AVI1 voltage
335 )))|(((
336 AVI2 voltage
337 )))|(((
338 ACI1 Current
339 )))|(((
340 ACI2 Current
341 )))|DIDORO*|(((
342 Reserve
343 )))|MOD
344 )))
345
346 (((
347 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
352 )))
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393
394
395
396 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
397
398
399 (((
400 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
401 )))
402
403 (((
404 Total : 11 bytes payload
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
408 |Value|COUNT1|COUNT2 |DIDORO*|(((
409 Reserve
410 )))|MOD
411 )))
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
415
416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
418 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
419
420 RO is for relay. ROx=1 : close,ROx=0 always open.
421 )))
422
423 * FIRST: Indicate this is the first packet after join network.
424 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
425
426 (((
427 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
428 )))
429
430 (((
431
432
433 **To use counting mode, please run:**
434 )))
435
436 (% class="box infomessage" %)
437 (((
438 (((
439 (((
440 **AT+MOD=2**
441 )))
442
443 (((
444 **ATZ**
445 )))
446 )))
447 )))
448
449 (((
450
451
452 (% style="color:#4f81bd" %)**AT Commands for counting:**
453 )))
454
455 (((
456 **For LT22222-L:**
457
458 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
459
460 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
461
462 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
467
468 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
469 )))
470
471
472 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
473
474
475 **LT22222-L**: This mode the DI1 is used as a counting pin.
476
477 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
478 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
479 |Value|COUNT1|(((
480 ACI1 Current
481 )))|(((
482 ACI2 Current
483 )))|DIDORO*|Reserve|MOD
484
485 (((
486 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
487
488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
490 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
491 )))
492
493 * RO is for relay. ROx=1 : close,ROx=0 always open.
494 * FIRST: Indicate this is the first packet after join network.
495 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
496
497 (((
498 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
499 )))
500
501
502 (((
503 **To use counting mode, please run:**
504 )))
505
506 (% class="box infomessage" %)
507 (((
508 (((
509 (((
510 **AT+MOD=3**
511 )))
512
513 (((
514 **ATZ**
515 )))
516 )))
517 )))
518
519 (((
520 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
521 )))
522
523
524 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
525
526
527 (((
528 **LT22222-L**: This mode the DI1 is used as a counting pin.
529 )))
530
531 (((
532 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
533
534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
535 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
536 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
537 Reserve
538 )))|MOD
539 )))
540
541 (((
542 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
543
544 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
545 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
546 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
547 )))
548
549 * RO is for relay. ROx=1 : close,ROx=0 always open.
550 * FIRST: Indicate this is the first packet after join network.
551 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
552
553 (((
554 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
555 )))
556
557 (((
558
559
560 **To use this mode, please run:**
561 )))
562
563 (% class="box infomessage" %)
564 (((
565 (((
566 (((
567 **AT+MOD=4**
568 )))
569
570 (((
571 **ATZ**
572 )))
573 )))
574 )))
575
576
577 (((
578 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
579 )))
580
581 (((
582 **Plus below command for AVI1 Counting:**
583
584 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
585
586 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
587
588 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
589
590 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
591 )))
592
593
594 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
595
596
597 **LT22222-L**: This mode the DI1 is used as a counting pin.
598
599 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
600 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
601 |Value|(((
602 AVI1 voltage
603 )))|(((
604 AVI2 voltage
605 )))|(((
606 ACI1 Current
607 )))|COUNT1|DIDORO*|(((
608 Reserve
609 )))|MOD
610
611 (((
612 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
613
614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
616 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
617 )))
618
619 * RO is for relay. ROx=1 : close,ROx=0 always open.
620 * FIRST: Indicate this is the first packet after join network.
621 * (((
622 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
623 )))
624
625 (((
626 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
627 )))
628
629 (((
630
631
632 **To use this mode, please run:**
633 )))
634
635 (% class="box infomessage" %)
636 (((
637 (((
638 (((
639 **AT+MOD=5**
640 )))
641
642 (((
643 **ATZ**
644 )))
645 )))
646 )))
647
648 (((
649 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
650 )))
651
652
653 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
654
655
656 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
657
658 For example, if user has configured below commands:
659
660 * **AT+MOD=1 ** **~-~->**  The normal working mode
661 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
662
663 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
664
665 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
666 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
667
668 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
669
670
671 (% style="color:#4f81bd" %)**Trigger base on voltage**:
672
673 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
674
675
676 **Example:**
677
678 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
679
680 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
681
682
683
684 (% style="color:#4f81bd" %)**Trigger base on current**:
685
686 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
687
688
689 **Example:**
690
691 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
692
693
694
695 (% style="color:#4f81bd" %)**Trigger base on DI status**:
696
697 DI status trigger Flag.
698
699 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
700
701
702 **Example:**
703
704 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
705
706
707 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
708
709 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
710
711 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
712
713 AA: Code for this downlink Command:
714
715 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
716
717 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
718
719 yy2 yy2: AC1 or AV1 high limit.
720
721 yy3 yy3: AC2 or AV2 low limit.
722
723 Yy4 yy4: AC2 or AV2 high limit.
724
725
726 **Example1**: AA 00 13 88 00 00 00 00 00 00
727
728 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
729
730
731 **Example2**: AA 02 01 00
732
733 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
734
735
736
737 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
738
739 MOD6 Payload : total 11 bytes payload
740
741 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
742 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
743 |Value|(((
744 TRI_A FLAG
745 )))|(((
746 TRI_A Status
747 )))|(((
748 TRI_DI FLAG+STA
749 )))|Reserve|Enable/Disable MOD6|(((
750 MOD(6)
751 )))
752
753 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
754
755 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
756 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
757 |(((
758 AV1_LOW
759 )))|(((
760 AV1_HIGH
761 )))|(((
762 AV2_LOW
763 )))|(((
764 AV2_HIGH
765 )))|(((
766 AC1_LOW
767 )))|(((
768 AC1_HIGH
769 )))|(((
770 AC2_LOW
771 )))|(((
772 AC2_HIGH
773 )))
774
775 * Each bits shows if the corresponding trigger has been configured.
776
777 **Example:**
778
779 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
780
781
782 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
783
784 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
785 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
786 |(((
787 AV1_LOW
788 )))|(((
789 AV1_HIGH
790 )))|(((
791 AV2_LOW
792 )))|(((
793 AV2_HIGH
794 )))|(((
795 AC1_LOW
796 )))|(((
797 AC1_HIGH
798 )))|(((
799 AC2_LOW
800 )))|(((
801 AC2_HIGH
802 )))
803
804 * Each bits shows which status has been trigger on this uplink.
805
806 **Example:**
807
808 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
809
810
811 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
812
813 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
814 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
815 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
816
817 * Each bits shows which status has been trigger on this uplink.
818
819 **Example:**
820
821 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
822
823 00000101: Means both DI1 and DI2 trigger are enabled.
824
825
826 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
827
828 Downlink command to poll MOD6 status:
829
830 **AB 06**
831
832 When device got this command, it will send the MOD6 payload.
833
834
835 === 3.3.7 Payload Decoder ===
836
837 (((
838
839
840 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
841 )))
842
843
844 == 3.4 ​Configure LT via AT or Downlink ==
845
846
847 (((
848 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
849 )))
850
851 (((
852 (((
853 There are two kinds of Commands:
854 )))
855 )))
856
857 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
858
859 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
860
861 === 3.4.1 Common Commands ===
862
863
864 (((
865 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
866 )))
867
868
869 === 3.4.2 Sensor related commands ===
870
871 ==== 3.4.2.1 Set Transmit Interval ====
872
873
874 Set device uplink interval.
875
876 * (% style="color:#037691" %)**AT Command:**
877
878 (% style="color:blue" %)**AT+TDC=N **
879
880
881 **Example: **AT+TDC=30000. Means set interval to 30 seconds
882
883
884 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
885
886 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
887
888
889
890 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
891
892
893 Set work mode.
894
895 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
896
897 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
900
901 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
902
903
904
905 ==== 3.4.2.3 Poll an uplink ====
906
907
908 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
911
912 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
913
914 **Example**: 0x08FF, ask device to send an Uplink
915
916
917
918 ==== 3.4.2.4 Enable Trigger Mode ====
919
920
921 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
922
923 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
924
925 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
926
927 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
931
932 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
933
934
935
936 ==== 3.4.2.5 Poll trigger settings ====
937
938
939 Poll trigger settings
940
941 * (% style="color:#037691" %)**AT Command:**
942
943 There is no AT Command for this feature.
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
946
947 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
948
949
950
951 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
952
953
954 Enable Disable DI1/DI2/DI2 as trigger,
955
956 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
957
958 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
959
960
961 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
962
963 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
964
965
966
967 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
968
969
970 Set DI1 or DI3(for LT-33222-L) trigger.
971
972 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
973
974 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
975
976 (% style="color:red" %)**b :** (%%)delay timing.
977
978 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
979
980
981 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
982
983 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
984
985
986
987 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
988
989
990 Set DI2 trigger.
991
992 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
993
994 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
995
996 (% style="color:red" %)**b :** (%%)delay timing.
997
998 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
999
1000
1001 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1002
1003 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1004
1005
1006
1007 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1008
1009
1010 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1011
1012 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1013
1014 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1015
1016 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1017
1018
1019
1020 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1021
1022
1023 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1024
1025 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1026
1027 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1028
1029 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1030
1031
1032
1033 ==== 3.4.2.11 Trigger – Set minimum interval ====
1034
1035
1036 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1037
1038 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1039
1040 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1041
1042 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1043
1044 (((
1045 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1046 )))
1047
1048
1049
1050 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1051
1052
1053 * (% style="color:#037691" %)**AT Command**
1054
1055 There is no AT Command to control Digital Output
1056
1057
1058 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1059
1060 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1061
1062 (((
1063 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1064 )))
1065
1066 (((
1067 01: Low,  00: High ,  11: No action
1068
1069 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1070 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1071 |02  01  00  11|Low|High|No Action
1072 |02  00  11  01|High|No Action|Low
1073 |02  11  01  00|No Action|Low|High
1074 )))
1075
1076 (((
1077 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1078 )))
1079
1080 (((
1081 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1082 )))
1083
1084
1085
1086 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1087
1088
1089 * (% style="color:#037691" %)**AT Command**
1090
1091 There is no AT Command to control Digital Output
1092
1093
1094 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1095
1096 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1097
1098
1099 This is to control the digital output time of DO pin. Include four bytes:
1100
1101 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1102
1103 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1104
1105 01: DO pins will change back to original state after timeout.
1106
1107 00: DO pins will change to an inverter state after timeout 
1108
1109
1110 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1111
1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1113 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1114 |0x01|DO1 set to low
1115 |0x00|DO1 set to high
1116 |0x11|DO1 NO Action
1117
1118 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1119
1120 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1121 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1122 |0x01|DO2 set to low
1123 |0x00|DO2 set to high
1124 |0x11|DO2 NO Action
1125
1126 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1127
1128 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1129 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1130 |0x01|DO3 set to low
1131 |0x00|DO3 set to high
1132 |0x11|DO3 NO Action
1133
1134 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1135
1136
1137 (% style="color:red" %)**Note: **
1138
1139 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1140
1141 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1142
1143 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1144
1145
1146 **Example payload:**
1147
1148 **~1. A9 01 01 01 01 07 D0**
1149
1150 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1151
1152 **2. A9 01 00 01 11 07 D0**
1153
1154 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1155
1156 **3. A9 00 00 00 00 07 D0**
1157
1158 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1159
1160 **4. A9 00 11 01 00 07 D0**
1161
1162 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1163
1164
1165
1166 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1167
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 There is no AT Command to control Relay Output
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1175
1176 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1177
1178
1179 (((
1180 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1181 )))
1182
1183 (((
1184 01: Close ,  00: Open , 11: No action
1185
1186 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1187 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1188 |03  00  11|Open|No Action
1189 |03  01  11|Close|No Action
1190 |03  11  00|No Action|Open
1191 |03  11  01|No Action|Close
1192 |03  00  00|Open|Open
1193 |03  01  01|Close|Close
1194 |03  01  00|Close|Open
1195 |03  00  01|Open|Close
1196 )))
1197
1198 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1199
1200
1201
1202 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1203
1204
1205 * (% style="color:#037691" %)**AT Command:**
1206
1207 There is no AT Command to control Relay Output
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1211
1212 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1213
1214
1215 This is to control the relay output time of relay. Include four bytes:
1216
1217 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1218
1219 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1220
1221 01: Relays will change back to original state after timeout.
1222
1223 00: Relays will change to an inverter state after timeout
1224
1225
1226 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1227
1228 [[image:image-20221008095908-1.png||height="364" width="564"]]
1229
1230
1231 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1232
1233
1234 (% style="color:red" %)**Note:**
1235
1236 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1237
1238 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1239
1240
1241 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1242
1243
1244 **Example payload:**
1245
1246 **~1. 05 01 11 07 D0**
1247
1248 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1249
1250 **2. 05 01 10 07 D0**
1251
1252 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1253
1254 **3. 05 00 01 07 D0**
1255
1256 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1257
1258 **4. 05 00 00 07 D0**
1259
1260 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1261
1262
1263
1264 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1265
1266
1267 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1268
1269 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1272
1273 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1274
1275
1276
1277 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1281
1282 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1283
1284 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1285
1286
1287 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1288
1289 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1290
1291
1292
1293 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1294
1295
1296 Clear counting for counting mode
1297
1298 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1299
1300 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1301
1302 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1303
1304
1305
1306 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1307
1308
1309 * (% style="color:#037691" %)**AT Command:**
1310
1311 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1312
1313
1314 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1315
1316 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1317
1318 (((
1319 range: aa bb cc:0 to 16777215,  (unit:second)
1320 )))
1321
1322
1323
1324 ==== 3.4.2.20 Reset save RO DO state ====
1325
1326
1327 * (% style="color:#037691" %)**AT Command:**
1328
1329 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1330
1331 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1332
1333
1334 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1335
1336 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1337
1338
1339
1340 ==== 3.4.2.21 Encrypted payload ====
1341
1342
1343 * (% style="color:#037691" %)**AT Command:**
1344
1345 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1346
1347 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1348
1349
1350
1351 ==== 3.4.2.22 Get sensor value ====
1352
1353
1354 * (% style="color:#037691" %)**AT Command:**
1355
1356 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1357
1358 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1359
1360
1361
1362 ==== 3.4.2.23 Resets the downlink packet count ====
1363
1364
1365 * (% style="color:#037691" %)**AT Command:**
1366
1367 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1368
1369 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1370
1371
1372
1373 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1374
1375
1376 * (% style="color:#037691" %)**AT Command:**
1377
1378 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1379
1380 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1381
1382
1383 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1384
1385 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1386
1387
1388
1389 ==== 3.4.2.25 Copy downlink to uplink ====
1390
1391
1392 * (% style="color:#037691" %)**AT Command**(%%)**:**
1393
1394 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1395
1396 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1397
1398
1399 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1400
1401 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1402
1403
1404
1405 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1406
1407 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1408
1409
1410
1411 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1412
1413
1414 * (((
1415 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1416
1417 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1418
1419
1420 )))
1421
1422 **Example:**
1423
1424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1425
1426
1427 == 3.5 Integrate with Mydevice ==
1428
1429
1430 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1431
1432 (((
1433 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1434 )))
1435
1436 (((
1437 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1438
1439
1440 )))
1441
1442 [[image:image-20220719105525-1.png||height="377" width="677"]]
1443
1444
1445
1446 [[image:image-20220719110247-2.png||height="388" width="683"]]
1447
1448
1449 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1450
1451 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1452
1453 Search under The things network
1454
1455 [[image:1653356838789-523.png||height="337" width="740"]]
1456
1457
1458
1459 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1460
1461 [[image:image-20220524094909-1.png||height="335" width="729"]]
1462
1463
1464 [[image:image-20220524094909-2.png||height="337" width="729"]]
1465
1466
1467 [[image:image-20220524094909-3.png||height="338" width="727"]]
1468
1469
1470 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1471
1472
1473 [[image:image-20220524094909-5.png||height="341" width="734"]]
1474
1475
1476 == 3.6 Interface Detail ==
1477
1478 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1479
1480
1481 Support NPN Type sensor
1482
1483 [[image:1653356991268-289.png]]
1484
1485
1486 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1487
1488
1489 (((
1490 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1491 )))
1492
1493 (((
1494 (((
1495 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1496
1497
1498 )))
1499 )))
1500
1501 [[image:1653357170703-587.png]]
1502
1503 (((
1504 (((
1505 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1506 )))
1507 )))
1508
1509 (((
1510
1511 )))
1512
1513 (((
1514 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1515 )))
1516
1517 (((
1518 This type of sensor will output a low signal GND when active.
1519 )))
1520
1521 * (((
1522 Connect sensor's output to DI1-
1523 )))
1524 * (((
1525 Connect sensor's VCC to DI1+.
1526 )))
1527
1528 (((
1529 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1530 )))
1531
1532 (((
1533 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1534 )))
1535
1536 (((
1537 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1538 )))
1539
1540 (((
1541
1542 )))
1543
1544 (((
1545 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1546 )))
1547
1548 (((
1549 This type of sensor will output a high signal (example 24v) when active.
1550 )))
1551
1552 * (((
1553 Connect sensor's output to DI1+
1554 )))
1555 * (((
1556 Connect sensor's GND DI1-.
1557 )))
1558
1559 (((
1560 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1561 )))
1562
1563 (((
1564 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1565 )))
1566
1567 (((
1568 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1569 )))
1570
1571 (((
1572
1573 )))
1574
1575 (((
1576 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1577 )))
1578
1579 (((
1580 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1581 )))
1582
1583 * (((
1584 Connect sensor's output to DI1+ with a serial 50K resistor
1585 )))
1586 * (((
1587 Connect sensor's GND DI1-.
1588 )))
1589
1590 (((
1591 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1592 )))
1593
1594 (((
1595 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1596 )))
1597
1598 (((
1599 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1600 )))
1601
1602
1603 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1604
1605 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1606
1607 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1608
1609 [[image:image-20230616235145-1.png]]
1610
1611
1612
1613 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1614
1615
1616 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1617
1618 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1619
1620 [[image:1653357531600-905.png]]
1621
1622
1623 === 3.6.4 Analog Input Interface ===
1624
1625
1626 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1627
1628
1629 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1630
1631 [[image:1653357592296-182.png]]
1632
1633 Example to connect a 4~~20mA sensor
1634
1635 We take the wind speed sensor as an example for reference only.
1636
1637
1638 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1639
1640 (% style="color:red" %)**Red:  12~~24v**
1641
1642 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1643
1644 **Black:  GND**
1645
1646 **Connection diagram:**
1647
1648 [[image:1653357640609-758.png]]
1649
1650 [[image:1653357648330-671.png||height="155" width="733"]]
1651
1652
1653 Example connected to a regulated power supply to measure voltage
1654
1655 [[image:image-20230608101532-1.png||height="606" width="447"]]
1656
1657 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1658
1659 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1660
1661
1662 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1663
1664 (% style="color:red" %)**Red:  12~~24v**
1665
1666 **Black:  GND**
1667
1668
1669 === 3.6.5 Relay Output ===
1670
1671
1672 (((
1673 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1674
1675 **Note**: RO pins go to Open(NO) when device is power off.
1676 )))
1677
1678 [[image:image-20220524100215-9.png]]
1679
1680
1681 [[image:image-20220524100215-10.png||height="382" width="723"]]
1682
1683
1684 == 3.7 LEDs Indicators ==
1685
1686
1687 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1688 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1689 |**PWR**|Always on if there is power
1690 |**SYS**|(((
1691 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1692 )))
1693 |**TX**|(((
1694 (((
1695 Device boot: TX blinks 5 times.
1696 )))
1697
1698 (((
1699 Successful join network: TX ON for 5 seconds.
1700 )))
1701
1702 (((
1703 Transmit a LoRa packet: TX blinks once
1704 )))
1705 )))
1706 |**RX**|RX blinks once when receive a packet.
1707 |**DO1**|
1708 |**DO2**|
1709 |**DO3**|
1710 |**DI2**|(((
1711 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1712 )))
1713 |**DI2**|(((
1714 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1715 )))
1716 |**DI2**|(((
1717 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1718 )))
1719 |**RO1**|
1720 |**RO2**|
1721
1722 = 4. Use AT Command =
1723
1724 == 4.1 Access AT Command ==
1725
1726
1727 (((
1728 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1729 )))
1730
1731 (((
1732
1733 )))
1734
1735 [[image:1653358238933-385.png]]
1736
1737
1738 (((
1739 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1740 )))
1741
1742 [[image:1653358355238-883.png]]
1743
1744
1745 (((
1746 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1747 )))
1748
1749 (((
1750 AT+<CMD>?        : Help on <CMD>
1751 )))
1752
1753 (((
1754 AT+<CMD>         : Run <CMD>
1755 )))
1756
1757 (((
1758 AT+<CMD>=<value> : Set the value
1759 )))
1760
1761 (((
1762 AT+<CMD>=?       :  Get the value
1763 )))
1764
1765 (((
1766 ATZ: Trig a reset of the MCU
1767 )))
1768
1769 (((
1770 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1771 )))
1772
1773 (((
1774 AT+DEUI: Get or Set the Device EUI
1775 )))
1776
1777 (((
1778 AT+DADDR: Get or Set the Device Address
1779 )))
1780
1781 (((
1782 AT+APPKEY: Get or Set the Application Key
1783 )))
1784
1785 (((
1786 AT+NWKSKEY: Get or Set the Network Session Key
1787 )))
1788
1789 (((
1790 AT+APPSKEY:  Get or Set the Application Session Key
1791 )))
1792
1793 (((
1794 AT+APPEUI:  Get or Set the Application EUI
1795 )))
1796
1797 (((
1798 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1799 )))
1800
1801 (((
1802 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1803 )))
1804
1805 (((
1806 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1807 )))
1808
1809 (((
1810 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1811 )))
1812
1813 (((
1814 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1815 )))
1816
1817 (((
1818 AT+RX2FQ: Get or Set the Rx2 window frequency
1819 )))
1820
1821 (((
1822 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1823 )))
1824
1825 (((
1826 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1827 )))
1828
1829 (((
1830 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1831 )))
1832
1833 (((
1834 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1835 )))
1836
1837 (((
1838 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1839 )))
1840
1841 (((
1842 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1843 )))
1844
1845 (((
1846 AT+NWKID: Get or Set the Network ID
1847 )))
1848
1849 (((
1850 AT+FCU: Get or Set the Frame Counter Uplink
1851 )))
1852
1853 (((
1854 AT+FCD: Get or Set the Frame Counter Downlink
1855 )))
1856
1857 (((
1858 AT+CLASS: Get or Set the Device Class
1859 )))
1860
1861 (((
1862 AT+JOIN: Join network
1863 )))
1864
1865 (((
1866 AT+NJS: Get OTAA Join Status
1867 )))
1868
1869 (((
1870 AT+SENDB: Send hexadecimal data along with the application port
1871 )))
1872
1873 (((
1874 AT+SEND: Send text data along with the application port
1875 )))
1876
1877 (((
1878 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1879 )))
1880
1881 (((
1882 AT+RECV: Print last received data in raw format
1883 )))
1884
1885 (((
1886 AT+VER:  Get current image version and Frequency Band
1887 )))
1888
1889 (((
1890 AT+CFM: Get or Set the confirmation mode (0-1)
1891 )))
1892
1893 (((
1894 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1895 )))
1896
1897 (((
1898 AT+SNR: Get the SNR of the last received packet
1899 )))
1900
1901 (((
1902 AT+RSSI: Get the RSSI of the last received packet
1903 )))
1904
1905 (((
1906 AT+TDC: Get or set the application data transmission interval in ms
1907 )))
1908
1909 (((
1910 AT+PORT: Get or set the application port
1911 )))
1912
1913 (((
1914 AT+DISAT: Disable AT commands
1915 )))
1916
1917 (((
1918 AT+PWORD: Set password, max 9 digits
1919 )))
1920
1921 (((
1922 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1923 )))
1924
1925 (((
1926 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1927 )))
1928
1929 (((
1930 AT+CFG: Print all settings
1931 )))
1932
1933
1934 == 4.2 Common AT Command Sequence ==
1935
1936 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1937
1938 (((
1939
1940
1941 (((
1942 (% style="color:blue" %)**If device has not joined network yet:**
1943 )))
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)**123456**
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)**AT+FDR**
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)**123456**
1956 )))
1957
1958 (((
1959 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1960 )))
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)**ATZ**
1964 )))
1965
1966
1967 (((
1968 (% style="color:blue" %)**If device already joined network:**
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1973 )))
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)**ATZ**
1977 )))
1978
1979
1980 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1981
1982 (((
1983
1984
1985 (((
1986 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1987 )))
1988 )))
1989
1990 (((
1991 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1992 )))
1993
1994 (((
1995 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1996 )))
1997
1998 (((
1999 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2000 )))
2001
2002 (((
2003 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2004 )))
2005
2006 (((
2007 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2008 )))
2009
2010 (((
2011 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2012 )))
2013
2014 (((
2015 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2016 )))
2017
2018 (((
2019 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2020 )))
2021
2022 (((
2023 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2024 )))
2025
2026 (((
2027 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2028 )))
2029
2030 (((
2031 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2032 )))
2033
2034 (((
2035 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2036
2037
2038 )))
2039
2040 (((
2041 (% style="color:red" %)**Note:**
2042 )))
2043
2044 (((
2045 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2046
2047 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2048
2049 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2050 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2051
2052 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2053
2054
2055 )))
2056
2057 (((
2058 [[image:1653359097980-169.png||height="188" width="729"]]
2059 )))
2060
2061 (((
2062
2063 )))
2064
2065 === 4.2.3 Change to Class A ===
2066
2067
2068 (((
2069 (% style="color:blue" %)**If sensor JOINED:**
2070
2071 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2072 ATZ**
2073 )))
2074
2075
2076 = 5. Case Study =
2077
2078 == 5.1 Counting how many objects pass in Flow Line ==
2079
2080
2081 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2082
2083
2084 = 6. FAQ =
2085
2086 == 6.1 How to upgrade the image? ==
2087
2088
2089 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2090
2091 * Support new features
2092 * For bug fix
2093 * Change LoRaWAN bands.
2094
2095 Below shows the hardware connection for how to upload an image to the LT:
2096
2097 [[image:1653359603330-121.png]]
2098
2099
2100 (((
2101 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2102 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2103 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2104
2105
2106 (((
2107 (% style="color:blue" %)**For LT-22222-L**(%%):
2108 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2109 )))
2110
2111
2112 )))
2113
2114 [[image:image-20220524103407-12.png]]
2115
2116
2117 [[image:image-20220524103429-13.png]]
2118
2119
2120 [[image:image-20220524104033-15.png]]
2121
2122
2123 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2124
2125
2126 [[image:1653360054704-518.png||height="186" width="745"]]
2127
2128
2129 (((
2130 (((
2131 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2132
2133
2134 )))
2135 )))
2136
2137 (((
2138 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2139 )))
2140
2141 (((
2142
2143
2144 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2145
2146
2147 )))
2148
2149 (((
2150 (((
2151 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2152 )))
2153 )))
2154
2155 (((
2156 (((
2157 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2158
2159
2160 )))
2161 )))
2162
2163 (((
2164 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2165
2166
2167 )))
2168
2169 (((
2170 [[image:1653360231087-571.png||height="401" width="727"]]
2171
2172
2173 )))
2174
2175 (((
2176 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2177 )))
2178
2179
2180
2181 (((
2182 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2183
2184
2185 )))
2186
2187 (((
2188 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2189 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2190 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2191 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2192 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2193 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2194 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2195 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2196 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2197 )))
2198
2199
2200 (((
2201 As shown in below:
2202 )))
2203
2204 [[image:1653360498588-932.png||height="485" width="726"]]
2205
2206
2207 == 6.4 How to change the uplink interval? ==
2208
2209
2210 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2211
2212
2213 == 6.5 Can I see counting event in Serial? ==
2214
2215
2216 (((
2217 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2218
2219
2220 == 6.6 Can i use point to point communication for LT-22222-L? ==
2221
2222
2223 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2224
2225
2226 )))
2227
2228 (((
2229 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2230
2231
2232 If the device is not shut down, but directly powered off.
2233
2234 It will default that this is a power-off state.
2235
2236 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2237
2238 After restart, the status before power failure will be read from flash.
2239
2240
2241 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2242
2243
2244 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2245
2246
2247 [[image:image-20221006170630-1.png||height="610" width="945"]]
2248
2249
2250 == 6.9 Can LT22222-L save RO state? ==
2251
2252
2253 Firmware version needs to be no less than 1.6.0.
2254
2255
2256 = 7. Trouble Shooting =
2257 )))
2258
2259 (((
2260 (((
2261 == 7.1 Downlink doesn't work, how to solve it? ==
2262
2263
2264 )))
2265 )))
2266
2267 (((
2268 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2269 )))
2270
2271 (((
2272
2273
2274 == 7.2 Have trouble to upload image. ==
2275
2276
2277 )))
2278
2279 (((
2280 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2281 )))
2282
2283 (((
2284
2285
2286 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2287
2288
2289 )))
2290
2291 (((
2292 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2293 )))
2294
2295
2296 = 8. Order Info =
2297
2298
2299 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2300
2301 (% style="color:#4f81bd" %)**XXX:**
2302
2303 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2304 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2305 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2306 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2307 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2308 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2309 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2310 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2311 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2312
2313 = 9. Packing Info =
2314
2315
2316 **Package Includes**:
2317
2318 * LT-22222-L I/O Controller x 1
2319 * Stick Antenna for LoRa RF part x 1
2320 * Bracket for controller x1
2321 * Program cable x 1
2322
2323 **Dimension and weight**:
2324
2325 * Device Size: 13.5 x 7 x 3 cm
2326 * Device Weight: 105g
2327 * Package Size / pcs : 14.5 x 8 x 5 cm
2328 * Weight / pcs : 170g
2329
2330 = 10. Support =
2331
2332
2333 * (((
2334 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2335 )))
2336 * (((
2337 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2338
2339
2340
2341 )))
2342
2343 = 11. Reference​​​​​ =
2344
2345
2346 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2347 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2348 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2349
2350