Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208
209
210 == 1.5 Hardware Variants ==
211
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
215 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 (% style="text-align:center" %)
217 [[image:image-20230424115112-1.png||height="106" width="58"]]
218 )))|(% style="width:334px" %)(((
219 * 2 x Digital Input (Bi-direction)
220 * 2 x Digital Output
221 * 2 x Relay Output (5A@250VAC / 30VDC)
222 * 2 x 0~~20mA Analog Input (res:0.01mA)
223 * 2 x 0~~30V Analog Input (res:0.01v)
224 * 1 x Counting Port
225 )))
226
227 = 2. Power ON Device =
228
229
230 (((
231 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 )))
233
234 (((
235 PWR will on when device is properly powered.
236
237
238 )))
239
240 [[image:1653297104069-180.png]]
241
242
243 = 3. Operation Mode =
244
245 == 3.1 How it works? ==
246
247
248 (((
249 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 )))
251
252 (((
253 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 )))
255
256
257 == 3.2 Example to join LoRaWAN network ==
258
259
260 (((
261 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
262
263
264 )))
265
266 [[image:image-20220523172350-1.png||height="266" width="864"]]
267
268
269 (((
270 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
271
272
273 )))
274
275 (((
276 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 )))
278
279 (((
280 Each LT is shipped with a sticker with the default device EUI as below:
281 )))
282
283 [[image:image-20230425173427-2.png||height="246" width="530"]]
284
285
286 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287
288 **Add APP EUI in the application.**
289
290 [[image:1653297955910-247.png||height="321" width="716"]]
291
292
293 **Add APP KEY and DEV EUI**
294
295 [[image:1653298023685-319.png]]
296
297
298
299 (((
300 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301
302
303 )))
304
305 [[image:1653298044601-602.png||height="405" width="709"]]
306
307
308 == 3.3 Uplink Payload ==
309
310
311 There are five working modes + one interrupt mode on LT for different type application:
312
313 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
314
315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316
317 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
318
319 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
320
321 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
322
323 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324
325 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326
327
328 (((
329 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
330
331 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
333 |Value|(((
334 AVI1 voltage
335 )))|(((
336 AVI2 voltage
337 )))|(((
338 ACI1 Current
339 )))|(((
340 ACI2 Current
341 )))|DIDORO*|(((
342 Reserve
343 )))|MOD
344 )))
345
346 (((
347 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
352 )))
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407 )))|MOD
408 )))
409
410 (((
411 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
412
413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
415 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
416
417 RO is for relay. ROx=1 : close,ROx=0 always open.
418 )))
419
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
425 )))
426
427 (((
428
429
430 **To use counting mode, please run:**
431 )))
432
433 (% class="box infomessage" %)
434 (((
435 (((
436 (((
437 **AT+MOD=2**
438 )))
439
440 (((
441 **ATZ**
442 )))
443 )))
444 )))
445
446 (((
447
448
449 (% style="color:#4f81bd" %)**AT Commands for counting:**
450 )))
451
452 (((
453 **For LT22222-L:**
454
455 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
456
457 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
458
459 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
460
461 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
462
463 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
464
465 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
466 )))
467
468
469 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
470
471
472 **LT22222-L**: This mode the DI1 is used as a counting pin.
473
474 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
475 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
476 |Value|COUNT1|(((
477 ACI1 Current
478 )))|(((
479 ACI2 Current
480 )))|DIDORO*|Reserve|MOD
481
482 (((
483 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484
485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
487 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
488 )))
489
490 * RO is for relay. ROx=1 : close,ROx=0 always open.
491 * FIRST: Indicate this is the first packet after join network.
492 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
493
494 (((
495 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
496 )))
497
498
499 (((
500 **To use counting mode, please run:**
501 )))
502
503 (% class="box infomessage" %)
504 (((
505 (((
506 (((
507 **AT+MOD=3**
508 )))
509
510 (((
511 **ATZ**
512 )))
513 )))
514 )))
515
516 (((
517 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
518 )))
519
520
521 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
522
523
524 (((
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526 )))
527
528 (((
529 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
530
531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
532 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
533 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
534 Reserve
535 )))|MOD
536 )))
537
538 (((
539 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
543 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
544 )))
545
546 * RO is for relay. ROx=1 : close,ROx=0 always open.
547 * FIRST: Indicate this is the first packet after join network.
548 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
549
550 (((
551 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
552 )))
553
554 (((
555
556
557 **To use this mode, please run:**
558 )))
559
560 (% class="box infomessage" %)
561 (((
562 (((
563 (((
564 **AT+MOD=4**
565 )))
566
567 (((
568 **ATZ**
569 )))
570 )))
571 )))
572
573
574 (((
575 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 )))
577
578 (((
579 **Plus below command for AVI1 Counting:**
580
581 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
582
583 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
584
585 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
586
587 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
588 )))
589
590
591 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
592
593
594 **LT22222-L**: This mode the DI1 is used as a counting pin.
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
597 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
598 |Value|(((
599 AVI1 voltage
600 )))|(((
601 AVI2 voltage
602 )))|(((
603 ACI1 Current
604 )))|COUNT1|DIDORO*|(((
605 Reserve
606 )))|MOD
607
608 (((
609 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
610
611 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
612 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
613 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
614 )))
615
616 * RO is for relay. ROx=1 : close,ROx=0 always open.
617 * FIRST: Indicate this is the first packet after join network.
618 * (((
619 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
620 )))
621
622 (((
623 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
624 )))
625
626 (((
627
628
629 **To use this mode, please run:**
630 )))
631
632 (% class="box infomessage" %)
633 (((
634 (((
635 (((
636 **AT+MOD=5**
637 )))
638
639 (((
640 **ATZ**
641 )))
642 )))
643 )))
644
645 (((
646 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
647 )))
648
649
650 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
651
652
653 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
654
655 For example, if user has configured below commands:
656
657 * **AT+MOD=1 ** **~-~->**  The normal working mode
658 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
659
660 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
661
662 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
663 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
664
665 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
666
667
668 (% style="color:#4f81bd" %)**Trigger base on voltage**:
669
670 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
671
672
673 **Example:**
674
675 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
676
677 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
678
679
680
681 (% style="color:#4f81bd" %)**Trigger base on current**:
682
683 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
684
685
686 **Example:**
687
688 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
689
690
691
692 (% style="color:#4f81bd" %)**Trigger base on DI status**:
693
694 DI status trigger Flag.
695
696 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
697
698
699 **Example:**
700
701 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
702
703
704 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
705
706 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
707
708 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
709
710 AA: Code for this downlink Command:
711
712 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
713
714 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
715
716 yy2 yy2: AC1 or AV1 high limit.
717
718 yy3 yy3: AC2 or AV2 low limit.
719
720 Yy4 yy4: AC2 or AV2 high limit.
721
722
723 **Example1**: AA 00 13 88 00 00 00 00 00 00
724
725 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
726
727
728 **Example2**: AA 02 01 00
729
730 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
731
732
733
734 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
735
736 MOD6 Payload : total 11 bytes payload
737
738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
739 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
740 |Value|(((
741 TRI_A FLAG
742 )))|(((
743 TRI_A Status
744 )))|(((
745 TRI_DI FLAG+STA
746 )))|Reserve|Enable/Disable MOD6|(((
747 MOD(6)
748 )))
749
750 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
751
752 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
753 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
754 |(((
755 AV1_LOW
756 )))|(((
757 AV1_HIGH
758 )))|(((
759 AV2_LOW
760 )))|(((
761 AV2_HIGH
762 )))|(((
763 AC1_LOW
764 )))|(((
765 AC1_HIGH
766 )))|(((
767 AC2_LOW
768 )))|(((
769 AC2_HIGH
770 )))
771
772 * Each bits shows if the corresponding trigger has been configured.
773
774 **Example:**
775
776 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
777
778
779 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
780
781 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
782 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
783 |(((
784 AV1_LOW
785 )))|(((
786 AV1_HIGH
787 )))|(((
788 AV2_LOW
789 )))|(((
790 AV2_HIGH
791 )))|(((
792 AC1_LOW
793 )))|(((
794 AC1_HIGH
795 )))|(((
796 AC2_LOW
797 )))|(((
798 AC2_HIGH
799 )))
800
801 * Each bits shows which status has been trigger on this uplink.
802
803 **Example:**
804
805 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
806
807
808 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
809
810 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
811 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
812 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
813
814 * Each bits shows which status has been trigger on this uplink.
815
816 **Example:**
817
818 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
819
820 00000101: Means both DI1 and DI2 trigger are enabled.
821
822
823 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
824
825 Downlink command to poll MOD6 status:
826
827 **AB 06**
828
829 When device got this command, it will send the MOD6 payload.
830
831
832 === 3.3.7 Payload Decoder ===
833
834 (((
835
836
837 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
838 )))
839
840
841 == 3.4 ​Configure LT via AT or Downlink ==
842
843
844 (((
845 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
846 )))
847
848 (((
849 (((
850 There are two kinds of Commands:
851 )))
852 )))
853
854 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
855
856 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
857
858 === 3.4.1 Common Commands ===
859
860
861 (((
862 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
863 )))
864
865
866 === 3.4.2 Sensor related commands ===
867
868 ==== 3.4.2.1 Set Transmit Interval ====
869
870
871 Set device uplink interval.
872
873 * (% style="color:#037691" %)**AT Command:**
874
875 (% style="color:blue" %)**AT+TDC=N **
876
877
878 **Example: **AT+TDC=30000. Means set interval to 30 seconds
879
880
881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
882
883 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
884
885
886
887 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
888
889
890 Set work mode.
891
892 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
893
894 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
895
896 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
897
898 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
899
900
901
902 ==== 3.4.2.3 Poll an uplink ====
903
904
905 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
908
909 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
910
911 **Example**: 0x08FF, ask device to send an Uplink
912
913
914
915 ==== 3.4.2.4 Enable Trigger Mode ====
916
917
918 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
919
920 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
921
922 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
923
924 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
925
926
927 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
928
929 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
930
931
932
933 ==== 3.4.2.5 Poll trigger settings ====
934
935
936 Poll trigger settings
937
938 * (% style="color:#037691" %)**AT Command:**
939
940 There is no AT Command for this feature.
941
942 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
943
944 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
945
946
947
948 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
949
950
951 Enable Disable DI1/DI2/DI2 as trigger,
952
953 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
954
955 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
959
960 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
961
962
963
964 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
965
966
967 Set DI1 or DI3(for LT-33222-L) trigger.
968
969 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
970
971 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
972
973 (% style="color:red" %)**b :** (%%)delay timing.
974
975 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
976
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
979
980 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
981
982
983
984 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
985
986
987 Set DI2 trigger.
988
989 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
990
991 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
992
993 (% style="color:red" %)**b :** (%%)delay timing.
994
995 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
999
1000 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1001
1002
1003
1004 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1005
1006
1007 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1008
1009 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1010
1011 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1012
1013 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1014
1015
1016
1017 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1018
1019
1020 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1021
1022 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1023
1024 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1025
1026 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1027
1028
1029
1030 ==== 3.4.2.11 Trigger – Set minimum interval ====
1031
1032
1033 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1034
1035 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1036
1037 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1038
1039 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1040
1041 (((
1042 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1043 )))
1044
1045
1046
1047 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1048
1049
1050 * (% style="color:#037691" %)**AT Command**
1051
1052 There is no AT Command to control Digital Output
1053
1054
1055 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1056
1057 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1058
1059 (((
1060 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1061 )))
1062
1063 (((
1064 01: Low,  00: High ,  11: No action
1065
1066 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1067 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1068 |02  01  00  11|Low|High|No Action
1069 |02  00  11  01|High|No Action|Low
1070 |02  11  01  00|No Action|Low|High
1071 )))
1072
1073 (((
1074 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1075 )))
1076
1077 (((
1078 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1079 )))
1080
1081
1082
1083 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1084
1085
1086 * (% style="color:#037691" %)**AT Command**
1087
1088 There is no AT Command to control Digital Output
1089
1090
1091 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1092
1093 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1094
1095
1096 This is to control the digital output time of DO pin. Include four bytes:
1097
1098 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1099
1100 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1101
1102 01: DO pins will change back to original state after timeout.
1103
1104 00: DO pins will change to an inverter state after timeout 
1105
1106
1107 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1108
1109 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1110 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1111 |0x01|DO1 set to low
1112 |0x00|DO1 set to high
1113 |0x11|DO1 NO Action
1114
1115 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1116
1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1118 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1119 |0x01|DO2 set to low
1120 |0x00|DO2 set to high
1121 |0x11|DO2 NO Action
1122
1123 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1124
1125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1126 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1127 |0x01|DO3 set to low
1128 |0x00|DO3 set to high
1129 |0x11|DO3 NO Action
1130
1131 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1132
1133
1134 (% style="color:red" %)**Note: **
1135
1136 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1137
1138 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1139
1140 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1141
1142
1143 **Example payload:**
1144
1145 **~1. A9 01 01 01 01 07 D0**
1146
1147 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1148
1149 **2. A9 01 00 01 11 07 D0**
1150
1151 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1152
1153 **3. A9 00 00 00 00 07 D0**
1154
1155 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1156
1157 **4. A9 00 11 01 00 07 D0**
1158
1159 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1160
1161
1162
1163 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1164
1165
1166 * (% style="color:#037691" %)**AT Command:**
1167
1168 There is no AT Command to control Relay Output
1169
1170
1171 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1172
1173 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1174
1175
1176 (((
1177 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1178 )))
1179
1180 (((
1181 01: Close ,  00: Open , 11: No action
1182
1183 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1184 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1185 |03  00  11|Open|No Action
1186 |03  01  11|Close|No Action
1187 |03  11  00|No Action|Open
1188 |03  11  01|No Action|Close
1189 |03  00  00|Open|Open
1190 |03  01  01|Close|Close
1191 |03  01  00|Close|Open
1192 |03  00  01|Open|Close
1193 )))
1194
1195 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1196
1197
1198
1199 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1200
1201
1202 * (% style="color:#037691" %)**AT Command:**
1203
1204 There is no AT Command to control Relay Output
1205
1206
1207 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1208
1209 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1210
1211
1212 This is to control the relay output time of relay. Include four bytes:
1213
1214 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1215
1216 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1217
1218 01: Relays will change back to original state after timeout.
1219
1220 00: Relays will change to an inverter state after timeout
1221
1222
1223 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1224
1225 [[image:image-20221008095908-1.png||height="364" width="564"]]
1226
1227
1228 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1229
1230
1231 (% style="color:red" %)**Note:**
1232
1233 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1234
1235 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1236
1237
1238 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1239
1240
1241 **Example payload:**
1242
1243 **~1. 05 01 11 07 D0**
1244
1245 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1246
1247 **2. 05 01 10 07 D0**
1248
1249 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1250
1251 **3. 05 00 01 07 D0**
1252
1253 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1254
1255 **4. 05 00 00 07 D0**
1256
1257 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1258
1259
1260
1261 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1262
1263
1264 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1265
1266 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1267
1268 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1269
1270 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1271
1272
1273
1274 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1275
1276
1277 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1278
1279 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1280
1281 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1282
1283
1284 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1285
1286 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1287
1288
1289
1290 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1291
1292
1293 Clear counting for counting mode
1294
1295 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1296
1297 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1298
1299 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1300
1301
1302
1303 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1304
1305
1306 * (% style="color:#037691" %)**AT Command:**
1307
1308 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1309
1310
1311 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1312
1313 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1314
1315 (((
1316 range: aa bb cc:0 to 16777215,  (unit:second)
1317 )))
1318
1319
1320
1321 ==== 3.4.2.20 Reset save RO DO state ====
1322
1323
1324 * (% style="color:#037691" %)**AT Command:**
1325
1326 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1327
1328 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1329
1330
1331 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1332
1333 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1334
1335
1336
1337 ==== 3.4.2.21 Encrypted payload ====
1338
1339
1340 * (% style="color:#037691" %)**AT Command:**
1341
1342 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1343
1344 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1345
1346
1347
1348 ==== 3.4.2.22 Get sensor value ====
1349
1350
1351 * (% style="color:#037691" %)**AT Command:**
1352
1353 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1354
1355 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1356
1357
1358
1359 ==== 3.4.2.23 Resets the downlink packet count ====
1360
1361
1362 * (% style="color:#037691" %)**AT Command:**
1363
1364 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1365
1366 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1367
1368
1369
1370 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1371
1372
1373 * (% style="color:#037691" %)**AT Command:**
1374
1375 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1376
1377 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1378
1379
1380 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1381
1382 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1383
1384
1385
1386 ==== 3.4.2.25 Copy downlink to uplink ====
1387
1388
1389 * (% style="color:#037691" %)**AT Command**(%%)**:**
1390
1391 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1392
1393 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1394
1395
1396 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1397
1398 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1399
1400
1401
1402 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1403
1404 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1405
1406
1407
1408 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1409
1410
1411 * (((
1412 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1413
1414 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1415
1416
1417 )))
1418
1419 **Example:**
1420
1421 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1422
1423
1424 == 3.5 Integrate with Mydevice ==
1425
1426
1427 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1428
1429 (((
1430 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1431 )))
1432
1433 (((
1434 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1435
1436
1437 )))
1438
1439 [[image:image-20220719105525-1.png||height="377" width="677"]]
1440
1441
1442
1443 [[image:image-20220719110247-2.png||height="388" width="683"]]
1444
1445
1446 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1447
1448 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1449
1450 Search under The things network
1451
1452 [[image:1653356838789-523.png||height="337" width="740"]]
1453
1454
1455
1456 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1457
1458 [[image:image-20220524094909-1.png||height="335" width="729"]]
1459
1460
1461 [[image:image-20220524094909-2.png||height="337" width="729"]]
1462
1463
1464 [[image:image-20220524094909-3.png||height="338" width="727"]]
1465
1466
1467 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1468
1469
1470 [[image:image-20220524094909-5.png||height="341" width="734"]]
1471
1472
1473 == 3.6 Interface Detail ==
1474
1475 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1476
1477
1478 Support NPN Type sensor
1479
1480 [[image:1653356991268-289.png]]
1481
1482
1483 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1484
1485
1486 (((
1487 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1488 )))
1489
1490 (((
1491 (((
1492 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1493
1494
1495 )))
1496 )))
1497
1498 [[image:1653357170703-587.png]]
1499
1500 (((
1501 (((
1502 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1503 )))
1504 )))
1505
1506 (((
1507
1508 )))
1509
1510 (((
1511 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1512 )))
1513
1514 (((
1515 This type of sensor will output a low signal GND when active.
1516 )))
1517
1518 * (((
1519 Connect sensor's output to DI1-
1520 )))
1521 * (((
1522 Connect sensor's VCC to DI1+.
1523 )))
1524
1525 (((
1526 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1527 )))
1528
1529 (((
1530 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1531 )))
1532
1533 (((
1534 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1535 )))
1536
1537 (((
1538
1539 )))
1540
1541 (((
1542 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1543 )))
1544
1545 (((
1546 This type of sensor will output a high signal (example 24v) when active.
1547 )))
1548
1549 * (((
1550 Connect sensor's output to DI1+
1551 )))
1552 * (((
1553 Connect sensor's GND DI1-.
1554 )))
1555
1556 (((
1557 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1558 )))
1559
1560 (((
1561 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1562 )))
1563
1564 (((
1565 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1566 )))
1567
1568 (((
1569
1570 )))
1571
1572 (((
1573 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1574 )))
1575
1576 (((
1577 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1578 )))
1579
1580 * (((
1581 Connect sensor's output to DI1+ with a serial 50K resistor
1582 )))
1583 * (((
1584 Connect sensor's GND DI1-.
1585 )))
1586
1587 (((
1588 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1589 )))
1590
1591 (((
1592 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1593 )))
1594
1595 (((
1596 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1597 )))
1598
1599
1600 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1601
1602 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1603
1604 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1605
1606 [[image:image-20230616235145-1.png]]
1607
1608
1609
1610 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1611
1612
1613 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1614
1615 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1616
1617 [[image:1653357531600-905.png]]
1618
1619
1620 === 3.6.4 Analog Input Interface ===
1621
1622
1623 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1624
1625
1626 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1627
1628 [[image:1653357592296-182.png]]
1629
1630 Example to connect a 4~~20mA sensor
1631
1632 We take the wind speed sensor as an example for reference only.
1633
1634
1635 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1636
1637 (% style="color:red" %)**Red:  12~~24v**
1638
1639 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1640
1641 **Black:  GND**
1642
1643 **Connection diagram:**
1644
1645 [[image:1653357640609-758.png]]
1646
1647 [[image:1653357648330-671.png||height="155" width="733"]]
1648
1649
1650 Example connected to a regulated power supply to measure voltage
1651
1652 [[image:image-20230608101532-1.png||height="606" width="447"]]
1653
1654 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1655
1656 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1657
1658
1659 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1660
1661 (% style="color:red" %)**Red:  12~~24v**
1662
1663 **Black:  GND**
1664
1665
1666 === 3.6.5 Relay Output ===
1667
1668
1669 (((
1670 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1671
1672 **Note**: RO pins go to Open(NO) when device is power off.
1673 )))
1674
1675 [[image:image-20220524100215-9.png]]
1676
1677
1678 [[image:image-20220524100215-10.png||height="382" width="723"]]
1679
1680
1681 == 3.7 LEDs Indicators ==
1682
1683
1684 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1685 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1686 |**PWR**|Always on if there is power
1687 |**SYS**|(((
1688 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1689 )))
1690 |**TX**|(((
1691 (((
1692 Device boot: TX blinks 5 times.
1693 )))
1694
1695 (((
1696 Successful join network: TX ON for 5 seconds.
1697 )))
1698
1699 (((
1700 Transmit a LoRa packet: TX blinks once
1701 )))
1702 )))
1703 |**RX**|RX blinks once when receive a packet.
1704 |**DO1**|
1705 |**DO2**|
1706 |**DO3**|
1707 |**DI2**|(((
1708 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1709 )))
1710 |**DI2**|(((
1711 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1712 )))
1713 |**DI2**|(((
1714 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1715 )))
1716 |**RO1**|
1717 |**RO2**|
1718
1719 = 4. Use AT Command =
1720
1721 == 4.1 Access AT Command ==
1722
1723
1724 (((
1725 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1726 )))
1727
1728 (((
1729
1730 )))
1731
1732 [[image:1653358238933-385.png]]
1733
1734
1735 (((
1736 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1737 )))
1738
1739 [[image:1653358355238-883.png]]
1740
1741
1742 (((
1743 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1744 )))
1745
1746 (((
1747 AT+<CMD>?        : Help on <CMD>
1748 )))
1749
1750 (((
1751 AT+<CMD>         : Run <CMD>
1752 )))
1753
1754 (((
1755 AT+<CMD>=<value> : Set the value
1756 )))
1757
1758 (((
1759 AT+<CMD>=?       :  Get the value
1760 )))
1761
1762 (((
1763 ATZ: Trig a reset of the MCU
1764 )))
1765
1766 (((
1767 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1768 )))
1769
1770 (((
1771 AT+DEUI: Get or Set the Device EUI
1772 )))
1773
1774 (((
1775 AT+DADDR: Get or Set the Device Address
1776 )))
1777
1778 (((
1779 AT+APPKEY: Get or Set the Application Key
1780 )))
1781
1782 (((
1783 AT+NWKSKEY: Get or Set the Network Session Key
1784 )))
1785
1786 (((
1787 AT+APPSKEY:  Get or Set the Application Session Key
1788 )))
1789
1790 (((
1791 AT+APPEUI:  Get or Set the Application EUI
1792 )))
1793
1794 (((
1795 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1796 )))
1797
1798 (((
1799 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1800 )))
1801
1802 (((
1803 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1804 )))
1805
1806 (((
1807 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1808 )))
1809
1810 (((
1811 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1812 )))
1813
1814 (((
1815 AT+RX2FQ: Get or Set the Rx2 window frequency
1816 )))
1817
1818 (((
1819 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1820 )))
1821
1822 (((
1823 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1824 )))
1825
1826 (((
1827 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1828 )))
1829
1830 (((
1831 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1832 )))
1833
1834 (((
1835 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1836 )))
1837
1838 (((
1839 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1840 )))
1841
1842 (((
1843 AT+NWKID: Get or Set the Network ID
1844 )))
1845
1846 (((
1847 AT+FCU: Get or Set the Frame Counter Uplink
1848 )))
1849
1850 (((
1851 AT+FCD: Get or Set the Frame Counter Downlink
1852 )))
1853
1854 (((
1855 AT+CLASS: Get or Set the Device Class
1856 )))
1857
1858 (((
1859 AT+JOIN: Join network
1860 )))
1861
1862 (((
1863 AT+NJS: Get OTAA Join Status
1864 )))
1865
1866 (((
1867 AT+SENDB: Send hexadecimal data along with the application port
1868 )))
1869
1870 (((
1871 AT+SEND: Send text data along with the application port
1872 )))
1873
1874 (((
1875 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1876 )))
1877
1878 (((
1879 AT+RECV: Print last received data in raw format
1880 )))
1881
1882 (((
1883 AT+VER:  Get current image version and Frequency Band
1884 )))
1885
1886 (((
1887 AT+CFM: Get or Set the confirmation mode (0-1)
1888 )))
1889
1890 (((
1891 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1892 )))
1893
1894 (((
1895 AT+SNR: Get the SNR of the last received packet
1896 )))
1897
1898 (((
1899 AT+RSSI: Get the RSSI of the last received packet
1900 )))
1901
1902 (((
1903 AT+TDC: Get or set the application data transmission interval in ms
1904 )))
1905
1906 (((
1907 AT+PORT: Get or set the application port
1908 )))
1909
1910 (((
1911 AT+DISAT: Disable AT commands
1912 )))
1913
1914 (((
1915 AT+PWORD: Set password, max 9 digits
1916 )))
1917
1918 (((
1919 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1920 )))
1921
1922 (((
1923 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1924 )))
1925
1926 (((
1927 AT+CFG: Print all settings
1928 )))
1929
1930
1931 == 4.2 Common AT Command Sequence ==
1932
1933 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1934
1935 (((
1936
1937
1938 (((
1939 (% style="color:blue" %)**If device has not joined network yet:**
1940 )))
1941 )))
1942
1943 (((
1944 (% style="background-color:#dcdcdc" %)**123456**
1945 )))
1946
1947 (((
1948 (% style="background-color:#dcdcdc" %)**AT+FDR**
1949 )))
1950
1951 (((
1952 (% style="background-color:#dcdcdc" %)**123456**
1953 )))
1954
1955 (((
1956 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1957 )))
1958
1959 (((
1960 (% style="background-color:#dcdcdc" %)**ATZ**
1961 )))
1962
1963
1964 (((
1965 (% style="color:blue" %)**If device already joined network:**
1966 )))
1967
1968 (((
1969 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1970 )))
1971
1972 (((
1973 (% style="background-color:#dcdcdc" %)**ATZ**
1974 )))
1975
1976
1977 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1978
1979 (((
1980
1981
1982 (((
1983 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1984 )))
1985 )))
1986
1987 (((
1988 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1989 )))
1990
1991 (((
1992 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1993 )))
1994
1995 (((
1996 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1997 )))
1998
1999 (((
2000 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2001 )))
2002
2003 (((
2004 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2005 )))
2006
2007 (((
2008 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2009 )))
2010
2011 (((
2012 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2013 )))
2014
2015 (((
2016 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2017 )))
2018
2019 (((
2020 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2021 )))
2022
2023 (((
2024 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2025 )))
2026
2027 (((
2028 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2029 )))
2030
2031 (((
2032 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2033
2034
2035 )))
2036
2037 (((
2038 (% style="color:red" %)**Note:**
2039 )))
2040
2041 (((
2042 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2043
2044 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2045
2046 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2047 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2048
2049 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2050
2051
2052 )))
2053
2054 (((
2055 [[image:1653359097980-169.png||height="188" width="729"]]
2056 )))
2057
2058 (((
2059
2060 )))
2061
2062 === 4.2.3 Change to Class A ===
2063
2064
2065 (((
2066 (% style="color:blue" %)**If sensor JOINED:**
2067
2068 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2069 ATZ**
2070 )))
2071
2072
2073 = 5. Case Study =
2074
2075 == 5.1 Counting how many objects pass in Flow Line ==
2076
2077
2078 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2079
2080
2081 = 6. FAQ =
2082
2083 == 6.1 How to upgrade the image? ==
2084
2085
2086 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2087
2088 * Support new features
2089 * For bug fix
2090 * Change LoRaWAN bands.
2091
2092 Below shows the hardware connection for how to upload an image to the LT:
2093
2094 [[image:1653359603330-121.png]]
2095
2096
2097 (((
2098 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2099 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2100 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2101
2102
2103 (((
2104 (% style="color:blue" %)**For LT-22222-L**(%%):
2105 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2106 )))
2107
2108
2109 )))
2110
2111 [[image:image-20220524103407-12.png]]
2112
2113
2114 [[image:image-20220524103429-13.png]]
2115
2116
2117 [[image:image-20220524104033-15.png]]
2118
2119
2120 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2121
2122
2123 [[image:1653360054704-518.png||height="186" width="745"]]
2124
2125
2126 (((
2127 (((
2128 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2129
2130
2131 )))
2132 )))
2133
2134 (((
2135 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2136 )))
2137
2138 (((
2139
2140
2141 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2142
2143
2144 )))
2145
2146 (((
2147 (((
2148 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2149 )))
2150 )))
2151
2152 (((
2153 (((
2154 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2155
2156
2157 )))
2158 )))
2159
2160 (((
2161 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2162
2163
2164 )))
2165
2166 (((
2167 [[image:1653360231087-571.png||height="401" width="727"]]
2168
2169
2170 )))
2171
2172 (((
2173 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2174 )))
2175
2176
2177
2178 (((
2179 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2180
2181
2182 )))
2183
2184 (((
2185 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2186 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2187 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2188 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2189 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2190 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2191 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2192 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2193 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2194 )))
2195
2196
2197 (((
2198 As shown in below:
2199 )))
2200
2201 [[image:1653360498588-932.png||height="485" width="726"]]
2202
2203
2204 == 6.4 How to change the uplink interval? ==
2205
2206
2207 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2208
2209
2210 == 6.5 Can I see counting event in Serial? ==
2211
2212
2213 (((
2214 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2215
2216
2217 == 6.6 Can i use point to point communication for LT-22222-L? ==
2218
2219
2220 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2221
2222
2223 )))
2224
2225 (((
2226 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2227
2228
2229 If the device is not shut down, but directly powered off.
2230
2231 It will default that this is a power-off state.
2232
2233 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2234
2235 After restart, the status before power failure will be read from flash.
2236
2237
2238 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2239
2240
2241 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2242
2243
2244 [[image:image-20221006170630-1.png||height="610" width="945"]]
2245
2246
2247 == 6.9 Can LT22222-L save RO state? ==
2248
2249
2250 Firmware version needs to be no less than 1.6.0.
2251
2252
2253 = 7. Trouble Shooting =
2254 )))
2255
2256 (((
2257 (((
2258 == 7.1 Downlink doesn't work, how to solve it? ==
2259
2260
2261 )))
2262 )))
2263
2264 (((
2265 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2266 )))
2267
2268 (((
2269
2270
2271 == 7.2 Have trouble to upload image. ==
2272
2273
2274 )))
2275
2276 (((
2277 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2278 )))
2279
2280 (((
2281
2282
2283 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2284
2285
2286 )))
2287
2288 (((
2289 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2290 )))
2291
2292
2293 = 8. Order Info =
2294
2295
2296 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2297
2298 (% style="color:#4f81bd" %)**XXX:**
2299
2300 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2301 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2302 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2303 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2304 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2305 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2306 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2307 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2308 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2309
2310 = 9. Packing Info =
2311
2312
2313 **Package Includes**:
2314
2315 * LT-22222-L I/O Controller x 1
2316 * Stick Antenna for LoRa RF part x 1
2317 * Bracket for controller x1
2318 * Program cable x 1
2319
2320 **Dimension and weight**:
2321
2322 * Device Size: 13.5 x 7 x 3 cm
2323 * Device Weight: 105g
2324 * Package Size / pcs : 14.5 x 8 x 5 cm
2325 * Weight / pcs : 170g
2326
2327 = 10. Support =
2328
2329
2330 * (((
2331 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2332 )))
2333 * (((
2334 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2335
2336
2337
2338 )))
2339
2340 = 11. Reference​​​​​ =
2341
2342
2343 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2344 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2345 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2346
2347
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0