Version 126.10 by Xiaoling on 2023/06/19 15:55

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208
209
210 == 1.5 Hardware Variants ==
211
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
215 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 (% style="text-align:center" %)
217 [[image:image-20230424115112-1.png||height="106" width="58"]]
218 )))|(% style="width:334px" %)(((
219 * 2 x Digital Input (Bi-direction)
220 * 2 x Digital Output
221 * 2 x Relay Output (5A@250VAC / 30VDC)
222 * 2 x 0~~20mA Analog Input (res:0.01mA)
223 * 2 x 0~~30V Analog Input (res:0.01v)
224 * 1 x Counting Port
225 )))
226
227 = 2. Power ON Device =
228
229
230 (((
231 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 )))
233
234 (((
235 PWR will on when device is properly powered.
236
237
238 )))
239
240 [[image:1653297104069-180.png]]
241
242
243 = 3. Operation Mode =
244
245 == 3.1 How it works? ==
246
247
248 (((
249 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 )))
251
252 (((
253 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 )))
255
256
257 == 3.2 Example to join LoRaWAN network ==
258
259
260 (((
261 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
262
263
264 )))
265
266 [[image:image-20220523172350-1.png||height="266" width="864"]]
267
268
269 (((
270 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
271
272
273 )))
274
275 (((
276 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 )))
278
279 (((
280 Each LT is shipped with a sticker with the default device EUI as below:
281 )))
282
283 [[image:image-20230425173427-2.png||height="246" width="530"]]
284
285
286 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287
288 **Add APP EUI in the application.**
289
290 [[image:1653297955910-247.png||height="321" width="716"]]
291
292
293 **Add APP KEY and DEV EUI**
294
295 [[image:1653298023685-319.png]]
296
297
298
299 (((
300 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301
302
303 )))
304
305 [[image:1653298044601-602.png||height="405" width="709"]]
306
307
308 == 3.3 Uplink Payload ==
309
310
311 There are five working modes + one interrupt mode on LT for different type application:
312
313 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
314
315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316
317 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
318
319 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
320
321 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
322
323 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324
325 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326
327
328 (((
329 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
330
331 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
333 |Value|(((
334 AVI1 voltage
335 )))|(((
336 AVI2 voltage
337 )))|(((
338 ACI1 Current
339 )))|(((
340 ACI2 Current
341 )))|DIDORO*|(((
342 Reserve
343 )))|MOD
344 )))
345
346 (((
347 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
352 )))
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393
394
395
396 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
397
398
399 (((
400 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
401 )))
402
403 (((
404 Total : 11 bytes payload
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
408 |Value|COUNT1|COUNT2 |DIDORO*|(((
409 Reserve
410 )))|MOD
411 )))
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
415
416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
418 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
419
420 RO is for relay. ROx=1 : close,ROx=0 always open.
421 )))
422
423 * FIRST: Indicate this is the first packet after join network.
424 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
425
426 (((
427 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
428 )))
429
430 (((
431 **To use counting mode, please run:**
432 )))
433
434 (% class="box infomessage" %)
435
436 (((
437 **AT+MOD=2**
438 )))
439
440 (((
441 **ATZ**
442 )))
443
444
445 (((
446
447
448 (% style="color:#4f81bd" %)**AT Commands for counting:**
449 )))
450
451 (((
452 **For LT22222-L:**
453
454 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
455
456 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
457
458 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
459
460 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
461
462 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
463
464 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
465 )))
466
467
468 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
469
470
471 **LT22222-L**: This mode the DI1 is used as a counting pin.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
475 |Value|COUNT1|(((
476 ACI1 Current
477 )))|(((
478 ACI2 Current
479 )))|DIDORO*|Reserve|MOD
480
481 (((
482 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
485 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
486 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 )))
488
489 * RO is for relay. ROx=1 : close,ROx=0 always open.
490 * FIRST: Indicate this is the first packet after join network.
491 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
492
493 (((
494 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
495 )))
496
497
498 (((
499 **To use counting mode, please run:**
500 )))
501
502 (% class="box infomessage" %)
503
504 (((
505 **AT+MOD=3**
506 )))
507
508 (((
509 **ATZ**
510 )))
511
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517
518 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
519
520
521 (((
522 **LT22222-L**: This mode the DI1 is used as a counting pin.
523 )))
524
525 (((
526 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
529 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
530 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
531 Reserve
532 )))|MOD
533 )))
534
535 (((
536 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
537
538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
539 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
540 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
541 )))
542
543 * RO is for relay. ROx=1 : close,ROx=0 always open.
544 * FIRST: Indicate this is the first packet after join network.
545 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
546
547 (((
548 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
549 )))
550
551 (((
552
553
554 **To use this mode, please run:**
555 )))
556
557 (% class="box infomessage" %)
558
559 (((
560 **AT+MOD=4**
561 )))
562
563 (((
564 **ATZ**
565 )))
566
567
568
569 (((
570 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
571 )))
572
573 (((
574 **Plus below command for AVI1 Counting:**
575
576 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
577
578 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
579
580 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
581
582 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
583 )))
584
585
586 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
587
588
589 **LT22222-L**: This mode the DI1 is used as a counting pin.
590
591 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
592 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
593 |Value|(((
594 AVI1 voltage
595 )))|(((
596 AVI2 voltage
597 )))|(((
598 ACI1 Current
599 )))|COUNT1|DIDORO*|(((
600 Reserve
601 )))|MOD
602
603 (((
604 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
605
606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
607 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
608 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
609 )))
610
611 * RO is for relay. ROx=1 : close,ROx=0 always open.
612 * FIRST: Indicate this is the first packet after join network.
613 * (((
614 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
615 )))
616
617 (((
618 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
619 )))
620
621 (((
622
623
624 **To use this mode, please run:**
625 )))
626
627 (% class="box infomessage" %)
628
629 (((
630 **AT+MOD=5**
631 )))
632
633 (((
634 **ATZ**
635 )))
636
637
638 (((
639 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
640 )))
641
642
643 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
644
645
646 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
647
648 For example, if user has configured below commands:
649
650 * **AT+MOD=1 ** **~-~->**  The normal working mode
651 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
652
653 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
654
655 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
656 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
657
658 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
659
660
661 (% style="color:#4f81bd" %)**Trigger base on voltage**:
662
663 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
664
665
666 **Example:**
667
668 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
669
670 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
671
672
673
674 (% style="color:#4f81bd" %)**Trigger base on current**:
675
676 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
677
678
679 **Example:**
680
681 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
682
683
684
685 (% style="color:#4f81bd" %)**Trigger base on DI status**:
686
687 DI status trigger Flag.
688
689 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
690
691
692 **Example:**
693
694 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
695
696
697 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
698
699 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
700
701 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
702
703 AA: Code for this downlink Command:
704
705 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
706
707 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
708
709 yy2 yy2: AC1 or AV1 high limit.
710
711 yy3 yy3: AC2 or AV2 low limit.
712
713 Yy4 yy4: AC2 or AV2 high limit.
714
715
716 **Example1**: AA 00 13 88 00 00 00 00 00 00
717
718 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
719
720
721 **Example2**: AA 02 01 00
722
723 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
724
725
726
727 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
728
729 MOD6 Payload : total 11 bytes payload
730
731 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
732 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
733 |Value|(((
734 TRI_A FLAG
735 )))|(((
736 TRI_A Status
737 )))|(((
738 TRI_DI FLAG+STA
739 )))|Reserve|Enable/Disable MOD6|(((
740 MOD(6)
741 )))
742
743 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
744
745 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
746 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
747 |(((
748 AV1_LOW
749 )))|(((
750 AV1_HIGH
751 )))|(((
752 AV2_LOW
753 )))|(((
754 AV2_HIGH
755 )))|(((
756 AC1_LOW
757 )))|(((
758 AC1_HIGH
759 )))|(((
760 AC2_LOW
761 )))|(((
762 AC2_HIGH
763 )))
764
765 * Each bits shows if the corresponding trigger has been configured.
766
767 **Example:**
768
769 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
770
771
772 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
775 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
776 |(((
777 AV1_LOW
778 )))|(((
779 AV1_HIGH
780 )))|(((
781 AV2_LOW
782 )))|(((
783 AV2_HIGH
784 )))|(((
785 AC1_LOW
786 )))|(((
787 AC1_HIGH
788 )))|(((
789 AC2_LOW
790 )))|(((
791 AC2_HIGH
792 )))
793
794 * Each bits shows which status has been trigger on this uplink.
795
796 **Example:**
797
798 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
799
800
801 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
802
803 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
804 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
805 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
806
807 * Each bits shows which status has been trigger on this uplink.
808
809 **Example:**
810
811 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
812
813 00000101: Means both DI1 and DI2 trigger are enabled.
814
815
816 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
817
818 Downlink command to poll MOD6 status:
819
820 **AB 06**
821
822 When device got this command, it will send the MOD6 payload.
823
824
825 === 3.3.7 Payload Decoder ===
826
827 (((
828
829
830 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
831 )))
832
833
834 == 3.4 ​Configure LT via AT or Downlink ==
835
836
837 (((
838 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
839 )))
840
841 (((
842 (((
843 There are two kinds of Commands:
844 )))
845 )))
846
847 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
848
849 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
850
851 === 3.4.1 Common Commands ===
852
853
854 (((
855 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
856 )))
857
858
859 === 3.4.2 Sensor related commands ===
860
861 ==== 3.4.2.1 Set Transmit Interval ====
862
863
864 Set device uplink interval.
865
866 * (% style="color:#037691" %)**AT Command:**
867
868 (% style="color:blue" %)**AT+TDC=N **
869
870
871 **Example: **AT+TDC=30000. Means set interval to 30 seconds
872
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
875
876 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
877
878
879
880 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
881
882
883 Set work mode.
884
885 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
886
887 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
888
889 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
890
891 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
892
893
894
895 ==== 3.4.2.3 Poll an uplink ====
896
897
898 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
899
900 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
901
902 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
903
904 **Example**: 0x08FF, ask device to send an Uplink
905
906
907
908 ==== 3.4.2.4 Enable Trigger Mode ====
909
910
911 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
912
913 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
914
915 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
916
917 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
918
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
921
922 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
923
924
925
926 ==== 3.4.2.5 Poll trigger settings ====
927
928
929 Poll trigger settings
930
931 * (% style="color:#037691" %)**AT Command:**
932
933 There is no AT Command for this feature.
934
935 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
936
937 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
938
939
940
941 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
942
943
944 Enable Disable DI1/DI2/DI2 as trigger,
945
946 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
947
948 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
949
950
951 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
952
953 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
954
955
956
957 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
958
959
960 Set DI1 or DI3(for LT-33222-L) trigger.
961
962 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
963
964 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
965
966 (% style="color:red" %)**b :** (%%)delay timing.
967
968 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
969
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
972
973 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
974
975
976
977 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
978
979
980 Set DI2 trigger.
981
982 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
983
984 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
985
986 (% style="color:red" %)**b :** (%%)delay timing.
987
988 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
989
990
991 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
992
993 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
994
995
996
997 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
998
999
1000 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1001
1002 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1003
1004 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1005
1006 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1007
1008
1009
1010 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1011
1012
1013 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1014
1015 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1016
1017 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1018
1019 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1020
1021
1022
1023 ==== 3.4.2.11 Trigger – Set minimum interval ====
1024
1025
1026 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1027
1028 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1029
1030 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1031
1032 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1033
1034 (((
1035 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1036 )))
1037
1038
1039
1040 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1041
1042
1043 * (% style="color:#037691" %)**AT Command**
1044
1045 There is no AT Command to control Digital Output
1046
1047
1048 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1049
1050 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1051
1052 (((
1053 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1054 )))
1055
1056 (((
1057 01: Low,  00: High ,  11: No action
1058
1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1060 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1061 |02  01  00  11|Low|High|No Action
1062 |02  00  11  01|High|No Action|Low
1063 |02  11  01  00|No Action|Low|High
1064 )))
1065
1066 (((
1067 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1068 )))
1069
1070 (((
1071 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1072 )))
1073
1074
1075
1076 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1077
1078
1079 * (% style="color:#037691" %)**AT Command**
1080
1081 There is no AT Command to control Digital Output
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1085
1086 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1087
1088
1089 This is to control the digital output time of DO pin. Include four bytes:
1090
1091 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1092
1093 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1094
1095 01: DO pins will change back to original state after timeout.
1096
1097 00: DO pins will change to an inverter state after timeout 
1098
1099
1100 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1101
1102 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1103 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1104 |0x01|DO1 set to low
1105 |0x00|DO1 set to high
1106 |0x11|DO1 NO Action
1107
1108 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1109
1110 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1111 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1112 |0x01|DO2 set to low
1113 |0x00|DO2 set to high
1114 |0x11|DO2 NO Action
1115
1116 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1117
1118 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1119 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1120 |0x01|DO3 set to low
1121 |0x00|DO3 set to high
1122 |0x11|DO3 NO Action
1123
1124 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1125
1126
1127 (% style="color:red" %)**Note: **
1128
1129 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1130
1131 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1132
1133 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1134
1135
1136 **Example payload:**
1137
1138 **~1. A9 01 01 01 01 07 D0**
1139
1140 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1141
1142 **2. A9 01 00 01 11 07 D0**
1143
1144 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1145
1146 **3. A9 00 00 00 00 07 D0**
1147
1148 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1149
1150 **4. A9 00 11 01 00 07 D0**
1151
1152 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1153
1154
1155
1156 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1157
1158
1159 * (% style="color:#037691" %)**AT Command:**
1160
1161 There is no AT Command to control Relay Output
1162
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1165
1166 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1167
1168
1169 (((
1170 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1171 )))
1172
1173 (((
1174 01: Close ,  00: Open , 11: No action
1175
1176 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1177 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1178 |03  00  11|Open|No Action
1179 |03  01  11|Close|No Action
1180 |03  11  00|No Action|Open
1181 |03  11  01|No Action|Close
1182 |03  00  00|Open|Open
1183 |03  01  01|Close|Close
1184 |03  01  00|Close|Open
1185 |03  00  01|Open|Close
1186 )))
1187
1188 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1189
1190
1191
1192 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1193
1194
1195 * (% style="color:#037691" %)**AT Command:**
1196
1197 There is no AT Command to control Relay Output
1198
1199
1200 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1201
1202 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1203
1204
1205 This is to control the relay output time of relay. Include four bytes:
1206
1207 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1208
1209 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1210
1211 01: Relays will change back to original state after timeout.
1212
1213 00: Relays will change to an inverter state after timeout
1214
1215
1216 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1217
1218 [[image:image-20221008095908-1.png||height="364" width="564"]]
1219
1220
1221 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1222
1223
1224 (% style="color:red" %)**Note:**
1225
1226 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1227
1228 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1229
1230
1231 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1232
1233
1234 **Example payload:**
1235
1236 **~1. 05 01 11 07 D0**
1237
1238 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1239
1240 **2. 05 01 10 07 D0**
1241
1242 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1243
1244 **3. 05 00 01 07 D0**
1245
1246 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1247
1248 **4. 05 00 00 07 D0**
1249
1250 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1251
1252
1253
1254 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1255
1256
1257 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1258
1259 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1260
1261 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1262
1263 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1264
1265
1266
1267 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1268
1269
1270 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1271
1272 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1273
1274 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1275
1276
1277 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1278
1279 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1280
1281
1282
1283 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1284
1285
1286 Clear counting for counting mode
1287
1288 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1289
1290 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1291
1292 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1293
1294
1295
1296 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1297
1298
1299 * (% style="color:#037691" %)**AT Command:**
1300
1301 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1302
1303
1304 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1305
1306 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1307
1308 (((
1309 range: aa bb cc:0 to 16777215,  (unit:second)
1310 )))
1311
1312
1313
1314 ==== 3.4.2.20 Reset save RO DO state ====
1315
1316
1317 * (% style="color:#037691" %)**AT Command:**
1318
1319 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1320
1321 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1322
1323
1324 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1325
1326 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1327
1328
1329
1330 ==== 3.4.2.21 Encrypted payload ====
1331
1332
1333 * (% style="color:#037691" %)**AT Command:**
1334
1335 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1336
1337 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1338
1339
1340
1341 ==== 3.4.2.22 Get sensor value ====
1342
1343
1344 * (% style="color:#037691" %)**AT Command:**
1345
1346 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1347
1348 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1349
1350
1351
1352 ==== 3.4.2.23 Resets the downlink packet count ====
1353
1354
1355 * (% style="color:#037691" %)**AT Command:**
1356
1357 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1358
1359 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1360
1361
1362
1363 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1364
1365
1366 * (% style="color:#037691" %)**AT Command:**
1367
1368 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1369
1370 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1371
1372
1373 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1374
1375 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1376
1377
1378
1379 ==== 3.4.2.25 Copy downlink to uplink ====
1380
1381
1382 * (% style="color:#037691" %)**AT Command**(%%)**:**
1383
1384 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1385
1386 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1387
1388
1389 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1390
1391 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1392
1393
1394
1395 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1396
1397 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1398
1399
1400
1401 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1402
1403
1404 * (((
1405 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1406
1407 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1408
1409
1410 )))
1411
1412 **Example:**
1413
1414 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1415
1416
1417 == 3.5 Integrate with Mydevice ==
1418
1419
1420 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1421
1422 (((
1423 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1424 )))
1425
1426 (((
1427 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1428
1429
1430 )))
1431
1432 [[image:image-20220719105525-1.png||height="377" width="677"]]
1433
1434
1435
1436 [[image:image-20220719110247-2.png||height="388" width="683"]]
1437
1438
1439 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1440
1441 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1442
1443 Search under The things network
1444
1445 [[image:1653356838789-523.png||height="337" width="740"]]
1446
1447
1448
1449 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1450
1451 [[image:image-20220524094909-1.png||height="335" width="729"]]
1452
1453
1454 [[image:image-20220524094909-2.png||height="337" width="729"]]
1455
1456
1457 [[image:image-20220524094909-3.png||height="338" width="727"]]
1458
1459
1460 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1461
1462
1463 [[image:image-20220524094909-5.png||height="341" width="734"]]
1464
1465
1466 == 3.6 Interface Detail ==
1467
1468 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1469
1470
1471 Support NPN Type sensor
1472
1473 [[image:1653356991268-289.png]]
1474
1475
1476 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1477
1478
1479 (((
1480 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1481 )))
1482
1483 (((
1484 (((
1485 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1486
1487
1488 )))
1489 )))
1490
1491 [[image:1653357170703-587.png]]
1492
1493 (((
1494 (((
1495 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1496 )))
1497 )))
1498
1499 (((
1500
1501 )))
1502
1503 (((
1504 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1505 )))
1506
1507 (((
1508 This type of sensor will output a low signal GND when active.
1509 )))
1510
1511 * (((
1512 Connect sensor's output to DI1-
1513 )))
1514 * (((
1515 Connect sensor's VCC to DI1+.
1516 )))
1517
1518 (((
1519 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1520 )))
1521
1522 (((
1523 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1524 )))
1525
1526 (((
1527 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1528 )))
1529
1530 (((
1531
1532 )))
1533
1534 (((
1535 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1536 )))
1537
1538 (((
1539 This type of sensor will output a high signal (example 24v) when active.
1540 )))
1541
1542 * (((
1543 Connect sensor's output to DI1+
1544 )))
1545 * (((
1546 Connect sensor's GND DI1-.
1547 )))
1548
1549 (((
1550 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1551 )))
1552
1553 (((
1554 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1555 )))
1556
1557 (((
1558 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1567 )))
1568
1569 (((
1570 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1571 )))
1572
1573 * (((
1574 Connect sensor's output to DI1+ with a serial 50K resistor
1575 )))
1576 * (((
1577 Connect sensor's GND DI1-.
1578 )))
1579
1580 (((
1581 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1582 )))
1583
1584 (((
1585 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1586 )))
1587
1588 (((
1589 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1590 )))
1591
1592
1593 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1594
1595 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1596
1597 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1598
1599 [[image:image-20230616235145-1.png]]
1600
1601
1602
1603 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1604
1605
1606 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1607
1608 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1609
1610 [[image:1653357531600-905.png]]
1611
1612
1613 === 3.6.4 Analog Input Interface ===
1614
1615
1616 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1617
1618
1619 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1620
1621 [[image:1653357592296-182.png]]
1622
1623 Example to connect a 4~~20mA sensor
1624
1625 We take the wind speed sensor as an example for reference only.
1626
1627
1628 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1629
1630 (% style="color:red" %)**Red:  12~~24v**
1631
1632 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1633
1634 **Black:  GND**
1635
1636 **Connection diagram:**
1637
1638 [[image:1653357640609-758.png]]
1639
1640 [[image:1653357648330-671.png||height="155" width="733"]]
1641
1642
1643 Example connected to a regulated power supply to measure voltage
1644
1645 [[image:image-20230608101532-1.png||height="606" width="447"]]
1646
1647 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1648
1649 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1650
1651
1652 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1653
1654 (% style="color:red" %)**Red:  12~~24v**
1655
1656 **Black:  GND**
1657
1658
1659 === 3.6.5 Relay Output ===
1660
1661
1662 (((
1663 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1664
1665 **Note**: RO pins go to Open(NO) when device is power off.
1666 )))
1667
1668 [[image:image-20220524100215-9.png]]
1669
1670
1671 [[image:image-20220524100215-10.png||height="382" width="723"]]
1672
1673
1674 == 3.7 LEDs Indicators ==
1675
1676
1677 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1678 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1679 |**PWR**|Always on if there is power
1680 |**SYS**|(((
1681 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1682 )))
1683 |**TX**|(((
1684 (((
1685 Device boot: TX blinks 5 times.
1686 )))
1687
1688 (((
1689 Successful join network: TX ON for 5 seconds.
1690 )))
1691
1692 (((
1693 Transmit a LoRa packet: TX blinks once
1694 )))
1695 )))
1696 |**RX**|RX blinks once when receive a packet.
1697 |**DO1**|
1698 |**DO2**|
1699 |**DO3**|
1700 |**DI2**|(((
1701 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1702 )))
1703 |**DI2**|(((
1704 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1705 )))
1706 |**DI2**|(((
1707 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1708 )))
1709 |**RO1**|
1710 |**RO2**|
1711
1712 = 4. Use AT Command =
1713
1714 == 4.1 Access AT Command ==
1715
1716
1717 (((
1718 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1719 )))
1720
1721 (((
1722
1723 )))
1724
1725 [[image:1653358238933-385.png]]
1726
1727
1728 (((
1729 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1730 )))
1731
1732 [[image:1653358355238-883.png]]
1733
1734
1735 (((
1736 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1737 )))
1738
1739 (((
1740 AT+<CMD>?        : Help on <CMD>
1741 )))
1742
1743 (((
1744 AT+<CMD>         : Run <CMD>
1745 )))
1746
1747 (((
1748 AT+<CMD>=<value> : Set the value
1749 )))
1750
1751 (((
1752 AT+<CMD>=?       :  Get the value
1753 )))
1754
1755 (((
1756 ATZ: Trig a reset of the MCU
1757 )))
1758
1759 (((
1760 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1761 )))
1762
1763 (((
1764 AT+DEUI: Get or Set the Device EUI
1765 )))
1766
1767 (((
1768 AT+DADDR: Get or Set the Device Address
1769 )))
1770
1771 (((
1772 AT+APPKEY: Get or Set the Application Key
1773 )))
1774
1775 (((
1776 AT+NWKSKEY: Get or Set the Network Session Key
1777 )))
1778
1779 (((
1780 AT+APPSKEY:  Get or Set the Application Session Key
1781 )))
1782
1783 (((
1784 AT+APPEUI:  Get or Set the Application EUI
1785 )))
1786
1787 (((
1788 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1789 )))
1790
1791 (((
1792 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1793 )))
1794
1795 (((
1796 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1797 )))
1798
1799 (((
1800 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1801 )))
1802
1803 (((
1804 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1805 )))
1806
1807 (((
1808 AT+RX2FQ: Get or Set the Rx2 window frequency
1809 )))
1810
1811 (((
1812 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1813 )))
1814
1815 (((
1816 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1817 )))
1818
1819 (((
1820 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1821 )))
1822
1823 (((
1824 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1825 )))
1826
1827 (((
1828 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1829 )))
1830
1831 (((
1832 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1833 )))
1834
1835 (((
1836 AT+NWKID: Get or Set the Network ID
1837 )))
1838
1839 (((
1840 AT+FCU: Get or Set the Frame Counter Uplink
1841 )))
1842
1843 (((
1844 AT+FCD: Get or Set the Frame Counter Downlink
1845 )))
1846
1847 (((
1848 AT+CLASS: Get or Set the Device Class
1849 )))
1850
1851 (((
1852 AT+JOIN: Join network
1853 )))
1854
1855 (((
1856 AT+NJS: Get OTAA Join Status
1857 )))
1858
1859 (((
1860 AT+SENDB: Send hexadecimal data along with the application port
1861 )))
1862
1863 (((
1864 AT+SEND: Send text data along with the application port
1865 )))
1866
1867 (((
1868 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1869 )))
1870
1871 (((
1872 AT+RECV: Print last received data in raw format
1873 )))
1874
1875 (((
1876 AT+VER:  Get current image version and Frequency Band
1877 )))
1878
1879 (((
1880 AT+CFM: Get or Set the confirmation mode (0-1)
1881 )))
1882
1883 (((
1884 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1885 )))
1886
1887 (((
1888 AT+SNR: Get the SNR of the last received packet
1889 )))
1890
1891 (((
1892 AT+RSSI: Get the RSSI of the last received packet
1893 )))
1894
1895 (((
1896 AT+TDC: Get or set the application data transmission interval in ms
1897 )))
1898
1899 (((
1900 AT+PORT: Get or set the application port
1901 )))
1902
1903 (((
1904 AT+DISAT: Disable AT commands
1905 )))
1906
1907 (((
1908 AT+PWORD: Set password, max 9 digits
1909 )))
1910
1911 (((
1912 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1913 )))
1914
1915 (((
1916 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1917 )))
1918
1919 (((
1920 AT+CFG: Print all settings
1921 )))
1922
1923
1924 == 4.2 Common AT Command Sequence ==
1925
1926 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1927
1928 (((
1929
1930
1931 (((
1932 (% style="color:blue" %)**If device has not joined network yet:**
1933 )))
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %)**123456**
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)**AT+FDR**
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)**123456**
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)**ATZ**
1954 )))
1955
1956
1957 (((
1958 (% style="color:blue" %)**If device already joined network:**
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)**ATZ**
1967 )))
1968
1969
1970 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1971
1972 (((
1973
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1977 )))
1978 )))
1979
1980 (((
1981 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1982 )))
1983
1984 (((
1985 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1986 )))
1987
1988 (((
1989 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1990 )))
1991
1992 (((
1993 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1998 )))
1999
2000 (((
2001 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2022 )))
2023
2024 (((
2025 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2026
2027
2028 )))
2029
2030 (((
2031 (% style="color:red" %)**Note:**
2032 )))
2033
2034 (((
2035 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2036
2037 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2038
2039 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2040 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2041
2042 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2043
2044
2045 )))
2046
2047 (((
2048 [[image:1653359097980-169.png||height="188" width="729"]]
2049 )))
2050
2051 (((
2052
2053 )))
2054
2055 === 4.2.3 Change to Class A ===
2056
2057
2058 (((
2059 (% style="color:blue" %)**If sensor JOINED:**
2060
2061 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2062 ATZ**
2063 )))
2064
2065
2066 = 5. Case Study =
2067
2068 == 5.1 Counting how many objects pass in Flow Line ==
2069
2070
2071 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2072
2073
2074 = 6. FAQ =
2075
2076 == 6.1 How to upgrade the image? ==
2077
2078
2079 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2080
2081 * Support new features
2082 * For bug fix
2083 * Change LoRaWAN bands.
2084
2085 Below shows the hardware connection for how to upload an image to the LT:
2086
2087 [[image:1653359603330-121.png]]
2088
2089
2090 (((
2091 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2092 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2093 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2094
2095
2096 (((
2097 (% style="color:blue" %)**For LT-22222-L**(%%):
2098 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2099 )))
2100
2101
2102 )))
2103
2104 [[image:image-20220524103407-12.png]]
2105
2106
2107 [[image:image-20220524103429-13.png]]
2108
2109
2110 [[image:image-20220524104033-15.png]]
2111
2112
2113 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2114
2115
2116 [[image:1653360054704-518.png||height="186" width="745"]]
2117
2118
2119 (((
2120 (((
2121 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2122
2123
2124 )))
2125 )))
2126
2127 (((
2128 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2129 )))
2130
2131 (((
2132
2133
2134 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2135
2136
2137 )))
2138
2139 (((
2140 (((
2141 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2142 )))
2143 )))
2144
2145 (((
2146 (((
2147 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2148
2149
2150 )))
2151 )))
2152
2153 (((
2154 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2155
2156
2157 )))
2158
2159 (((
2160 [[image:1653360231087-571.png||height="401" width="727"]]
2161
2162
2163 )))
2164
2165 (((
2166 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2167 )))
2168
2169
2170
2171 (((
2172 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2173
2174
2175 )))
2176
2177 (((
2178 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2179 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2180 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2181 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2182 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2183 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2184 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2185 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2186 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2187 )))
2188
2189
2190 (((
2191 As shown in below:
2192 )))
2193
2194 [[image:1653360498588-932.png||height="485" width="726"]]
2195
2196
2197 == 6.4 How to change the uplink interval? ==
2198
2199
2200 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2201
2202
2203 == 6.5 Can I see counting event in Serial? ==
2204
2205
2206 (((
2207 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2208
2209
2210 == 6.6 Can i use point to point communication for LT-22222-L? ==
2211
2212
2213 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2214
2215
2216 )))
2217
2218 (((
2219 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2220
2221
2222 If the device is not shut down, but directly powered off.
2223
2224 It will default that this is a power-off state.
2225
2226 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2227
2228 After restart, the status before power failure will be read from flash.
2229
2230
2231 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2232
2233
2234 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2235
2236
2237 [[image:image-20221006170630-1.png||height="610" width="945"]]
2238
2239
2240 == 6.9 Can LT22222-L save RO state? ==
2241
2242
2243 Firmware version needs to be no less than 1.6.0.
2244
2245
2246 = 7. Trouble Shooting =
2247 )))
2248
2249 (((
2250 (((
2251 == 7.1 Downlink doesn't work, how to solve it? ==
2252
2253
2254 )))
2255 )))
2256
2257 (((
2258 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2259 )))
2260
2261 (((
2262
2263
2264 == 7.2 Have trouble to upload image. ==
2265
2266
2267 )))
2268
2269 (((
2270 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2271 )))
2272
2273 (((
2274
2275
2276 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2277
2278
2279 )))
2280
2281 (((
2282 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2283 )))
2284
2285
2286 = 8. Order Info =
2287
2288
2289 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2290
2291 (% style="color:#4f81bd" %)**XXX:**
2292
2293 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2294 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2295 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2296 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2297 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2298 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2299 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2300 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2301 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2302
2303 = 9. Packing Info =
2304
2305
2306 **Package Includes**:
2307
2308 * LT-22222-L I/O Controller x 1
2309 * Stick Antenna for LoRa RF part x 1
2310 * Bracket for controller x1
2311 * Program cable x 1
2312
2313 **Dimension and weight**:
2314
2315 * Device Size: 13.5 x 7 x 3 cm
2316 * Device Weight: 105g
2317 * Package Size / pcs : 14.5 x 8 x 5 cm
2318 * Weight / pcs : 170g
2319
2320 = 10. Support =
2321
2322
2323 * (((
2324 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2325 )))
2326 * (((
2327 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2328
2329
2330
2331 )))
2332
2333 = 11. Reference​​​​​ =
2334
2335
2336 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2337 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2338 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2339
2340