Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208 == 1.5 Hardware Variants ==
209
210
211 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
212 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
213 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
214 (% style="text-align:center" %)
215 [[image:image-20230424115112-1.png||height="106" width="58"]]
216 )))|(% style="width:334px" %)(((
217 * 2 x Digital Input (Bi-direction)
218 * 2 x Digital Output
219 * 2 x Relay Output (5A@250VAC / 30VDC)
220 * 2 x 0~~20mA Analog Input (res:0.01mA)
221 * 2 x 0~~30V Analog Input (res:0.01v)
222 * 1 x Counting Port
223 )))
224
225 = 2. Power ON Device =
226
227
228 (((
229 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
230 )))
231
232 (((
233 PWR will on when device is properly powered.
234
235
236 )))
237
238 [[image:1653297104069-180.png]]
239
240
241 = 3. Operation Mode =
242
243 == 3.1 How it works? ==
244
245
246 (((
247 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
248 )))
249
250 (((
251 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
252 )))
253
254
255 == 3.2 Example to join LoRaWAN network ==
256
257
258 (((
259 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
260
261
262 )))
263
264 [[image:image-20220523172350-1.png||height="266" width="864"]]
265
266
267 (((
268 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
269
270
271 )))
272
273 (((
274 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
275 )))
276
277 (((
278 Each LT is shipped with a sticker with the default device EUI as below:
279 )))
280
281 [[image:image-20230425173427-2.png||height="246" width="530"]]
282
283
284 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
285
286 **Add APP EUI in the application.**
287
288 [[image:1653297955910-247.png||height="321" width="716"]]
289
290
291 **Add APP KEY and DEV EUI**
292
293 [[image:1653298023685-319.png]]
294
295
296
297 (((
298 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
299
300
301 )))
302
303 [[image:1653298044601-602.png||height="405" width="709"]]
304
305
306 == 3.3 Uplink Payload ==
307
308
309 There are five working modes + one interrupt mode on LT for different type application:
310
311 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
312
313 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
314
315 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
316
317 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
318
319 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
320
321 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
322
323 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
324
325
326 (((
327 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
331 |Value|(((
332 AVI1 voltage
333 )))|(((
334 AVI2 voltage
335 )))|(((
336 ACI1 Current
337 )))|(((
338 ACI2 Current
339 )))|DIDORO*|(((
340 Reserve
341 )))|MOD
342 )))
343
344 (((
345 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
346
347 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
349 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
350 )))
351
352 * RO is for relay. ROx=1 : close,ROx=0 always open.
353 * DI is for digital input. DIx=1: high or float, DIx=0: low.
354 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
355
356 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
357
358 For example if payload is: [[image:image-20220523175847-2.png]]
359
360
361 **The value for the interface is:  **
362
363 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364
365 AVI2 channel voltage is 0x04AC/1000=1.196V
366
367 ACI1 channel current is 0x1310/1000=4.880mA
368
369 ACI2 channel current is 0x1300/1000=4.864mA
370
371 The last byte 0xAA= 10101010(B) means
372
373 * [1] RO1 relay channel is close and the RO1 LED is ON.
374 * [0] RO2 relay channel is open and RO2 LED is OFF;
375
376 **LT22222-L:**
377
378 * [1] DI2 channel is high input and DI2 LED is ON;
379 * [0] DI1 channel is low input;
380
381 * [0] DO3 channel output state
382 ** DO3 is float in case no load between DO3 and V+.;
383 ** DO3 is high in case there is load between DO3 and V+.
384 ** DO3 LED is off in both case
385 * [1] DO2 channel output is low and DO2 LED is ON.
386 * [0] DO1 channel output state
387 ** DO1 is float in case no load between DO1 and V+.;
388 ** DO1 is high in case there is load between DO1 and V+.
389 ** DO1 LED is off in both case
390
391
392 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
393
394
395 (((
396 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
397 )))
398
399 (((
400 Total : 11 bytes payload
401
402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
404 |Value|COUNT1|COUNT2 |DIDORO*|(((
405 Reserve
406 )))|MOD
407 )))
408
409 (((
410 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
411
412 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
413 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
414 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
415
416 RO is for relay. ROx=1 : close,ROx=0 always open.
417 )))
418
419 * FIRST: Indicate this is the first packet after join network.
420 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
421
422 (((
423 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
424 )))
425
426 (((
427 **To use counting mode, please run:**
428 )))
429
430
431 (((
432 (% class="box infomessage" %)
433 (((
434 **AT+MOD=2**
435
436 **ATZ**
437 )))
438 )))
439
440 (((
441
442
443 (% style="color:#4f81bd" %)**AT Commands for counting:**
444 )))
445
446 (((
447 **For LT22222-L:**
448
449 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
450
451 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
452
453 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
454
455 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
456
457 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
458
459 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
460 )))
461
462
463 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
464
465
466 **LT22222-L**: This mode the DI1 is used as a counting pin.
467
468 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
469 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
470 |Value|COUNT1|(((
471 ACI1 Current
472 )))|(((
473 ACI2 Current
474 )))|DIDORO*|Reserve|MOD
475
476 (((
477 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
478
479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
480 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
481 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
482 )))
483
484 * RO is for relay. ROx=1 : close,ROx=0 always open.
485 * FIRST: Indicate this is the first packet after join network.
486 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
487
488 (((
489 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
490 )))
491
492
493 (((
494 **To use counting mode, please run:**
495 )))
496
497 (((
498 (% class="box infomessage" %)
499 (((
500 **AT+MOD=3**
501
502 **ATZ**
503 )))
504 )))
505
506 (((
507 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
508 )))
509
510
511 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
512
513
514 (((
515 **LT22222-L**: This mode the DI1 is used as a counting pin.
516 )))
517
518 (((
519 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
520
521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
523 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
524 Reserve
525 )))|MOD
526 )))
527
528 (((
529 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
530
531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
532 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
533 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
534 )))
535
536 * RO is for relay. ROx=1 : close,ROx=0 always open.
537 * FIRST: Indicate this is the first packet after join network.
538 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539
540 (((
541 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
542
543
544 )))
545
546 (((
547 **To use this mode, please run:**
548 )))
549
550 (((
551 (% class="box infomessage" %)
552 (((
553 **AT+MOD=4**
554
555 **ATZ**
556 )))
557 )))
558
559 (((
560 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
561 )))
562
563 (((
564 **Plus below command for AVI1 Counting:**
565
566 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
567
568 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
569
570 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
571
572 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
573 )))
574
575
576 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
577
578
579 **LT22222-L**: This mode the DI1 is used as a counting pin.
580
581 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
582 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
583 |Value|(((
584 AVI1 voltage
585 )))|(((
586 AVI2 voltage
587 )))|(((
588 ACI1 Current
589 )))|COUNT1|DIDORO*|(((
590 Reserve
591 )))|MOD
592
593 (((
594 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
597 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
598 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
599 )))
600
601 * RO is for relay. ROx=1 : close,ROx=0 always open.
602 * FIRST: Indicate this is the first packet after join network.
603 * (((
604 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
605 )))
606
607 (((
608 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
609 )))
610
611 (((
612 **To use this mode, please run:**
613 )))
614
615 (((
616 (% class="box infomessage" %)
617 (((
618 **AT+MOD=5**
619
620 **ATZ**
621 )))
622 )))
623
624 (((
625 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
626 )))
627
628
629 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
630
631
632 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
633
634 For example, if user has configured below commands:
635
636 * **AT+MOD=1 ** **~-~->**  The normal working mode
637 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
638
639 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
640
641 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
642 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
643
644
645 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
646
647
648 (% style="color:#4f81bd" %)**Trigger base on voltage**:
649
650 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
651
652
653 **Example:**
654
655 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
656
657 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
658
659
660
661 (% style="color:#4f81bd" %)**Trigger base on current**:
662
663 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
664
665
666 **Example:**
667
668 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
669
670
671
672 (% style="color:#4f81bd" %)**Trigger base on DI status**:
673
674 DI status trigger Flag.
675
676 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
677
678
679 **Example:**
680
681 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
682
683
684 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
685
686 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
687
688 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
689
690 AA: Code for this downlink Command:
691
692 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
693
694 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
695
696 yy2 yy2: AC1 or AV1 high limit.
697
698 yy3 yy3: AC2 or AV2 low limit.
699
700 Yy4 yy4: AC2 or AV2 high limit.
701
702
703 **Example1**: AA 00 13 88 00 00 00 00 00 00
704
705 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
706
707
708 **Example2**: AA 02 01 00
709
710 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
711
712
713
714 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
715
716 MOD6 Payload : total 11 bytes payload
717
718 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
719 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
720 |Value|(((
721 TRI_A FLAG
722 )))|(((
723 TRI_A Status
724 )))|(((
725 TRI_DI FLAG+STA
726 )))|Reserve|Enable/Disable MOD6|(((
727 MOD(6)
728 )))
729
730 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
731
732 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
733 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
734 |(((
735 AV1_LOW
736 )))|(((
737 AV1_HIGH
738 )))|(((
739 AV2_LOW
740 )))|(((
741 AV2_HIGH
742 )))|(((
743 AC1_LOW
744 )))|(((
745 AC1_HIGH
746 )))|(((
747 AC2_LOW
748 )))|(((
749 AC2_HIGH
750 )))
751
752 * Each bits shows if the corresponding trigger has been configured.
753
754 **Example:**
755
756 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
757
758
759 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
760
761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
762 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
763 |(((
764 AV1_LOW
765 )))|(((
766 AV1_HIGH
767 )))|(((
768 AV2_LOW
769 )))|(((
770 AV2_HIGH
771 )))|(((
772 AC1_LOW
773 )))|(((
774 AC1_HIGH
775 )))|(((
776 AC2_LOW
777 )))|(((
778 AC2_HIGH
779 )))
780
781 * Each bits shows which status has been trigger on this uplink.
782
783 **Example:**
784
785 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
786
787
788 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
789
790 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
791 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
792 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
793
794 * Each bits shows which status has been trigger on this uplink.
795
796 **Example:**
797
798 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
799
800 00000101: Means both DI1 and DI2 trigger are enabled.
801
802
803 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
804
805 Downlink command to poll MOD6 status:
806
807 **AB 06**
808
809 When device got this command, it will send the MOD6 payload.
810
811
812 === 3.3.7 Payload Decoder ===
813
814 (((
815
816
817 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
818 )))
819
820
821 == 3.4 ​Configure LT via AT or Downlink ==
822
823
824 (((
825 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
826 )))
827
828 (((
829 (((
830 There are two kinds of Commands:
831 )))
832 )))
833
834 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
835
836 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
837
838 === 3.4.1 Common Commands ===
839
840
841 (((
842 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
843 )))
844
845
846 === 3.4.2 Sensor related commands ===
847
848 ==== 3.4.2.1 Set Transmit Interval ====
849
850
851 Set device uplink interval.
852
853 * (% style="color:#037691" %)**AT Command:**
854
855 (% style="color:blue" %)**AT+TDC=N **
856
857
858 **Example: **AT+TDC=30000. Means set interval to 30 seconds
859
860
861 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
862
863 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
864
865
866
867 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
868
869
870 Set work mode.
871
872 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
873
874 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
875
876 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
877
878 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
879
880
881
882 ==== 3.4.2.3 Poll an uplink ====
883
884
885 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
888
889 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
890
891 **Example**: 0x08FF, ask device to send an Uplink
892
893
894
895 ==== 3.4.2.4 Enable Trigger Mode ====
896
897
898 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
899
900 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
901
902 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
903
904 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
905
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
908
909 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
910
911
912
913 ==== 3.4.2.5 Poll trigger settings ====
914
915
916 Poll trigger settings
917
918 * (% style="color:#037691" %)**AT Command:**
919
920 There is no AT Command for this feature.
921
922 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
923
924 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
925
926
927
928 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
929
930
931 Enable Disable DI1/DI2/DI2 as trigger,
932
933 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
934
935 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
936
937
938 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
939
940 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
941
942
943
944 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
945
946
947 Set DI1 or DI3(for LT-33222-L) trigger.
948
949 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
950
951 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
952
953 (% style="color:red" %)**b :** (%%)delay timing.
954
955 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
959
960 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
961
962
963
964 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
965
966
967 Set DI2 trigger.
968
969 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
970
971 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
972
973 (% style="color:red" %)**b :** (%%)delay timing.
974
975 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
976
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
979
980 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
981
982
983
984 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
985
986
987 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
988
989 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
990
991 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
992
993 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
994
995
996
997 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
998
999
1000 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1001
1002 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1003
1004 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1005
1006 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1007
1008
1009
1010 ==== 3.4.2.11 Trigger – Set minimum interval ====
1011
1012
1013 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1014
1015 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1016
1017 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1018
1019 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1020
1021 (((
1022 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1023 )))
1024
1025
1026
1027 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1028
1029
1030 * (% style="color:#037691" %)**AT Command**
1031
1032 There is no AT Command to control Digital Output
1033
1034
1035 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1036
1037 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1038
1039 (((
1040 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1041 )))
1042
1043 (((
1044 01: Low,  00: High ,  11: No action
1045
1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1048 |02  01  00  11|Low|High|No Action
1049 |02  00  11  01|High|No Action|Low
1050 |02  11  01  00|No Action|Low|High
1051 )))
1052
1053 (((
1054 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1055 )))
1056
1057 (((
1058 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1059 )))
1060
1061
1062
1063 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1064
1065
1066 * (% style="color:#037691" %)**AT Command**
1067
1068 There is no AT Command to control Digital Output
1069
1070
1071 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1072
1073 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1074
1075
1076 This is to control the digital output time of DO pin. Include four bytes:
1077
1078 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1079
1080 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1081
1082 01: DO pins will change back to original state after timeout.
1083
1084 00: DO pins will change to an inverter state after timeout 
1085
1086
1087 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1088
1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1090 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1091 |0x01|DO1 set to low
1092 |0x00|DO1 set to high
1093 |0x11|DO1 NO Action
1094
1095 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1096
1097 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1098 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1099 |0x01|DO2 set to low
1100 |0x00|DO2 set to high
1101 |0x11|DO2 NO Action
1102
1103 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1104
1105 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1106 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1107 |0x01|DO3 set to low
1108 |0x00|DO3 set to high
1109 |0x11|DO3 NO Action
1110
1111 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1112
1113
1114 (% style="color:red" %)**Note: **
1115
1116 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1117
1118 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1119
1120 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1121
1122
1123 **Example payload:**
1124
1125 **~1. A9 01 01 01 01 07 D0**
1126
1127 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1128
1129 **2. A9 01 00 01 11 07 D0**
1130
1131 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1132
1133 **3. A9 00 00 00 00 07 D0**
1134
1135 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1136
1137 **4. A9 00 11 01 00 07 D0**
1138
1139 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1140
1141
1142
1143 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1144
1145
1146 * (% style="color:#037691" %)**AT Command:**
1147
1148 There is no AT Command to control Relay Output
1149
1150
1151 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1152
1153 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1154
1155
1156 (((
1157 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1158 )))
1159
1160 (((
1161 01: Close ,  00: Open , 11: No action
1162
1163 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1164 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1165 |03  00  11|Open|No Action
1166 |03  01  11|Close|No Action
1167 |03  11  00|No Action|Open
1168 |03  11  01|No Action|Close
1169 |03  00  00|Open|Open
1170 |03  01  01|Close|Close
1171 |03  01  00|Close|Open
1172 |03  00  01|Open|Close
1173 )))
1174
1175 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1176
1177
1178
1179 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1180
1181
1182 * (% style="color:#037691" %)**AT Command:**
1183
1184 There is no AT Command to control Relay Output
1185
1186
1187 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1188
1189 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1190
1191
1192 This is to control the relay output time of relay. Include four bytes:
1193
1194 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1195
1196 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1197
1198 01: Relays will change back to original state after timeout.
1199
1200 00: Relays will change to an inverter state after timeout
1201
1202
1203 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1204
1205 [[image:image-20221008095908-1.png||height="364" width="564"]]
1206
1207
1208 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1209
1210
1211 (% style="color:red" %)**Note:**
1212
1213 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1214
1215 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1216
1217
1218 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1219
1220
1221 **Example payload:**
1222
1223 **~1. 05 01 11 07 D0**
1224
1225 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1226
1227 **2. 05 01 10 07 D0**
1228
1229 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1230
1231 **3. 05 00 01 07 D0**
1232
1233 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1234
1235 **4. 05 00 00 07 D0**
1236
1237 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1238
1239
1240
1241 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1242
1243
1244 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1245
1246 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1247
1248 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1249
1250 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1251
1252
1253
1254 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1255
1256
1257 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1258
1259 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1260
1261 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1262
1263
1264 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1265
1266 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1267
1268
1269
1270 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1271
1272
1273 Clear counting for counting mode
1274
1275 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1276
1277 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1278
1279 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1280
1281
1282
1283 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1284
1285
1286 * (% style="color:#037691" %)**AT Command:**
1287
1288 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1289
1290
1291 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1292
1293 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1294
1295 (((
1296 range: aa bb cc:0 to 16777215,  (unit:second)
1297 )))
1298
1299
1300
1301 ==== 3.4.2.20 Reset save RO DO state ====
1302
1303
1304 * (% style="color:#037691" %)**AT Command:**
1305
1306 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1307
1308 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1309
1310
1311 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1312
1313 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1314
1315
1316
1317 ==== 3.4.2.21 Encrypted payload ====
1318
1319
1320 * (% style="color:#037691" %)**AT Command:**
1321
1322 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1323
1324 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1325
1326
1327
1328 ==== 3.4.2.22 Get sensor value ====
1329
1330
1331 * (% style="color:#037691" %)**AT Command:**
1332
1333 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1334
1335 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1336
1337
1338
1339 ==== 3.4.2.23 Resets the downlink packet count ====
1340
1341
1342 * (% style="color:#037691" %)**AT Command:**
1343
1344 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1345
1346 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1347
1348
1349
1350 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1351
1352
1353 * (% style="color:#037691" %)**AT Command:**
1354
1355 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1356
1357 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1358
1359
1360 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1361
1362 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1363
1364
1365
1366 ==== 3.4.2.25 Copy downlink to uplink ====
1367
1368
1369 * (% style="color:#037691" %)**AT Command**(%%)**:**
1370
1371 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1372
1373 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1374
1375
1376 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1377
1378 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1379
1380
1381
1382 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1383
1384 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1385
1386
1387
1388 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1389
1390
1391 * (((
1392 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1393
1394 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1395
1396
1397 )))
1398
1399 **Example:**
1400
1401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1402
1403
1404 == 3.5 Integrate with Mydevice ==
1405
1406
1407 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1408
1409 (((
1410 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1411 )))
1412
1413 (((
1414 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1415
1416
1417 )))
1418
1419 [[image:image-20220719105525-1.png||height="377" width="677"]]
1420
1421
1422
1423 [[image:image-20220719110247-2.png||height="388" width="683"]]
1424
1425
1426 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1427
1428 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1429
1430 Search under The things network
1431
1432 [[image:1653356838789-523.png||height="337" width="740"]]
1433
1434
1435
1436 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1437
1438 [[image:image-20220524094909-1.png||height="335" width="729"]]
1439
1440
1441 [[image:image-20220524094909-2.png||height="337" width="729"]]
1442
1443
1444 [[image:image-20220524094909-3.png||height="338" width="727"]]
1445
1446
1447 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1448
1449
1450 [[image:image-20220524094909-5.png||height="341" width="734"]]
1451
1452
1453 == 3.6 Interface Detail ==
1454
1455 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1456
1457
1458 Support NPN Type sensor
1459
1460 [[image:1653356991268-289.png]]
1461
1462
1463 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1464
1465
1466 (((
1467 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1468 )))
1469
1470 (((
1471 (((
1472 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1473
1474
1475 )))
1476 )))
1477
1478 [[image:1653357170703-587.png]]
1479
1480 (((
1481 (((
1482 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1483 )))
1484 )))
1485
1486 (((
1487
1488 )))
1489
1490 (((
1491 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1492 )))
1493
1494 (((
1495 This type of sensor will output a low signal GND when active.
1496 )))
1497
1498 * (((
1499 Connect sensor's output to DI1-
1500 )))
1501 * (((
1502 Connect sensor's VCC to DI1+.
1503 )))
1504
1505 (((
1506 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 )))
1508
1509 (((
1510 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1511 )))
1512
1513 (((
1514 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1515 )))
1516
1517 (((
1518
1519 )))
1520
1521 (((
1522 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1523 )))
1524
1525 (((
1526 This type of sensor will output a high signal (example 24v) when active.
1527 )))
1528
1529 * (((
1530 Connect sensor's output to DI1+
1531 )))
1532 * (((
1533 Connect sensor's GND DI1-.
1534 )))
1535
1536 (((
1537 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 )))
1539
1540 (((
1541 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1542 )))
1543
1544 (((
1545 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1546 )))
1547
1548 (((
1549
1550 )))
1551
1552 (((
1553 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1554 )))
1555
1556 (((
1557 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1558 )))
1559
1560 * (((
1561 Connect sensor's output to DI1+ with a serial 50K resistor
1562 )))
1563 * (((
1564 Connect sensor's GND DI1-.
1565 )))
1566
1567 (((
1568 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1569 )))
1570
1571 (((
1572 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1573 )))
1574
1575 (((
1576 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1577 )))
1578
1579
1580 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1581
1582 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1583
1584 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1585
1586 [[image:image-20230616235145-1.png]]
1587
1588
1589
1590 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1591
1592
1593 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1594
1595 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1596
1597 [[image:1653357531600-905.png]]
1598
1599
1600 === 3.6.4 Analog Input Interface ===
1601
1602
1603 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1604
1605
1606 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1607
1608 [[image:1653357592296-182.png]]
1609
1610 Example to connect a 4~~20mA sensor
1611
1612 We take the wind speed sensor as an example for reference only.
1613
1614
1615 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1616
1617 (% style="color:red" %)**Red:  12~~24v**
1618
1619 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1620
1621 **Black:  GND**
1622
1623 **Connection diagram:**
1624
1625 [[image:1653357640609-758.png]]
1626
1627 [[image:1653357648330-671.png||height="155" width="733"]]
1628
1629
1630 Example connected to a regulated power supply to measure voltage
1631
1632 [[image:image-20230608101532-1.png||height="606" width="447"]]
1633
1634 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1635
1636 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1637
1638
1639 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1640
1641 (% style="color:red" %)**Red:  12~~24v**
1642
1643 **Black:  GND**
1644
1645
1646 === 3.6.5 Relay Output ===
1647
1648
1649 (((
1650 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1651
1652 **Note**: RO pins go to Open(NO) when device is power off.
1653 )))
1654
1655 [[image:image-20220524100215-9.png]]
1656
1657
1658 [[image:image-20220524100215-10.png||height="382" width="723"]]
1659
1660
1661 == 3.7 LEDs Indicators ==
1662
1663
1664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1665 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1666 |**PWR**|Always on if there is power
1667 |**SYS**|(((
1668 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1669 )))
1670 |**TX**|(((
1671 (((
1672 Device boot: TX blinks 5 times.
1673 )))
1674
1675 (((
1676 Successful join network: TX ON for 5 seconds.
1677 )))
1678
1679 (((
1680 Transmit a LoRa packet: TX blinks once
1681 )))
1682 )))
1683 |**RX**|RX blinks once when receive a packet.
1684 |**DO1**|
1685 |**DO2**|
1686 |**DO3**|
1687 |**DI2**|(((
1688 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1689 )))
1690 |**DI2**|(((
1691 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1692 )))
1693 |**DI2**|(((
1694 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1695 )))
1696 |**RO1**|
1697 |**RO2**|
1698
1699 = 4. Use AT Command =
1700
1701 == 4.1 Access AT Command ==
1702
1703
1704 (((
1705 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1706 )))
1707
1708 (((
1709
1710 )))
1711
1712 [[image:1653358238933-385.png]]
1713
1714
1715 (((
1716 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1717 )))
1718
1719 [[image:1653358355238-883.png]]
1720
1721
1722 (((
1723 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1724 )))
1725
1726 (((
1727 AT+<CMD>?        : Help on <CMD>
1728 )))
1729
1730 (((
1731 AT+<CMD>         : Run <CMD>
1732 )))
1733
1734 (((
1735 AT+<CMD>=<value> : Set the value
1736 )))
1737
1738 (((
1739 AT+<CMD>=?       :  Get the value
1740 )))
1741
1742 (((
1743 ATZ: Trig a reset of the MCU
1744 )))
1745
1746 (((
1747 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1748 )))
1749
1750 (((
1751 AT+DEUI: Get or Set the Device EUI
1752 )))
1753
1754 (((
1755 AT+DADDR: Get or Set the Device Address
1756 )))
1757
1758 (((
1759 AT+APPKEY: Get or Set the Application Key
1760 )))
1761
1762 (((
1763 AT+NWKSKEY: Get or Set the Network Session Key
1764 )))
1765
1766 (((
1767 AT+APPSKEY:  Get or Set the Application Session Key
1768 )))
1769
1770 (((
1771 AT+APPEUI:  Get or Set the Application EUI
1772 )))
1773
1774 (((
1775 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1776 )))
1777
1778 (((
1779 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1780 )))
1781
1782 (((
1783 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1784 )))
1785
1786 (((
1787 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1788 )))
1789
1790 (((
1791 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1792 )))
1793
1794 (((
1795 AT+RX2FQ: Get or Set the Rx2 window frequency
1796 )))
1797
1798 (((
1799 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 )))
1801
1802 (((
1803 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1804 )))
1805
1806 (((
1807 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1808 )))
1809
1810 (((
1811 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1812 )))
1813
1814 (((
1815 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1816 )))
1817
1818 (((
1819 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1820 )))
1821
1822 (((
1823 AT+NWKID: Get or Set the Network ID
1824 )))
1825
1826 (((
1827 AT+FCU: Get or Set the Frame Counter Uplink
1828 )))
1829
1830 (((
1831 AT+FCD: Get or Set the Frame Counter Downlink
1832 )))
1833
1834 (((
1835 AT+CLASS: Get or Set the Device Class
1836 )))
1837
1838 (((
1839 AT+JOIN: Join network
1840 )))
1841
1842 (((
1843 AT+NJS: Get OTAA Join Status
1844 )))
1845
1846 (((
1847 AT+SENDB: Send hexadecimal data along with the application port
1848 )))
1849
1850 (((
1851 AT+SEND: Send text data along with the application port
1852 )))
1853
1854 (((
1855 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1856 )))
1857
1858 (((
1859 AT+RECV: Print last received data in raw format
1860 )))
1861
1862 (((
1863 AT+VER:  Get current image version and Frequency Band
1864 )))
1865
1866 (((
1867 AT+CFM: Get or Set the confirmation mode (0-1)
1868 )))
1869
1870 (((
1871 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1872 )))
1873
1874 (((
1875 AT+SNR: Get the SNR of the last received packet
1876 )))
1877
1878 (((
1879 AT+RSSI: Get the RSSI of the last received packet
1880 )))
1881
1882 (((
1883 AT+TDC: Get or set the application data transmission interval in ms
1884 )))
1885
1886 (((
1887 AT+PORT: Get or set the application port
1888 )))
1889
1890 (((
1891 AT+DISAT: Disable AT commands
1892 )))
1893
1894 (((
1895 AT+PWORD: Set password, max 9 digits
1896 )))
1897
1898 (((
1899 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1900 )))
1901
1902 (((
1903 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1904 )))
1905
1906 (((
1907 AT+CFG: Print all settings
1908 )))
1909
1910
1911 == 4.2 Common AT Command Sequence ==
1912
1913 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1914
1915 (((
1916
1917
1918 (((
1919 (% style="color:blue" %)**If device has not joined network yet:**
1920 )))
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)**123456**
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)**AT+FDR**
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)**123456**
1933 )))
1934
1935 (((
1936 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1937 )))
1938
1939 (((
1940 (% style="background-color:#dcdcdc" %)**ATZ**
1941 )))
1942
1943
1944 (((
1945 (% style="color:blue" %)**If device already joined network:**
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)**ATZ**
1954 )))
1955
1956
1957 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1958
1959 (((
1960
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1964 )))
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1973 )))
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1977 )))
1978
1979 (((
1980 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1981 )))
1982
1983 (((
1984 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1985 )))
1986
1987 (((
1988 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1989 )))
1990
1991 (((
1992 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1993 )))
1994
1995 (((
1996 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1997 )))
1998
1999 (((
2000 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2001 )))
2002
2003 (((
2004 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2005 )))
2006
2007 (((
2008 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2009 )))
2010
2011 (((
2012 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2013
2014
2015 )))
2016
2017 (((
2018 (% style="color:red" %)**Note:**
2019 )))
2020
2021 (((
2022 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2023
2024 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2025
2026 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2027 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2028
2029 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2030
2031 )))
2032
2033 (((
2034 [[image:1653359097980-169.png||height="188" width="729"]]
2035 )))
2036
2037
2038 === 4.2.3 Change to Class A ===
2039
2040
2041 (((
2042 (% style="color:blue" %)**If sensor JOINED:**
2043 (((
2044 (% class="box infomessage" %)
2045 **AT+CLASS=A**
2046 **ATZ**
2047 )))
2048 )))
2049
2050
2051 = 5. Case Study =
2052
2053 == 5.1 Counting how many objects pass in Flow Line ==
2054
2055
2056 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2057
2058
2059 = 6. FAQ =
2060
2061 == 6.1 How to upgrade the image? ==
2062
2063
2064 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2065
2066 * Support new features
2067 * For bug fix
2068 * Change LoRaWAN bands.
2069
2070 Below shows the hardware connection for how to upload an image to the LT:
2071
2072 [[image:1653359603330-121.png]]
2073
2074
2075 (((
2076 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2077 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2078 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2079
2080
2081 (((
2082 (% style="color:blue" %)**For LT-22222-L**(%%):
2083 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2084 )))
2085
2086
2087 )))
2088
2089 [[image:image-20220524103407-12.png]]
2090
2091
2092 [[image:image-20220524103429-13.png]]
2093
2094
2095 [[image:image-20220524104033-15.png]]
2096
2097
2098 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2099
2100
2101 [[image:1653360054704-518.png||height="186" width="745"]]
2102
2103
2104 (((
2105 (((
2106 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2107
2108
2109 )))
2110 )))
2111
2112 (((
2113 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2114 )))
2115
2116 (((
2117
2118
2119 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2120
2121
2122 )))
2123
2124 (((
2125 (((
2126 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2127 )))
2128 )))
2129
2130 (((
2131 (((
2132 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2133
2134
2135 )))
2136 )))
2137
2138 (((
2139 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2140
2141
2142 )))
2143
2144 (((
2145 [[image:1653360231087-571.png||height="401" width="727"]]
2146
2147
2148 )))
2149
2150 (((
2151 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2152 )))
2153
2154
2155
2156 (((
2157 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2158
2159
2160 )))
2161
2162 (((
2163 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2164 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2165 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2166 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2167 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2168 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2169 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2170 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2171 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2172 )))
2173
2174
2175 (((
2176 As shown in below:
2177 )))
2178
2179 [[image:1653360498588-932.png||height="485" width="726"]]
2180
2181
2182 == 6.4 How to change the uplink interval? ==
2183
2184
2185 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2186
2187
2188 == 6.5 Can I see counting event in Serial? ==
2189
2190
2191 (((
2192 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2193
2194
2195 == 6.6 Can i use point to point communication for LT-22222-L? ==
2196
2197
2198 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2199
2200
2201 )))
2202
2203 (((
2204 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2205
2206
2207 If the device is not shut down, but directly powered off.
2208
2209 It will default that this is a power-off state.
2210
2211 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2212
2213 After restart, the status before power failure will be read from flash.
2214
2215
2216 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2217
2218
2219 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2220
2221
2222 [[image:image-20221006170630-1.png||height="610" width="945"]]
2223
2224
2225 == 6.9 Can LT22222-L save RO state? ==
2226
2227
2228 Firmware version needs to be no less than 1.6.0.
2229
2230
2231 = 7. Trouble Shooting =
2232 )))
2233
2234 (((
2235 (((
2236 == 7.1 Downlink doesn't work, how to solve it? ==
2237
2238
2239 )))
2240 )))
2241
2242 (((
2243 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2244 )))
2245
2246 (((
2247
2248
2249 == 7.2 Have trouble to upload image. ==
2250
2251
2252 )))
2253
2254 (((
2255 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2256 )))
2257
2258 (((
2259
2260
2261 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2262
2263
2264 )))
2265
2266 (((
2267 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2268 )))
2269
2270
2271 = 8. Order Info =
2272
2273
2274 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2275
2276 (% style="color:#4f81bd" %)**XXX:**
2277
2278 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2279 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2280 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2281 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2282 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2283 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2284 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2285 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2286 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2287
2288 = 9. Packing Info =
2289
2290
2291 **Package Includes**:
2292
2293 * LT-22222-L I/O Controller x 1
2294 * Stick Antenna for LoRa RF part x 1
2295 * Bracket for controller x1
2296 * Program cable x 1
2297
2298 **Dimension and weight**:
2299
2300 * Device Size: 13.5 x 7 x 3 cm
2301 * Device Weight: 105g
2302 * Package Size / pcs : 14.5 x 8 x 5 cm
2303 * Weight / pcs : 170g
2304
2305 = 10. Support =
2306
2307
2308 * (((
2309 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2310 )))
2311 * (((
2312 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2313
2314
2315
2316 )))
2317
2318 = 11. Reference​​​​​ =
2319
2320
2321 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2322 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2323 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2324
2325
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0