Version 118.6 by Xiaoling on 2023/05/17 11:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |Size(bytes)|4|4|1|1|1
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407
408
409 )))|MOD
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420
421 RO is for relay. ROx=1 : close,ROx=0 always open.
422 )))
423
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 )))
430
431 (((
432
433
434 **To use counting mode, please run:**
435 )))
436
437 (% class="box infomessage" %)
438 (((
439 (((
440 (((
441 **AT+MOD=2**
442 )))
443
444 (((
445 **ATZ**
446 )))
447 )))
448 )))
449
450 (((
451
452
453 (% style="color:#4f81bd" %)**AT Commands for counting:**
454
455
456 )))
457
458 (((
459 **For LT22222-L:**
460
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |Size(bytes)|4|2|2|1|1|1
483 |Value|COUNT1|(((
484 ACI1 Current
485 )))|(((
486 ACI2 Current
487 )))|DIDORO*|Reserve|MOD
488
489 (((
490
491
492 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493
494 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
497 )))
498
499
500 * RO is for relay. ROx=1 : close,ROx=0 always open.
501 * FIRST: Indicate this is the first packet after join network.
502 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503
504 (((
505 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
506 )))
507
508
509 (((
510 **To use counting mode, please run:**
511 )))
512
513 (% class="box infomessage" %)
514 (((
515 (((
516 (((
517 **AT+MOD=3**
518 )))
519
520 (((
521 **ATZ**
522 )))
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530
531 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
532
533
534 (((
535 **LT22222-L**: This mode the DI1 is used as a counting pin.
536 )))
537
538 (((
539 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |Size(bytes)|4|4|1|1|1
543 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 Reserve
545
546
547 )))|MOD
548 )))
549
550
551
552 (((
553 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
558 )))
559
560
561 * RO is for relay. ROx=1 : close,ROx=0 always open.
562 * FIRST: Indicate this is the first packet after join network.
563 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564
565 (((
566 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 )))
568
569 (((
570
571
572 **To use this mode, please run:**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 (((
579 **AT+MOD=4**
580 )))
581
582 (((
583 **ATZ**
584 )))
585 )))
586 )))
587
588
589 (((
590 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
591 )))
592
593 (((
594
595
596 **Plus below command for AVI1 Counting:**
597
598
599 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600
601 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
606 )))
607
608
609 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610
611
612 **LT22222-L**: This mode the DI1 is used as a counting pin.
613
614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 |Size(bytes)|2|2|2|2|1|1|1
616 |Value|(((
617 AVI1
618 voltage
619 )))|(((
620 AVI2
621 voltage
622 )))|(((
623 ACI1
624 Current
625 )))|COUNT1|DIDORO*|(((
626 Reserve
627 )))|MOD
628
629
630 (((
631
632
633 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
634
635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
636 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
637 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
638 )))
639
640 * RO is for relay. ROx=1 : close,ROx=0 always open.
641 * FIRST: Indicate this is the first packet after join network.
642 * (((
643 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
644 )))
645
646 (((
647 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
648 )))
649
650 (((
651
652
653 **To use this mode, please run:**
654 )))
655
656 (% class="box infomessage" %)
657 (((
658 (((
659 (((
660 **AT+MOD=5**
661 )))
662
663 (((
664 **ATZ**
665 )))
666 )))
667 )))
668
669 (((
670 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
671 )))
672
673
674 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
675
676
677 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
678
679 For example, if user has configured below commands:
680
681 * **AT+MOD=1 ** **~-~->**  The normal working mode
682 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
683
684 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
685
686 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
687 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
688
689 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
690
691
692 (% style="color:#4f81bd" %)**Trigger base on voltage**:
693
694 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
695
696
697 **Example:**
698
699 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
700
701 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
702
703
704
705 (% style="color:#4f81bd" %)**Trigger base on current**:
706
707 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
708
709
710 **Example:**
711
712 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
713
714
715
716 (% style="color:#4f81bd" %)**Trigger base on DI status**:
717
718 DI status trigger Flag.
719
720 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
721
722
723 **Example:**
724
725 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
726
727
728 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
729
730 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
731
732 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
733
734 AA: Code for this downlink Command:
735
736 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
737
738 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
739
740 yy2 yy2: AC1 or AV1 high limit.
741
742 yy3 yy3: AC2 or AV2 low limit.
743
744 Yy4 yy4: AC2 or AV2 high limit.
745
746
747 **Example1**: AA 00 13 88 00 00 00 00 00 00
748
749 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
750
751
752 **Example2**: AA 02 01 00
753
754 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
755
756
757
758 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
759
760 MOD6 Payload : total 11 bytes payload
761
762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
763 |Size(bytes)|1|1|1|6|1|1
764 |Value|(((
765 TRI_A
766 FLAG
767 )))|(((
768 TRI_A
769 Status
770 )))|(((
771 TRI_DI
772 FLAG+STA
773 )))|Reserve|Enable/Disable MOD6|(((
774 MOD
775 (6)
776 )))
777
778
779
780 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
781
782 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
783 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
784 |(((
785 AV1_
786 LOW
787 )))|(((
788 AV1_
789 HIGH
790 )))|(((
791 AV2_
792 LOW
793 )))|(((
794 AV2_
795 HIGH
796 )))|(((
797 AC1_
798 LOW
799 )))|(((
800 AC1_
801 HIGH
802 )))|(((
803 AC2_
804 LOW
805 )))|(((
806 AC2_
807 HIGH
808 )))
809
810
811 * Each bits shows if the corresponding trigger has been configured.
812
813 **Example:**
814
815 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
816
817
818
819 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
820
821 [[image:image-20220524090249-3.png]]
822
823 * Each bits shows which status has been trigger on this uplink.
824
825 **Example:**
826
827 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
828
829
830 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
831
832 [[image:image-20220524090456-4.png]]
833
834 * Each bits shows which status has been trigger on this uplink.
835
836 **Example:**
837
838 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
839
840 00000101: Means both DI1 and DI2 trigger are enabled.
841
842
843 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
844
845 Downlink command to poll MOD6 status:
846
847 **AB 06**
848
849 When device got this command, it will send the MOD6 payload.
850
851
852 === 3.3.7 Payload Decoder ===
853
854 (((
855
856
857 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
858 )))
859
860
861 == 3.4 ​Configure LT via AT or Downlink ==
862
863
864 (((
865 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
866 )))
867
868 (((
869 (((
870 There are two kinds of Commands:
871 )))
872 )))
873
874 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
875
876 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
877
878 === 3.4.1 Common Commands ===
879
880
881 (((
882 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
883 )))
884
885
886 === 3.4.2 Sensor related commands ===
887
888 ==== 3.4.2.1 Set Transmit Interval ====
889
890
891 Set device uplink interval.
892
893 * (% style="color:#037691" %)**AT Command:**
894
895 (% style="color:blue" %)**AT+TDC=N **
896
897
898 **Example: **AT+TDC=30000. Means set interval to 30 seconds
899
900
901 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
902
903 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
904
905
906
907 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
908
909
910 Set work mode.
911
912 * (% style="color:#037691" %)**AT Command:**
913
914 (% style="color:blue" %)**AT+MOD=N  **
915
916
917 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
918
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
921
922 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
923
924
925
926 ==== 3.4.2.3 Poll an uplink ====
927
928
929 * (% style="color:#037691" %)**AT Command:**
930
931 There is no AT Command to poll uplink
932
933
934 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
935
936 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
937
938
939 **Example**: 0x08FF, ask device to send an Uplink
940
941
942
943 ==== 3.4.2.4 Enable Trigger Mode ====
944
945
946 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
947
948 * (% style="color:#037691" %)**AT Command:**
949
950 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
951
952 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
953
954 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
955
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
958
959 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
960
961
962
963 ==== 3.4.2.5 Poll trigger settings ====
964
965
966 Poll trigger settings,
967
968 * (% style="color:#037691" %)**AT Command:**
969
970 There is no AT Command for this feature.
971
972
973 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
974
975 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
976
977
978
979 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
980
981
982 Enable Disable DI1/DI2/DI2 as trigger,
983
984 * (% style="color:#037691" %)**AT Command:**
985
986 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
987
988
989 **Example:**
990
991 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
992
993 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
994
995 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
996
997
998
999 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1000
1001
1002 Set DI1 or DI3(for LT-33222-L) trigger.
1003
1004 * (% style="color:#037691" %)**AT Command:**
1005
1006 (% style="color:blue" %)**AT+TRIG1=a,b**
1007
1008 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1009
1010 (% style="color:red" %)**b :** (%%)delay timing.
1011
1012
1013 **Example:**
1014
1015 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1016
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1019
1020 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1021
1022
1023
1024 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1025
1026
1027 Set DI2 trigger.
1028
1029 * (% style="color:#037691" %)**AT Command:**
1030
1031 (% style="color:blue" %)**AT+TRIG2=a,b**
1032
1033 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1034
1035 (% style="color:red" %)**b :** (%%)delay timing.
1036
1037
1038 **Example:**
1039
1040 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1041
1042
1043 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1044
1045 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1046
1047
1048
1049 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1050
1051
1052 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1053
1054 * (% style="color:#037691" %)**AT Command**
1055
1056 (% style="color:blue" %)**AT+ACLIM**
1057
1058
1059 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1060
1061 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1062
1063
1064
1065 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1066
1067
1068 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1069
1070 * (% style="color:#037691" %)**AT Command**
1071
1072 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1073
1074
1075 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1076
1077 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1078
1079
1080
1081 ==== 3.4.2.11 Trigger – Set minimum interval ====
1082
1083
1084 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1085
1086 * (% style="color:#037691" %)**AT Command**
1087
1088 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1089
1090
1091 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1092
1093 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1094
1095 (((
1096
1097
1098 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1099 )))
1100
1101
1102
1103 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1104
1105
1106 * (% style="color:#037691" %)**AT Command**
1107
1108 There is no AT Command to control Digital Output
1109
1110
1111 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1112 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1113
1114 (((
1115 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1116 )))
1117
1118 (((
1119 01: Low,  00: High ,  11: No action
1120 )))
1121
1122 [[image:image-20220524092754-5.png]]
1123
1124 (((
1125 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1126 )))
1127
1128 (((
1129 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1130 )))
1131
1132
1133
1134 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1135
1136
1137 * (% style="color:#037691" %)**AT Command**
1138
1139 There is no AT Command to control Digital Output
1140
1141
1142 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1143
1144 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1145
1146
1147 This is to control the digital output time of DO pin. Include four bytes:
1148
1149 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1150
1151 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1152
1153 01: DO pins will change back to original state after timeout.
1154
1155 00: DO pins will change to an inverter state after timeout 
1156
1157
1158 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1159
1160 [[image:image-20220524093238-6.png]]
1161
1162
1163 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1164
1165 [[image:image-20220524093328-7.png]]
1166
1167
1168 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1169
1170 [[image:image-20220524093351-8.png]]
1171
1172
1173 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1174
1175 Latching time. Unit: ms
1176
1177
1178 (% style="color:red" %)**Note: **
1179
1180 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1181
1182 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1183
1184
1185 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1186
1187
1188 **Example payload:**
1189
1190 **~1. A9 01 01 01 01 07 D0**
1191
1192 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1193
1194 **2. A9 01 00 01 11 07 D0**
1195
1196 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1197
1198 **3. A9 00 00 00 00 07 D0**
1199
1200 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1201
1202 **4. A9 00 11 01 00 07 D0**
1203
1204 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1205
1206
1207
1208 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1209
1210
1211 * (% style="color:#037691" %)**AT Command:**
1212
1213 There is no AT Command to control Relay Output
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1217
1218 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1219
1220
1221 (((
1222 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1223 )))
1224
1225 (((
1226 01: Close ,  00: Open , 11: No action
1227 )))
1228
1229 (((
1230 [[image:image-20230426161322-1.png]]
1231 )))
1232
1233 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1234
1235
1236
1237 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1238
1239
1240 * (% style="color:#037691" %)**AT Command:**
1241
1242 There is no AT Command to control Relay Output
1243
1244
1245 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1246
1247 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1248
1249
1250 This is to control the relay output time of relay. Include four bytes:
1251
1252 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1253
1254 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1255
1256 01: Relays will change back to original state after timeout.
1257
1258 00: Relays will change to an inverter state after timeout
1259
1260
1261 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1262
1263 [[image:image-20221008095908-1.png||height="364" width="564"]]
1264
1265
1266 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1267
1268
1269 (% style="color:red" %)**Note:**
1270
1271 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1272
1273 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1274
1275
1276 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1277
1278
1279 **Example payload:**
1280
1281 **~1. 05 01 11 07 D0**
1282
1283 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1284
1285 **2. 05 01 10 07 D0**
1286
1287 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1288
1289 **3. 05 00 01 07 D0**
1290
1291 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1292
1293 **4. 05 00 00 07 D0**
1294
1295 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1296
1297
1298
1299 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1300
1301
1302 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1303
1304 * (% style="color:#037691" %)**AT Command:**
1305
1306 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1307
1308
1309 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1310
1311 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1312
1313
1314
1315 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command:**
1319
1320 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1321
1322 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1323
1324 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1325
1326
1327 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1328
1329 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1330
1331
1332
1333 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1334
1335
1336 Clear counting for counting mode
1337
1338 * (% style="color:#037691" %)**AT Command:**
1339
1340 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1341
1342
1343 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1344
1345 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1346
1347
1348
1349 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1350
1351
1352 * (% style="color:#037691" %)**AT Command:**
1353
1354 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1355
1356
1357 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1358
1359 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1360
1361 (((
1362 range: aa bb cc:0 to 16777215,  (unit:second)
1363 )))
1364
1365
1366
1367 ==== 3.4.2.20 Reset save RO DO state ====
1368
1369
1370 * (% style="color:#037691" %)**AT Command:**
1371
1372 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1373
1374 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1375
1376
1377 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1378
1379 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1380
1381
1382
1383 ==== 3.4.2.21 Encrypted payload ====
1384
1385
1386 * (% style="color:#037691" %)**AT Command:**
1387
1388 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1389
1390 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1391
1392
1393
1394 ==== 3.4.2.22 Get sensor value ====
1395
1396
1397 * (% style="color:#037691" %)**AT Command:**
1398
1399 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1400
1401 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1402
1403
1404
1405 ==== 3.4.2.23 Resets the downlink packet count ====
1406
1407
1408 * (% style="color:#037691" %)**AT Command:**
1409
1410 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1411
1412 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1413
1414
1415
1416 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1417
1418
1419 * (% style="color:#037691" %)**AT Command:**
1420
1421 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1422
1423 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1424
1425
1426 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1427
1428 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1429
1430
1431
1432 ==== 3.4.2.25 Copy downlink to uplink ====
1433
1434
1435 * (% style="color:#037691" %)**AT Command**(%%)**:**
1436
1437 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1438
1439 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1440
1441
1442 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1443
1444 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1445
1446
1447
1448 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1449
1450 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1451
1452
1453
1454 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1455
1456
1457 * (((
1458 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1459
1460 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1461
1462
1463 )))
1464
1465 **Example:**
1466
1467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1468
1469
1470 == 3.5 Integrate with Mydevice ==
1471
1472
1473 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1474
1475 (((
1476 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1477 )))
1478
1479 (((
1480 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1481
1482
1483 )))
1484
1485 [[image:image-20220719105525-1.png||height="377" width="677"]]
1486
1487
1488
1489 [[image:image-20220719110247-2.png||height="388" width="683"]]
1490
1491
1492 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1493
1494 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1495
1496 Search under The things network
1497
1498 [[image:1653356838789-523.png||height="337" width="740"]]
1499
1500
1501
1502 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1503
1504 [[image:image-20220524094909-1.png||height="335" width="729"]]
1505
1506
1507 [[image:image-20220524094909-2.png||height="337" width="729"]]
1508
1509
1510 [[image:image-20220524094909-3.png||height="338" width="727"]]
1511
1512
1513 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1514
1515
1516 [[image:image-20220524094909-5.png||height="341" width="734"]]
1517
1518
1519 == 3.6 Interface Detail ==
1520
1521 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1522
1523
1524 Support NPN Type sensor
1525
1526 [[image:1653356991268-289.png]]
1527
1528
1529 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1530
1531
1532 (((
1533 The DI port of LT-22222-L can support NPN or PNP output sensor.
1534 )))
1535
1536 (((
1537 (((
1538 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1539
1540
1541 )))
1542 )))
1543
1544 [[image:1653357170703-587.png]]
1545
1546 (((
1547 (((
1548 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1549 )))
1550 )))
1551
1552 (((
1553
1554 )))
1555
1556 (((
1557 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1558 )))
1559
1560 (((
1561 This type of sensor will output a low signal GND when active.
1562 )))
1563
1564 * (((
1565 Connect sensor's output to DI1-
1566 )))
1567 * (((
1568 Connect sensor's VCC to DI1+.
1569 )))
1570
1571 (((
1572 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1573 )))
1574
1575 (((
1576 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1577 )))
1578
1579 (((
1580 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1581 )))
1582
1583 (((
1584
1585 )))
1586
1587 (((
1588 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1589 )))
1590
1591 (((
1592 This type of sensor will output a high signal (example 24v) when active.
1593 )))
1594
1595 * (((
1596 Connect sensor's output to DI1+
1597 )))
1598 * (((
1599 Connect sensor's GND DI1-.
1600 )))
1601
1602 (((
1603 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1604 )))
1605
1606 (((
1607 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1608 )))
1609
1610 (((
1611 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1612 )))
1613
1614 (((
1615
1616 )))
1617
1618 (((
1619 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1620 )))
1621
1622 (((
1623 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1624 )))
1625
1626 * (((
1627 Connect sensor's output to DI1+ with a serial 50K resistor
1628 )))
1629 * (((
1630 Connect sensor's GND DI1-.
1631 )))
1632
1633 (((
1634 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1635 )))
1636
1637 (((
1638 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1639 )))
1640
1641 (((
1642 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1643 )))
1644
1645
1646 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1647
1648
1649 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1650
1651 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1652
1653 [[image:1653357531600-905.png]]
1654
1655
1656 === 3.6.4 Analog Input Interface ===
1657
1658
1659 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1660
1661
1662 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1663
1664 [[image:1653357592296-182.png]]
1665
1666 Example to connect a 4~~20mA sensor
1667
1668 We take the wind speed sensor as an example for reference only.
1669
1670
1671 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1672
1673 (% style="color:red" %)**Red:  12~~24v**
1674
1675 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1676
1677 **Black:  GND**
1678
1679
1680 **Connection diagram:**
1681
1682 [[image:1653357640609-758.png]]
1683
1684 [[image:1653357648330-671.png||height="155" width="733"]]
1685
1686
1687 === 3.6.5 Relay Output ===
1688
1689
1690 (((
1691 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1692
1693 **Note**: RO pins go to Open(NO) when device is power off.
1694 )))
1695
1696 [[image:image-20220524100215-9.png]]
1697
1698
1699 [[image:image-20220524100215-10.png||height="382" width="723"]]
1700
1701
1702 == 3.7 LEDs Indicators ==
1703
1704
1705 [[image:image-20220524100748-11.png]]
1706
1707
1708 = 4. Use AT Command =
1709
1710 == 4.1 Access AT Command ==
1711
1712
1713 (((
1714 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1715 )))
1716
1717 (((
1718
1719 )))
1720
1721 [[image:1653358238933-385.png]]
1722
1723
1724 (((
1725 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1726 )))
1727
1728 [[image:1653358355238-883.png]]
1729
1730
1731 (((
1732 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1733 )))
1734
1735 (((
1736 AT+<CMD>?        : Help on <CMD>
1737 )))
1738
1739 (((
1740 AT+<CMD>         : Run <CMD>
1741 )))
1742
1743 (((
1744 AT+<CMD>=<value> : Set the value
1745 )))
1746
1747 (((
1748 AT+<CMD>=?       :  Get the value
1749 )))
1750
1751 (((
1752 ATZ: Trig a reset of the MCU
1753 )))
1754
1755 (((
1756 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1757 )))
1758
1759 (((
1760 AT+DEUI: Get or Set the Device EUI
1761 )))
1762
1763 (((
1764 AT+DADDR: Get or Set the Device Address
1765 )))
1766
1767 (((
1768 AT+APPKEY: Get or Set the Application Key
1769 )))
1770
1771 (((
1772 AT+NWKSKEY: Get or Set the Network Session Key
1773 )))
1774
1775 (((
1776 AT+APPSKEY:  Get or Set the Application Session Key
1777 )))
1778
1779 (((
1780 AT+APPEUI:  Get or Set the Application EUI
1781 )))
1782
1783 (((
1784 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1785 )))
1786
1787 (((
1788 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1789 )))
1790
1791 (((
1792 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1793 )))
1794
1795 (((
1796 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1797 )))
1798
1799 (((
1800 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1801 )))
1802
1803 (((
1804 AT+RX2FQ: Get or Set the Rx2 window frequency
1805 )))
1806
1807 (((
1808 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1809 )))
1810
1811 (((
1812 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1813 )))
1814
1815 (((
1816 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1817 )))
1818
1819 (((
1820 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1821 )))
1822
1823 (((
1824 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1825 )))
1826
1827 (((
1828 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1829 )))
1830
1831 (((
1832 AT+NWKID: Get or Set the Network ID
1833 )))
1834
1835 (((
1836 AT+FCU: Get or Set the Frame Counter Uplink
1837 )))
1838
1839 (((
1840 AT+FCD: Get or Set the Frame Counter Downlink
1841 )))
1842
1843 (((
1844 AT+CLASS: Get or Set the Device Class
1845 )))
1846
1847 (((
1848 AT+JOIN: Join network
1849 )))
1850
1851 (((
1852 AT+NJS: Get OTAA Join Status
1853 )))
1854
1855 (((
1856 AT+SENDB: Send hexadecimal data along with the application port
1857 )))
1858
1859 (((
1860 AT+SEND: Send text data along with the application port
1861 )))
1862
1863 (((
1864 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1865 )))
1866
1867 (((
1868 AT+RECV: Print last received data in raw format
1869 )))
1870
1871 (((
1872 AT+VER:  Get current image version and Frequency Band
1873 )))
1874
1875 (((
1876 AT+CFM: Get or Set the confirmation mode (0-1)
1877 )))
1878
1879 (((
1880 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1881 )))
1882
1883 (((
1884 AT+SNR: Get the SNR of the last received packet
1885 )))
1886
1887 (((
1888 AT+RSSI: Get the RSSI of the last received packet
1889 )))
1890
1891 (((
1892 AT+TDC: Get or set the application data transmission interval in ms
1893 )))
1894
1895 (((
1896 AT+PORT: Get or set the application port
1897 )))
1898
1899 (((
1900 AT+DISAT: Disable AT commands
1901 )))
1902
1903 (((
1904 AT+PWORD: Set password, max 9 digits
1905 )))
1906
1907 (((
1908 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1909 )))
1910
1911 (((
1912 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1913 )))
1914
1915 (((
1916 AT+CFG: Print all settings
1917 )))
1918
1919
1920 == 4.2 Common AT Command Sequence ==
1921
1922 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1923
1924 (((
1925
1926
1927 (((
1928 (% style="color:blue" %)**If device has not joined network yet:**
1929 )))
1930 )))
1931
1932 (((
1933 (% style="background-color:#dcdcdc" %)**123456**
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %)**AT+FDR**
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)**123456**
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)**ATZ**
1950 )))
1951
1952
1953 (((
1954 (% style="color:blue" %)**If device already joined network:**
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)**ATZ**
1963 )))
1964
1965
1966 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1967
1968 (((
1969
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1973 )))
1974 )))
1975
1976 (((
1977 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1978 )))
1979
1980 (((
1981 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1982 )))
1983
1984 (((
1985 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1986 )))
1987
1988 (((
1989 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1990 )))
1991
1992 (((
1993 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1998 )))
1999
2000 (((
2001 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2022
2023
2024 )))
2025
2026 (((
2027 (% style="color:red" %)**Note:**
2028 )))
2029
2030 (((
2031 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2032
2033 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2034
2035 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2036 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2037
2038 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2039
2040
2041 )))
2042
2043 (((
2044 [[image:1653359097980-169.png||height="188" width="729"]]
2045 )))
2046
2047 (((
2048
2049 )))
2050
2051 === 4.2.3 Change to Class A ===
2052
2053
2054 (((
2055 (% style="color:blue" %)**If sensor JOINED:**
2056
2057 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2058 ATZ**
2059 )))
2060
2061
2062 = 5. Case Study =
2063
2064 == 5.1 Counting how many objects pass in Flow Line ==
2065
2066
2067 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2068
2069
2070 = 6. FAQ =
2071
2072 == 6.1 How to upgrade the image? ==
2073
2074
2075 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2076
2077 * Support new features
2078 * For bug fix
2079 * Change LoRaWAN bands.
2080
2081 Below shows the hardware connection for how to upload an image to the LT:
2082
2083 [[image:1653359603330-121.png]]
2084
2085
2086 (((
2087 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2088 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2089 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2090
2091
2092 (((
2093 (% style="color:blue" %)**For LT-22222-L**(%%):
2094 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2095 )))
2096
2097
2098 )))
2099
2100 [[image:image-20220524103407-12.png]]
2101
2102
2103 [[image:image-20220524103429-13.png]]
2104
2105
2106 [[image:image-20220524104033-15.png]]
2107
2108
2109 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2110
2111
2112 [[image:1653360054704-518.png||height="186" width="745"]]
2113
2114
2115 (((
2116 (((
2117 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2118
2119
2120 )))
2121 )))
2122
2123 (((
2124 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2125 )))
2126
2127 (((
2128
2129
2130 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2131
2132
2133 )))
2134
2135 (((
2136 (((
2137 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2138 )))
2139 )))
2140
2141 (((
2142 (((
2143 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2144
2145
2146 )))
2147 )))
2148
2149 (((
2150 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2151
2152
2153 )))
2154
2155 (((
2156 [[image:1653360231087-571.png||height="401" width="727"]]
2157
2158
2159 )))
2160
2161 (((
2162 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2163 )))
2164
2165
2166
2167 (((
2168 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2169
2170
2171 )))
2172
2173 (((
2174 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2175 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2176 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2177 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2178 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2179 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2180 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2181 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2182 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2183 )))
2184
2185
2186 (((
2187 As shown in below:
2188 )))
2189
2190 [[image:1653360498588-932.png||height="485" width="726"]]
2191
2192
2193 == 6.4 How to change the uplink interval? ==
2194
2195
2196 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2197
2198
2199 == 6.5 Can I see counting event in Serial? ==
2200
2201
2202 (((
2203 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2204
2205
2206 == 6.6 Can i use point to point communication for LT-22222-L? ==
2207
2208
2209 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2210
2211
2212 )))
2213
2214 (((
2215 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2216
2217
2218 If the device is not shut down, but directly powered off.
2219
2220 It will default that this is a power-off state.
2221
2222 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2223
2224 After restart, the status before power failure will be read from flash.
2225
2226
2227 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2228
2229
2230 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2231
2232
2233 [[image:image-20221006170630-1.png||height="610" width="945"]]
2234
2235
2236 == 6.9 Can LT22222-L save RO state? ==
2237
2238
2239 Firmware version needs to be no less than 1.6.0.
2240
2241
2242 = 7. Trouble Shooting =
2243 )))
2244
2245 (((
2246 (((
2247 == 7.1 Downlink doesn't work, how to solve it? ==
2248
2249
2250 )))
2251 )))
2252
2253 (((
2254 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2255 )))
2256
2257 (((
2258
2259
2260 == 7.2 Have trouble to upload image. ==
2261
2262
2263 )))
2264
2265 (((
2266 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2267 )))
2268
2269 (((
2270
2271
2272 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2273
2274
2275 )))
2276
2277 (((
2278 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2279 )))
2280
2281
2282 = 8. Order Info =
2283
2284
2285 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2286
2287 (% style="color:#4f81bd" %)**XXX:**
2288
2289 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2290 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2291 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2292 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2293 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2294 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2295 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2296 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2297 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2298
2299 = 9. Packing Info =
2300
2301
2302 **Package Includes**:
2303
2304 * LT-22222-L I/O Controller x 1
2305 * Stick Antenna for LoRa RF part x 1
2306 * Bracket for controller x1
2307 * Program cable x 1
2308
2309 **Dimension and weight**:
2310
2311 * Device Size: 13.5 x 7 x 3 cm
2312 * Device Weight: 105g
2313 * Package Size / pcs : 14.5 x 8 x 5 cm
2314 * Weight / pcs : 170g
2315
2316 = 10. Support =
2317
2318
2319 * (((
2320 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2321 )))
2322 * (((
2323 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2324
2325
2326
2327 )))
2328
2329 = 11. Reference​​​​​ =
2330
2331
2332 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2333 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2334 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0