Version 118.7 by Xiaoling on 2023/05/17 11:09

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |Size(bytes)|4|4|1|1|1
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407
408
409 )))|MOD
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420
421 RO is for relay. ROx=1 : close,ROx=0 always open.
422 )))
423
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 )))
430
431 (((
432
433
434 **To use counting mode, please run:**
435 )))
436
437 (% class="box infomessage" %)
438 (((
439 (((
440 (((
441 **AT+MOD=2**
442 )))
443
444 (((
445 **ATZ**
446 )))
447 )))
448 )))
449
450 (((
451
452
453 (% style="color:#4f81bd" %)**AT Commands for counting:**
454
455
456 )))
457
458 (((
459 **For LT22222-L:**
460
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |Size(bytes)|4|2|2|1|1|1
483 |Value|COUNT1|(((
484 ACI1 Current
485 )))|(((
486 ACI2 Current
487 )))|DIDORO*|Reserve|MOD
488
489 (((
490
491
492 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493
494 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
497 )))
498
499
500 * RO is for relay. ROx=1 : close,ROx=0 always open.
501 * FIRST: Indicate this is the first packet after join network.
502 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503
504 (((
505 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
506 )))
507
508
509 (((
510 **To use counting mode, please run:**
511 )))
512
513 (% class="box infomessage" %)
514 (((
515 (((
516 (((
517 **AT+MOD=3**
518 )))
519
520 (((
521 **ATZ**
522 )))
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530
531 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
532
533
534 (((
535 **LT22222-L**: This mode the DI1 is used as a counting pin.
536 )))
537
538 (((
539 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |Size(bytes)|4|4|1|1|1
543 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 Reserve
545
546
547 )))|MOD
548 )))
549
550
551
552 (((
553 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
558 )))
559
560
561 * RO is for relay. ROx=1 : close,ROx=0 always open.
562 * FIRST: Indicate this is the first packet after join network.
563 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564
565 (((
566 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 )))
568
569 (((
570
571
572 **To use this mode, please run:**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 (((
579 **AT+MOD=4**
580 )))
581
582 (((
583 **ATZ**
584 )))
585 )))
586 )))
587
588
589 (((
590 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
591 )))
592
593 (((
594
595
596 **Plus below command for AVI1 Counting:**
597
598
599 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600
601 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
606 )))
607
608
609 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610
611
612 **LT22222-L**: This mode the DI1 is used as a counting pin.
613
614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 |Size(bytes)|2|2|2|2|1|1|1
616 |Value|(((
617 AVI1
618 voltage
619 )))|(((
620 AVI2
621 voltage
622 )))|(((
623 ACI1
624 Current
625 )))|COUNT1|DIDORO*|(((
626 Reserve
627 )))|MOD
628
629 (((
630
631
632 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
633
634 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
635 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
636 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 )))
638
639 * RO is for relay. ROx=1 : close,ROx=0 always open.
640 * FIRST: Indicate this is the first packet after join network.
641 * (((
642 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
643 )))
644
645 (((
646 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
647 )))
648
649 (((
650
651
652 **To use this mode, please run:**
653 )))
654
655 (% class="box infomessage" %)
656 (((
657 (((
658 (((
659 **AT+MOD=5**
660 )))
661
662 (((
663 **ATZ**
664 )))
665 )))
666 )))
667
668 (((
669 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
670 )))
671
672
673 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
674
675
676 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
677
678 For example, if user has configured below commands:
679
680 * **AT+MOD=1 ** **~-~->**  The normal working mode
681 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
682
683 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
684
685 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
686 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
687
688 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
689
690
691 (% style="color:#4f81bd" %)**Trigger base on voltage**:
692
693 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
694
695
696 **Example:**
697
698 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
699
700 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
701
702
703
704 (% style="color:#4f81bd" %)**Trigger base on current**:
705
706 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707
708
709 **Example:**
710
711 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
712
713
714
715 (% style="color:#4f81bd" %)**Trigger base on DI status**:
716
717 DI status trigger Flag.
718
719 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720
721
722 **Example:**
723
724 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725
726
727 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
728
729 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730
731 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732
733 AA: Code for this downlink Command:
734
735 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
736
737 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
738
739 yy2 yy2: AC1 or AV1 high limit.
740
741 yy3 yy3: AC2 or AV2 low limit.
742
743 Yy4 yy4: AC2 or AV2 high limit.
744
745
746 **Example1**: AA 00 13 88 00 00 00 00 00 00
747
748 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
749
750
751 **Example2**: AA 02 01 00
752
753 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
754
755
756
757 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
758
759 MOD6 Payload : total 11 bytes payload
760
761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
762 |Size(bytes)|1|1|1|6|1|1
763 |Value|(((
764 TRI_A
765 FLAG
766 )))|(((
767 TRI_A
768 Status
769 )))|(((
770 TRI_DI
771 FLAG+STA
772 )))|Reserve|Enable/Disable MOD6|(((
773 MOD
774 (6)
775 )))
776
777
778 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
781 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
782 |(((
783 AV1_
784 LOW
785 )))|(((
786 AV1_
787 HIGH
788 )))|(((
789 AV2_
790 LOW
791 )))|(((
792 AV2_
793 HIGH
794 )))|(((
795 AC1_
796 LOW
797 )))|(((
798 AC1_
799 HIGH
800 )))|(((
801 AC2_
802 LOW
803 )))|(((
804 AC2_
805 HIGH
806 )))
807
808 * Each bits shows if the corresponding trigger has been configured.
809
810 **Example:**
811
812 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
813
814
815
816 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
817
818 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
819 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
820 |(((
821 AV1_
822 LOW
823 )))|(((
824 AV1_
825 HIGH
826 )))|(((
827 AV2_
828 LOW
829 )))|(((
830 AV2_
831 HIGH
832 )))|(((
833 AC1_
834 LOW
835 )))|(((
836 AC1_
837 HIGH
838 )))|(((
839 AC2_
840 LOW
841 )))|(((
842 AC2_
843 HIGH
844 )))
845
846 [[image:image-20220524090249-3.png]]
847
848 * Each bits shows which status has been trigger on this uplink.
849
850 **Example:**
851
852 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
853
854
855 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
856
857 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
858 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
859 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
860
861
862 * Each bits shows which status has been trigger on this uplink.
863
864 **Example:**
865
866 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
867
868 00000101: Means both DI1 and DI2 trigger are enabled.
869
870
871 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
872
873 Downlink command to poll MOD6 status:
874
875 **AB 06**
876
877 When device got this command, it will send the MOD6 payload.
878
879
880 === 3.3.7 Payload Decoder ===
881
882 (((
883
884
885 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
886 )))
887
888
889 == 3.4 ​Configure LT via AT or Downlink ==
890
891
892 (((
893 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
894 )))
895
896 (((
897 (((
898 There are two kinds of Commands:
899 )))
900 )))
901
902 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
903
904 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
905
906 === 3.4.1 Common Commands ===
907
908
909 (((
910 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
911 )))
912
913
914 === 3.4.2 Sensor related commands ===
915
916 ==== 3.4.2.1 Set Transmit Interval ====
917
918
919 Set device uplink interval.
920
921 * (% style="color:#037691" %)**AT Command:**
922
923 (% style="color:blue" %)**AT+TDC=N **
924
925
926 **Example: **AT+TDC=30000. Means set interval to 30 seconds
927
928
929 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
930
931 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
932
933
934
935 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
936
937
938 Set work mode.
939
940 * (% style="color:#037691" %)**AT Command:**
941
942 (% style="color:blue" %)**AT+MOD=N  **
943
944
945 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
946
947
948 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
949
950 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
951
952
953
954 ==== 3.4.2.3 Poll an uplink ====
955
956
957 * (% style="color:#037691" %)**AT Command:**
958
959 There is no AT Command to poll uplink
960
961
962 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
963
964 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
965
966
967 **Example**: 0x08FF, ask device to send an Uplink
968
969
970
971 ==== 3.4.2.4 Enable Trigger Mode ====
972
973
974 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
975
976 * (% style="color:#037691" %)**AT Command:**
977
978 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
979
980 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
981
982 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
986
987 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
988
989
990
991 ==== 3.4.2.5 Poll trigger settings ====
992
993
994 Poll trigger settings,
995
996 * (% style="color:#037691" %)**AT Command:**
997
998 There is no AT Command for this feature.
999
1000
1001 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1002
1003 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1004
1005
1006
1007 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1008
1009
1010 Enable Disable DI1/DI2/DI2 as trigger,
1011
1012 * (% style="color:#037691" %)**AT Command:**
1013
1014 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1015
1016
1017 **Example:**
1018
1019 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1022
1023 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1024
1025
1026
1027 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1028
1029
1030 Set DI1 or DI3(for LT-33222-L) trigger.
1031
1032 * (% style="color:#037691" %)**AT Command:**
1033
1034 (% style="color:blue" %)**AT+TRIG1=a,b**
1035
1036 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1037
1038 (% style="color:red" %)**b :** (%%)delay timing.
1039
1040
1041 **Example:**
1042
1043 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1044
1045
1046 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1047
1048 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1049
1050
1051
1052 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1053
1054
1055 Set DI2 trigger.
1056
1057 * (% style="color:#037691" %)**AT Command:**
1058
1059 (% style="color:blue" %)**AT+TRIG2=a,b**
1060
1061 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1062
1063 (% style="color:red" %)**b :** (%%)delay timing.
1064
1065
1066 **Example:**
1067
1068 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1069
1070
1071 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1072
1073 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1074
1075
1076
1077 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1078
1079
1080 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1081
1082 * (% style="color:#037691" %)**AT Command**
1083
1084 (% style="color:blue" %)**AT+ACLIM**
1085
1086
1087 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1088
1089 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1090
1091
1092
1093 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1094
1095
1096 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1097
1098 * (% style="color:#037691" %)**AT Command**
1099
1100 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1101
1102
1103 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1104
1105 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1106
1107
1108
1109 ==== 3.4.2.11 Trigger – Set minimum interval ====
1110
1111
1112 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1113
1114 * (% style="color:#037691" %)**AT Command**
1115
1116 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1117
1118
1119 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1120
1121 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1122
1123 (((
1124
1125
1126 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1127 )))
1128
1129
1130
1131 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1132
1133
1134 * (% style="color:#037691" %)**AT Command**
1135
1136 There is no AT Command to control Digital Output
1137
1138
1139 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1140 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1141
1142 (((
1143 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1144 )))
1145
1146 (((
1147 01: Low,  00: High ,  11: No action
1148 )))
1149
1150 [[image:image-20220524092754-5.png]]
1151
1152 (((
1153 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1154 )))
1155
1156 (((
1157 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1158 )))
1159
1160
1161
1162 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1163
1164
1165 * (% style="color:#037691" %)**AT Command**
1166
1167 There is no AT Command to control Digital Output
1168
1169
1170 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1171
1172 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1173
1174
1175 This is to control the digital output time of DO pin. Include four bytes:
1176
1177 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1178
1179 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1180
1181 01: DO pins will change back to original state after timeout.
1182
1183 00: DO pins will change to an inverter state after timeout 
1184
1185
1186 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1187
1188 [[image:image-20220524093238-6.png]]
1189
1190
1191 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1192
1193 [[image:image-20220524093328-7.png]]
1194
1195
1196 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1197
1198 [[image:image-20220524093351-8.png]]
1199
1200
1201 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1202
1203 Latching time. Unit: ms
1204
1205
1206 (% style="color:red" %)**Note: **
1207
1208 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1209
1210 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1211
1212
1213 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1214
1215
1216 **Example payload:**
1217
1218 **~1. A9 01 01 01 01 07 D0**
1219
1220 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1221
1222 **2. A9 01 00 01 11 07 D0**
1223
1224 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1225
1226 **3. A9 00 00 00 00 07 D0**
1227
1228 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1229
1230 **4. A9 00 11 01 00 07 D0**
1231
1232 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1233
1234
1235
1236 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1237
1238
1239 * (% style="color:#037691" %)**AT Command:**
1240
1241 There is no AT Command to control Relay Output
1242
1243
1244 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1245
1246 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1247
1248
1249 (((
1250 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1251 )))
1252
1253 (((
1254 01: Close ,  00: Open , 11: No action
1255 )))
1256
1257 (((
1258 [[image:image-20230426161322-1.png]]
1259 )))
1260
1261 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1262
1263
1264
1265 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1266
1267
1268 * (% style="color:#037691" %)**AT Command:**
1269
1270 There is no AT Command to control Relay Output
1271
1272
1273 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1274
1275 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1276
1277
1278 This is to control the relay output time of relay. Include four bytes:
1279
1280 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1281
1282 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1283
1284 01: Relays will change back to original state after timeout.
1285
1286 00: Relays will change to an inverter state after timeout
1287
1288
1289 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1290
1291 [[image:image-20221008095908-1.png||height="364" width="564"]]
1292
1293
1294 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1295
1296
1297 (% style="color:red" %)**Note:**
1298
1299 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1300
1301 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1302
1303
1304 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1305
1306
1307 **Example payload:**
1308
1309 **~1. 05 01 11 07 D0**
1310
1311 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1312
1313 **2. 05 01 10 07 D0**
1314
1315 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1316
1317 **3. 05 00 01 07 D0**
1318
1319 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1320
1321 **4. 05 00 00 07 D0**
1322
1323 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1324
1325
1326
1327 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1328
1329
1330 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1331
1332 * (% style="color:#037691" %)**AT Command:**
1333
1334 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1335
1336
1337 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1338
1339 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1340
1341
1342
1343 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1344
1345
1346 * (% style="color:#037691" %)**AT Command:**
1347
1348 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1349
1350 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1351
1352 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1353
1354
1355 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1356
1357 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1358
1359
1360
1361 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1362
1363
1364 Clear counting for counting mode
1365
1366 * (% style="color:#037691" %)**AT Command:**
1367
1368 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1369
1370
1371 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1372
1373 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1374
1375
1376
1377 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1378
1379
1380 * (% style="color:#037691" %)**AT Command:**
1381
1382 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1383
1384
1385 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1386
1387 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1388
1389 (((
1390 range: aa bb cc:0 to 16777215,  (unit:second)
1391 )))
1392
1393
1394
1395 ==== 3.4.2.20 Reset save RO DO state ====
1396
1397
1398 * (% style="color:#037691" %)**AT Command:**
1399
1400 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1401
1402 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1403
1404
1405 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1406
1407 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1408
1409
1410
1411 ==== 3.4.2.21 Encrypted payload ====
1412
1413
1414 * (% style="color:#037691" %)**AT Command:**
1415
1416 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1417
1418 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1419
1420
1421
1422 ==== 3.4.2.22 Get sensor value ====
1423
1424
1425 * (% style="color:#037691" %)**AT Command:**
1426
1427 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1428
1429 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1430
1431
1432
1433 ==== 3.4.2.23 Resets the downlink packet count ====
1434
1435
1436 * (% style="color:#037691" %)**AT Command:**
1437
1438 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1439
1440 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1441
1442
1443
1444 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1445
1446
1447 * (% style="color:#037691" %)**AT Command:**
1448
1449 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1450
1451 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1452
1453
1454 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1455
1456 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1457
1458
1459
1460 ==== 3.4.2.25 Copy downlink to uplink ====
1461
1462
1463 * (% style="color:#037691" %)**AT Command**(%%)**:**
1464
1465 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1466
1467 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1468
1469
1470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1471
1472 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1473
1474
1475
1476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1477
1478 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1479
1480
1481
1482 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1483
1484
1485 * (((
1486 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1487
1488 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1489
1490
1491 )))
1492
1493 **Example:**
1494
1495 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1496
1497
1498 == 3.5 Integrate with Mydevice ==
1499
1500
1501 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1502
1503 (((
1504 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1505 )))
1506
1507 (((
1508 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1509
1510
1511 )))
1512
1513 [[image:image-20220719105525-1.png||height="377" width="677"]]
1514
1515
1516
1517 [[image:image-20220719110247-2.png||height="388" width="683"]]
1518
1519
1520 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1521
1522 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1523
1524 Search under The things network
1525
1526 [[image:1653356838789-523.png||height="337" width="740"]]
1527
1528
1529
1530 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1531
1532 [[image:image-20220524094909-1.png||height="335" width="729"]]
1533
1534
1535 [[image:image-20220524094909-2.png||height="337" width="729"]]
1536
1537
1538 [[image:image-20220524094909-3.png||height="338" width="727"]]
1539
1540
1541 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1542
1543
1544 [[image:image-20220524094909-5.png||height="341" width="734"]]
1545
1546
1547 == 3.6 Interface Detail ==
1548
1549 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1550
1551
1552 Support NPN Type sensor
1553
1554 [[image:1653356991268-289.png]]
1555
1556
1557 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1558
1559
1560 (((
1561 The DI port of LT-22222-L can support NPN or PNP output sensor.
1562 )))
1563
1564 (((
1565 (((
1566 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1567
1568
1569 )))
1570 )))
1571
1572 [[image:1653357170703-587.png]]
1573
1574 (((
1575 (((
1576 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1577 )))
1578 )))
1579
1580 (((
1581
1582 )))
1583
1584 (((
1585 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1586 )))
1587
1588 (((
1589 This type of sensor will output a low signal GND when active.
1590 )))
1591
1592 * (((
1593 Connect sensor's output to DI1-
1594 )))
1595 * (((
1596 Connect sensor's VCC to DI1+.
1597 )))
1598
1599 (((
1600 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1601 )))
1602
1603 (((
1604 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1605 )))
1606
1607 (((
1608 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1609 )))
1610
1611 (((
1612
1613 )))
1614
1615 (((
1616 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1617 )))
1618
1619 (((
1620 This type of sensor will output a high signal (example 24v) when active.
1621 )))
1622
1623 * (((
1624 Connect sensor's output to DI1+
1625 )))
1626 * (((
1627 Connect sensor's GND DI1-.
1628 )))
1629
1630 (((
1631 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1632 )))
1633
1634 (((
1635 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1636 )))
1637
1638 (((
1639 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1640 )))
1641
1642 (((
1643
1644 )))
1645
1646 (((
1647 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1648 )))
1649
1650 (((
1651 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1652 )))
1653
1654 * (((
1655 Connect sensor's output to DI1+ with a serial 50K resistor
1656 )))
1657 * (((
1658 Connect sensor's GND DI1-.
1659 )))
1660
1661 (((
1662 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1663 )))
1664
1665 (((
1666 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1667 )))
1668
1669 (((
1670 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1671 )))
1672
1673
1674 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1675
1676
1677 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1678
1679 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1680
1681 [[image:1653357531600-905.png]]
1682
1683
1684 === 3.6.4 Analog Input Interface ===
1685
1686
1687 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1688
1689
1690 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1691
1692 [[image:1653357592296-182.png]]
1693
1694 Example to connect a 4~~20mA sensor
1695
1696 We take the wind speed sensor as an example for reference only.
1697
1698
1699 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1700
1701 (% style="color:red" %)**Red:  12~~24v**
1702
1703 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1704
1705 **Black:  GND**
1706
1707
1708 **Connection diagram:**
1709
1710 [[image:1653357640609-758.png]]
1711
1712 [[image:1653357648330-671.png||height="155" width="733"]]
1713
1714
1715 === 3.6.5 Relay Output ===
1716
1717
1718 (((
1719 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1720
1721 **Note**: RO pins go to Open(NO) when device is power off.
1722 )))
1723
1724 [[image:image-20220524100215-9.png]]
1725
1726
1727 [[image:image-20220524100215-10.png||height="382" width="723"]]
1728
1729
1730 == 3.7 LEDs Indicators ==
1731
1732
1733 [[image:image-20220524100748-11.png]]
1734
1735
1736 = 4. Use AT Command =
1737
1738 == 4.1 Access AT Command ==
1739
1740
1741 (((
1742 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1743 )))
1744
1745 (((
1746
1747 )))
1748
1749 [[image:1653358238933-385.png]]
1750
1751
1752 (((
1753 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1754 )))
1755
1756 [[image:1653358355238-883.png]]
1757
1758
1759 (((
1760 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1761 )))
1762
1763 (((
1764 AT+<CMD>?        : Help on <CMD>
1765 )))
1766
1767 (((
1768 AT+<CMD>         : Run <CMD>
1769 )))
1770
1771 (((
1772 AT+<CMD>=<value> : Set the value
1773 )))
1774
1775 (((
1776 AT+<CMD>=?       :  Get the value
1777 )))
1778
1779 (((
1780 ATZ: Trig a reset of the MCU
1781 )))
1782
1783 (((
1784 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1785 )))
1786
1787 (((
1788 AT+DEUI: Get or Set the Device EUI
1789 )))
1790
1791 (((
1792 AT+DADDR: Get or Set the Device Address
1793 )))
1794
1795 (((
1796 AT+APPKEY: Get or Set the Application Key
1797 )))
1798
1799 (((
1800 AT+NWKSKEY: Get or Set the Network Session Key
1801 )))
1802
1803 (((
1804 AT+APPSKEY:  Get or Set the Application Session Key
1805 )))
1806
1807 (((
1808 AT+APPEUI:  Get or Set the Application EUI
1809 )))
1810
1811 (((
1812 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1813 )))
1814
1815 (((
1816 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1817 )))
1818
1819 (((
1820 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1821 )))
1822
1823 (((
1824 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1825 )))
1826
1827 (((
1828 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1829 )))
1830
1831 (((
1832 AT+RX2FQ: Get or Set the Rx2 window frequency
1833 )))
1834
1835 (((
1836 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1837 )))
1838
1839 (((
1840 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1841 )))
1842
1843 (((
1844 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1845 )))
1846
1847 (((
1848 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1849 )))
1850
1851 (((
1852 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1853 )))
1854
1855 (((
1856 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1857 )))
1858
1859 (((
1860 AT+NWKID: Get or Set the Network ID
1861 )))
1862
1863 (((
1864 AT+FCU: Get or Set the Frame Counter Uplink
1865 )))
1866
1867 (((
1868 AT+FCD: Get or Set the Frame Counter Downlink
1869 )))
1870
1871 (((
1872 AT+CLASS: Get or Set the Device Class
1873 )))
1874
1875 (((
1876 AT+JOIN: Join network
1877 )))
1878
1879 (((
1880 AT+NJS: Get OTAA Join Status
1881 )))
1882
1883 (((
1884 AT+SENDB: Send hexadecimal data along with the application port
1885 )))
1886
1887 (((
1888 AT+SEND: Send text data along with the application port
1889 )))
1890
1891 (((
1892 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1893 )))
1894
1895 (((
1896 AT+RECV: Print last received data in raw format
1897 )))
1898
1899 (((
1900 AT+VER:  Get current image version and Frequency Band
1901 )))
1902
1903 (((
1904 AT+CFM: Get or Set the confirmation mode (0-1)
1905 )))
1906
1907 (((
1908 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1909 )))
1910
1911 (((
1912 AT+SNR: Get the SNR of the last received packet
1913 )))
1914
1915 (((
1916 AT+RSSI: Get the RSSI of the last received packet
1917 )))
1918
1919 (((
1920 AT+TDC: Get or set the application data transmission interval in ms
1921 )))
1922
1923 (((
1924 AT+PORT: Get or set the application port
1925 )))
1926
1927 (((
1928 AT+DISAT: Disable AT commands
1929 )))
1930
1931 (((
1932 AT+PWORD: Set password, max 9 digits
1933 )))
1934
1935 (((
1936 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1937 )))
1938
1939 (((
1940 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1941 )))
1942
1943 (((
1944 AT+CFG: Print all settings
1945 )))
1946
1947
1948 == 4.2 Common AT Command Sequence ==
1949
1950 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1951
1952 (((
1953
1954
1955 (((
1956 (% style="color:blue" %)**If device has not joined network yet:**
1957 )))
1958 )))
1959
1960 (((
1961 (% style="background-color:#dcdcdc" %)**123456**
1962 )))
1963
1964 (((
1965 (% style="background-color:#dcdcdc" %)**AT+FDR**
1966 )))
1967
1968 (((
1969 (% style="background-color:#dcdcdc" %)**123456**
1970 )))
1971
1972 (((
1973 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1974 )))
1975
1976 (((
1977 (% style="background-color:#dcdcdc" %)**ATZ**
1978 )))
1979
1980
1981 (((
1982 (% style="color:blue" %)**If device already joined network:**
1983 )))
1984
1985 (((
1986 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1987 )))
1988
1989 (((
1990 (% style="background-color:#dcdcdc" %)**ATZ**
1991 )))
1992
1993
1994 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1995
1996 (((
1997
1998
1999 (((
2000 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2001 )))
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2022 )))
2023
2024 (((
2025 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2026 )))
2027
2028 (((
2029 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2030 )))
2031
2032 (((
2033 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2034 )))
2035
2036 (((
2037 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2038 )))
2039
2040 (((
2041 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2042 )))
2043
2044 (((
2045 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2046 )))
2047
2048 (((
2049 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2050
2051
2052 )))
2053
2054 (((
2055 (% style="color:red" %)**Note:**
2056 )))
2057
2058 (((
2059 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2060
2061 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2062
2063 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2064 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2065
2066 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2067
2068
2069 )))
2070
2071 (((
2072 [[image:1653359097980-169.png||height="188" width="729"]]
2073 )))
2074
2075 (((
2076
2077 )))
2078
2079 === 4.2.3 Change to Class A ===
2080
2081
2082 (((
2083 (% style="color:blue" %)**If sensor JOINED:**
2084
2085 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2086 ATZ**
2087 )))
2088
2089
2090 = 5. Case Study =
2091
2092 == 5.1 Counting how many objects pass in Flow Line ==
2093
2094
2095 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2096
2097
2098 = 6. FAQ =
2099
2100 == 6.1 How to upgrade the image? ==
2101
2102
2103 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2104
2105 * Support new features
2106 * For bug fix
2107 * Change LoRaWAN bands.
2108
2109 Below shows the hardware connection for how to upload an image to the LT:
2110
2111 [[image:1653359603330-121.png]]
2112
2113
2114 (((
2115 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2116 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2117 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2118
2119
2120 (((
2121 (% style="color:blue" %)**For LT-22222-L**(%%):
2122 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2123 )))
2124
2125
2126 )))
2127
2128 [[image:image-20220524103407-12.png]]
2129
2130
2131 [[image:image-20220524103429-13.png]]
2132
2133
2134 [[image:image-20220524104033-15.png]]
2135
2136
2137 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2138
2139
2140 [[image:1653360054704-518.png||height="186" width="745"]]
2141
2142
2143 (((
2144 (((
2145 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2146
2147
2148 )))
2149 )))
2150
2151 (((
2152 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2153 )))
2154
2155 (((
2156
2157
2158 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2159
2160
2161 )))
2162
2163 (((
2164 (((
2165 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2166 )))
2167 )))
2168
2169 (((
2170 (((
2171 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2172
2173
2174 )))
2175 )))
2176
2177 (((
2178 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2179
2180
2181 )))
2182
2183 (((
2184 [[image:1653360231087-571.png||height="401" width="727"]]
2185
2186
2187 )))
2188
2189 (((
2190 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2191 )))
2192
2193
2194
2195 (((
2196 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2197
2198
2199 )))
2200
2201 (((
2202 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2203 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2204 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2205 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2206 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2207 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2208 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2209 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2210 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2211 )))
2212
2213
2214 (((
2215 As shown in below:
2216 )))
2217
2218 [[image:1653360498588-932.png||height="485" width="726"]]
2219
2220
2221 == 6.4 How to change the uplink interval? ==
2222
2223
2224 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2225
2226
2227 == 6.5 Can I see counting event in Serial? ==
2228
2229
2230 (((
2231 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2232
2233
2234 == 6.6 Can i use point to point communication for LT-22222-L? ==
2235
2236
2237 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2238
2239
2240 )))
2241
2242 (((
2243 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2244
2245
2246 If the device is not shut down, but directly powered off.
2247
2248 It will default that this is a power-off state.
2249
2250 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2251
2252 After restart, the status before power failure will be read from flash.
2253
2254
2255 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2256
2257
2258 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2259
2260
2261 [[image:image-20221006170630-1.png||height="610" width="945"]]
2262
2263
2264 == 6.9 Can LT22222-L save RO state? ==
2265
2266
2267 Firmware version needs to be no less than 1.6.0.
2268
2269
2270 = 7. Trouble Shooting =
2271 )))
2272
2273 (((
2274 (((
2275 == 7.1 Downlink doesn't work, how to solve it? ==
2276
2277
2278 )))
2279 )))
2280
2281 (((
2282 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2283 )))
2284
2285 (((
2286
2287
2288 == 7.2 Have trouble to upload image. ==
2289
2290
2291 )))
2292
2293 (((
2294 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2295 )))
2296
2297 (((
2298
2299
2300 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2301
2302
2303 )))
2304
2305 (((
2306 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2307 )))
2308
2309
2310 = 8. Order Info =
2311
2312
2313 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2314
2315 (% style="color:#4f81bd" %)**XXX:**
2316
2317 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2318 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2319 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2320 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2321 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2322 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2323 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2324 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2325 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2326
2327 = 9. Packing Info =
2328
2329
2330 **Package Includes**:
2331
2332 * LT-22222-L I/O Controller x 1
2333 * Stick Antenna for LoRa RF part x 1
2334 * Bracket for controller x1
2335 * Program cable x 1
2336
2337 **Dimension and weight**:
2338
2339 * Device Size: 13.5 x 7 x 3 cm
2340 * Device Weight: 105g
2341 * Package Size / pcs : 14.5 x 8 x 5 cm
2342 * Weight / pcs : 170g
2343
2344 = 10. Support =
2345
2346
2347 * (((
2348 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2349 )))
2350 * (((
2351 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2352
2353
2354
2355 )))
2356
2357 = 11. Reference​​​​​ =
2358
2359
2360 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2361 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2362 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]