Version 118.4 by Xiaoling on 2023/05/17 10:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |Size(bytes)|4|4|1|1|1
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407
408
409 )))|MOD
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420
421 RO is for relay. ROx=1 : close,ROx=0 always open.
422 )))
423
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 )))
430
431 (((
432
433
434 **To use counting mode, please run:**
435 )))
436
437 (% class="box infomessage" %)
438 (((
439 (((
440 (((
441 **AT+MOD=2**
442 )))
443
444 (((
445 **ATZ**
446 )))
447 )))
448 )))
449
450 (((
451
452
453 (% style="color:#4f81bd" %)**AT Commands for counting:**
454
455
456 )))
457
458 (((
459 **For LT22222-L:**
460
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 [[image:image-20220523181246-5.png]]
482
483 (((
484
485
486 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
487 )))
488
489 [[image:image-20220523181301-6.png]]
490
491 * RO is for relay. ROx=1 : close,ROx=0 always open.
492 * FIRST: Indicate this is the first packet after join network.
493 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
494
495 (((
496 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
497 )))
498
499
500 (((
501 **To use counting mode, please run:**
502 )))
503
504 (% class="box infomessage" %)
505 (((
506 (((
507 (((
508 **AT+MOD=3**
509 )))
510
511 (((
512 **ATZ**
513 )))
514 )))
515 )))
516
517 (((
518 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
519 )))
520
521
522 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
523
524
525 (((
526 **LT22222-L**: This mode the DI1 is used as a counting pin.
527 )))
528
529 (((
530 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
531 )))
532
533 [[image:image-20220523181903-8.png]]
534
535
536 (((
537 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
538 )))
539
540 [[image:image-20220523181727-7.png]]
541
542 * RO is for relay. ROx=1 : close,ROx=0 always open.
543 * FIRST: Indicate this is the first packet after join network.
544 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
545
546 (((
547 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
548 )))
549
550 (((
551
552
553 **To use this mode, please run:**
554 )))
555
556 (% class="box infomessage" %)
557 (((
558 (((
559 (((
560 **AT+MOD=4**
561 )))
562
563 (((
564 **ATZ**
565 )))
566 )))
567 )))
568
569
570 (((
571 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
572 )))
573
574 (((
575
576
577 **Plus below command for AVI1 Counting:**
578
579
580 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
581
582 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
583
584 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
585
586 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
587 )))
588
589
590 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
591
592
593 **LT22222-L**: This mode the DI1 is used as a counting pin.
594
595 [[image:image-20220523182334-9.png]]
596
597 (((
598
599
600 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
601 )))
602
603 * RO is for relay. ROx=1 : close,ROx=0 always open.
604 * FIRST: Indicate this is the first packet after join network.
605 * (((
606 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
607 )))
608
609 (((
610 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
611 )))
612
613 (((
614
615
616 **To use this mode, please run:**
617 )))
618
619 (% class="box infomessage" %)
620 (((
621 (((
622 (((
623 **AT+MOD=5**
624 )))
625
626 (((
627 **ATZ**
628 )))
629 )))
630 )))
631
632 (((
633 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
634 )))
635
636
637 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
638
639
640 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
641
642 For example, if user has configured below commands:
643
644 * **AT+MOD=1 ** **~-~->**  The normal working mode
645 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
646
647 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
648
649 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
650 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
651
652 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
653
654
655 (% style="color:#4f81bd" %)**Trigger base on voltage**:
656
657 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
658
659
660 **Example:**
661
662 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
663
664 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
665
666
667
668 (% style="color:#4f81bd" %)**Trigger base on current**:
669
670 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
671
672
673 **Example:**
674
675 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
676
677
678
679 (% style="color:#4f81bd" %)**Trigger base on DI status**:
680
681 DI status trigger Flag.
682
683 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
684
685
686 **Example:**
687
688 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
689
690
691 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
692
693 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
694
695 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
696
697 AA: Code for this downlink Command:
698
699 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
700
701 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
702
703 yy2 yy2: AC1 or AV1 high limit.
704
705 yy3 yy3: AC2 or AV2 low limit.
706
707 Yy4 yy4: AC2 or AV2 high limit.
708
709
710 **Example1**: AA 00 13 88 00 00 00 00 00 00
711
712 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
713
714
715 **Example2**: AA 02 01 00
716
717 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
718
719
720
721 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
722
723 MOD6 Payload : total 11 bytes payload
724
725 [[image:image-20220524085923-1.png]]
726
727
728 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
729
730 [[image:image-20220524090106-2.png]]
731
732 * Each bits shows if the corresponding trigger has been configured.
733
734 **Example:**
735
736 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
737
738
739
740 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
741
742 [[image:image-20220524090249-3.png]]
743
744 * Each bits shows which status has been trigger on this uplink.
745
746 **Example:**
747
748 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
749
750
751 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
752
753 [[image:image-20220524090456-4.png]]
754
755 * Each bits shows which status has been trigger on this uplink.
756
757 **Example:**
758
759 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
760
761 00000101: Means both DI1 and DI2 trigger are enabled.
762
763
764 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
765
766 Downlink command to poll MOD6 status:
767
768 **AB 06**
769
770 When device got this command, it will send the MOD6 payload.
771
772
773 === 3.3.7 Payload Decoder ===
774
775 (((
776
777
778 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
779 )))
780
781
782 == 3.4 ​Configure LT via AT or Downlink ==
783
784
785 (((
786 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
787 )))
788
789 (((
790 (((
791 There are two kinds of Commands:
792 )))
793 )))
794
795 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
796
797 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
798
799 === 3.4.1 Common Commands ===
800
801
802 (((
803 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
804 )))
805
806
807 === 3.4.2 Sensor related commands ===
808
809 ==== 3.4.2.1 Set Transmit Interval ====
810
811
812 Set device uplink interval.
813
814 * (% style="color:#037691" %)**AT Command:**
815
816 (% style="color:blue" %)**AT+TDC=N **
817
818
819 **Example: **AT+TDC=30000. Means set interval to 30 seconds
820
821
822 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
823
824 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
825
826
827
828 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
829
830
831 Set work mode.
832
833 * (% style="color:#037691" %)**AT Command:**
834
835 (% style="color:blue" %)**AT+MOD=N  **
836
837
838 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
839
840
841 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
842
843 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
844
845
846
847 ==== 3.4.2.3 Poll an uplink ====
848
849
850 * (% style="color:#037691" %)**AT Command:**
851
852 There is no AT Command to poll uplink
853
854
855 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
856
857 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
858
859
860 **Example**: 0x08FF, ask device to send an Uplink
861
862
863
864 ==== 3.4.2.4 Enable Trigger Mode ====
865
866
867 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
868
869 * (% style="color:#037691" %)**AT Command:**
870
871 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
872
873 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
874
875 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
876
877
878 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
879
880 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
881
882
883
884 ==== 3.4.2.5 Poll trigger settings ====
885
886
887 Poll trigger settings,
888
889 * (% style="color:#037691" %)**AT Command:**
890
891 There is no AT Command for this feature.
892
893
894 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
895
896 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
897
898
899
900 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
901
902
903 Enable Disable DI1/DI2/DI2 as trigger,
904
905 * (% style="color:#037691" %)**AT Command:**
906
907 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
908
909
910 **Example:**
911
912 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
913
914 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
915
916 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
917
918
919
920 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
921
922
923 Set DI1 or DI3(for LT-33222-L) trigger.
924
925 * (% style="color:#037691" %)**AT Command:**
926
927 (% style="color:blue" %)**AT+TRIG1=a,b**
928
929 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
930
931 (% style="color:red" %)**b :** (%%)delay timing.
932
933
934 **Example:**
935
936 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
937
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
940
941 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
942
943
944
945 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
946
947
948 Set DI2 trigger.
949
950 * (% style="color:#037691" %)**AT Command:**
951
952 (% style="color:blue" %)**AT+TRIG2=a,b**
953
954 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
955
956 (% style="color:red" %)**b :** (%%)delay timing.
957
958
959 **Example:**
960
961 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
962
963
964 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
965
966 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
967
968
969
970 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
971
972
973 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
974
975 * (% style="color:#037691" %)**AT Command**
976
977 (% style="color:blue" %)**AT+ACLIM**
978
979
980 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
981
982 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
983
984
985
986 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
987
988
989 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
990
991 * (% style="color:#037691" %)**AT Command**
992
993 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
994
995
996 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
997
998 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
999
1000
1001
1002 ==== 3.4.2.11 Trigger – Set minimum interval ====
1003
1004
1005 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1006
1007 * (% style="color:#037691" %)**AT Command**
1008
1009 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1010
1011
1012 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1013
1014 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1015
1016 (((
1017
1018
1019 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1020 )))
1021
1022
1023
1024 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1025
1026
1027 * (% style="color:#037691" %)**AT Command**
1028
1029 There is no AT Command to control Digital Output
1030
1031
1032 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1033 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1034
1035 (((
1036 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1037 )))
1038
1039 (((
1040 01: Low,  00: High ,  11: No action
1041 )))
1042
1043 [[image:image-20220524092754-5.png]]
1044
1045 (((
1046 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1047 )))
1048
1049 (((
1050 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1051 )))
1052
1053
1054
1055 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1056
1057
1058 * (% style="color:#037691" %)**AT Command**
1059
1060 There is no AT Command to control Digital Output
1061
1062
1063 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1064
1065 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1066
1067
1068 This is to control the digital output time of DO pin. Include four bytes:
1069
1070 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1071
1072 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1073
1074 01: DO pins will change back to original state after timeout.
1075
1076 00: DO pins will change to an inverter state after timeout 
1077
1078
1079 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1080
1081 [[image:image-20220524093238-6.png]]
1082
1083
1084 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1085
1086 [[image:image-20220524093328-7.png]]
1087
1088
1089 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1090
1091 [[image:image-20220524093351-8.png]]
1092
1093
1094 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1095
1096 Latching time. Unit: ms
1097
1098
1099 (% style="color:red" %)**Note: **
1100
1101 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1102
1103 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1104
1105
1106 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1107
1108
1109 **Example payload:**
1110
1111 **~1. A9 01 01 01 01 07 D0**
1112
1113 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1114
1115 **2. A9 01 00 01 11 07 D0**
1116
1117 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1118
1119 **3. A9 00 00 00 00 07 D0**
1120
1121 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1122
1123 **4. A9 00 11 01 00 07 D0**
1124
1125 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1126
1127
1128
1129 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1130
1131
1132 * (% style="color:#037691" %)**AT Command:**
1133
1134 There is no AT Command to control Relay Output
1135
1136
1137 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1138
1139 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1140
1141
1142 (((
1143 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1144 )))
1145
1146 (((
1147 01: Close ,  00: Open , 11: No action
1148 )))
1149
1150 (((
1151 [[image:image-20230426161322-1.png]]
1152 )))
1153
1154 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1155
1156
1157
1158 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1159
1160
1161 * (% style="color:#037691" %)**AT Command:**
1162
1163 There is no AT Command to control Relay Output
1164
1165
1166 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1167
1168 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1169
1170
1171 This is to control the relay output time of relay. Include four bytes:
1172
1173 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1174
1175 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1176
1177 01: Relays will change back to original state after timeout.
1178
1179 00: Relays will change to an inverter state after timeout
1180
1181
1182 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1183
1184 [[image:image-20221008095908-1.png||height="364" width="564"]]
1185
1186
1187 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1188
1189
1190 (% style="color:red" %)**Note:**
1191
1192 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1193
1194 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1195
1196
1197 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1198
1199
1200 **Example payload:**
1201
1202 **~1. 05 01 11 07 D0**
1203
1204 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1205
1206 **2. 05 01 10 07 D0**
1207
1208 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1209
1210 **3. 05 00 01 07 D0**
1211
1212 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1213
1214 **4. 05 00 00 07 D0**
1215
1216 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1217
1218
1219
1220 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1221
1222
1223 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1224
1225 * (% style="color:#037691" %)**AT Command:**
1226
1227 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1228
1229
1230 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1231
1232 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1233
1234
1235
1236 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1237
1238
1239 * (% style="color:#037691" %)**AT Command:**
1240
1241 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1242
1243 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1244
1245 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1246
1247
1248 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1249
1250 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1251
1252
1253
1254 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1255
1256
1257 Clear counting for counting mode
1258
1259 * (% style="color:#037691" %)**AT Command:**
1260
1261 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1262
1263
1264 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1265
1266 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1267
1268
1269
1270 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1271
1272
1273 * (% style="color:#037691" %)**AT Command:**
1274
1275 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1276
1277
1278 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1279
1280 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1281
1282 (((
1283 range: aa bb cc:0 to 16777215,  (unit:second)
1284 )))
1285
1286
1287
1288 ==== 3.4.2.20 Reset save RO DO state ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1294
1295 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1296
1297
1298 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1299
1300 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1301
1302
1303
1304 ==== 3.4.2.21 Encrypted payload ====
1305
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1310
1311 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1312
1313
1314
1315 ==== 3.4.2.22 Get sensor value ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command:**
1319
1320 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1321
1322 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1323
1324
1325
1326 ==== 3.4.2.23 Resets the downlink packet count ====
1327
1328
1329 * (% style="color:#037691" %)**AT Command:**
1330
1331 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1332
1333 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1334
1335
1336
1337 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1338
1339
1340 * (% style="color:#037691" %)**AT Command:**
1341
1342 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1343
1344 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1345
1346
1347 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1348
1349 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1350
1351
1352
1353 ==== 3.4.2.25 Copy downlink to uplink ====
1354
1355
1356 * (% style="color:#037691" %)**AT Command**(%%)**:**
1357
1358 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1359
1360 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1361
1362
1363 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1364
1365 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1366
1367
1368
1369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1370
1371 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1372
1373
1374
1375 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1376
1377
1378 * (((
1379 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1380
1381 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1382
1383
1384 )))
1385
1386 **Example:**
1387
1388 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1389
1390
1391 == 3.5 Integrate with Mydevice ==
1392
1393
1394 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1395
1396 (((
1397 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1398 )))
1399
1400 (((
1401 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1402
1403
1404 )))
1405
1406 [[image:image-20220719105525-1.png||height="377" width="677"]]
1407
1408
1409
1410 [[image:image-20220719110247-2.png||height="388" width="683"]]
1411
1412
1413 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1414
1415 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1416
1417 Search under The things network
1418
1419 [[image:1653356838789-523.png||height="337" width="740"]]
1420
1421
1422
1423 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1424
1425 [[image:image-20220524094909-1.png||height="335" width="729"]]
1426
1427
1428 [[image:image-20220524094909-2.png||height="337" width="729"]]
1429
1430
1431 [[image:image-20220524094909-3.png||height="338" width="727"]]
1432
1433
1434 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1435
1436
1437 [[image:image-20220524094909-5.png||height="341" width="734"]]
1438
1439
1440 == 3.6 Interface Detail ==
1441
1442 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1443
1444
1445 Support NPN Type sensor
1446
1447 [[image:1653356991268-289.png]]
1448
1449
1450 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1451
1452
1453 (((
1454 The DI port of LT-22222-L can support NPN or PNP output sensor.
1455 )))
1456
1457 (((
1458 (((
1459 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1460
1461
1462 )))
1463 )))
1464
1465 [[image:1653357170703-587.png]]
1466
1467 (((
1468 (((
1469 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1470 )))
1471 )))
1472
1473 (((
1474
1475 )))
1476
1477 (((
1478 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1479 )))
1480
1481 (((
1482 This type of sensor will output a low signal GND when active.
1483 )))
1484
1485 * (((
1486 Connect sensor's output to DI1-
1487 )))
1488 * (((
1489 Connect sensor's VCC to DI1+.
1490 )))
1491
1492 (((
1493 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1494 )))
1495
1496 (((
1497 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1498 )))
1499
1500 (((
1501 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1502 )))
1503
1504 (((
1505
1506 )))
1507
1508 (((
1509 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1510 )))
1511
1512 (((
1513 This type of sensor will output a high signal (example 24v) when active.
1514 )))
1515
1516 * (((
1517 Connect sensor's output to DI1+
1518 )))
1519 * (((
1520 Connect sensor's GND DI1-.
1521 )))
1522
1523 (((
1524 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1525 )))
1526
1527 (((
1528 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1529 )))
1530
1531 (((
1532 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1533 )))
1534
1535 (((
1536
1537 )))
1538
1539 (((
1540 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1541 )))
1542
1543 (((
1544 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1545 )))
1546
1547 * (((
1548 Connect sensor's output to DI1+ with a serial 50K resistor
1549 )))
1550 * (((
1551 Connect sensor's GND DI1-.
1552 )))
1553
1554 (((
1555 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1556 )))
1557
1558 (((
1559 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1560 )))
1561
1562 (((
1563 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1564 )))
1565
1566
1567 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1568
1569
1570 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1571
1572 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1573
1574 [[image:1653357531600-905.png]]
1575
1576
1577 === 3.6.4 Analog Input Interface ===
1578
1579
1580 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1581
1582
1583 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1584
1585 [[image:1653357592296-182.png]]
1586
1587 Example to connect a 4~~20mA sensor
1588
1589 We take the wind speed sensor as an example for reference only.
1590
1591
1592 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1593
1594 (% style="color:red" %)**Red:  12~~24v**
1595
1596 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1597
1598 **Black:  GND**
1599
1600
1601 **Connection diagram:**
1602
1603 [[image:1653357640609-758.png]]
1604
1605 [[image:1653357648330-671.png||height="155" width="733"]]
1606
1607
1608 === 3.6.5 Relay Output ===
1609
1610
1611 (((
1612 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1613
1614 **Note**: RO pins go to Open(NO) when device is power off.
1615 )))
1616
1617 [[image:image-20220524100215-9.png]]
1618
1619
1620 [[image:image-20220524100215-10.png||height="382" width="723"]]
1621
1622
1623 == 3.7 LEDs Indicators ==
1624
1625
1626 [[image:image-20220524100748-11.png]]
1627
1628
1629 = 4. Use AT Command =
1630
1631 == 4.1 Access AT Command ==
1632
1633
1634 (((
1635 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1636 )))
1637
1638 (((
1639
1640 )))
1641
1642 [[image:1653358238933-385.png]]
1643
1644
1645 (((
1646 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1647 )))
1648
1649 [[image:1653358355238-883.png]]
1650
1651
1652 (((
1653 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1654 )))
1655
1656 (((
1657 AT+<CMD>?        : Help on <CMD>
1658 )))
1659
1660 (((
1661 AT+<CMD>         : Run <CMD>
1662 )))
1663
1664 (((
1665 AT+<CMD>=<value> : Set the value
1666 )))
1667
1668 (((
1669 AT+<CMD>=?       :  Get the value
1670 )))
1671
1672 (((
1673 ATZ: Trig a reset of the MCU
1674 )))
1675
1676 (((
1677 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1678 )))
1679
1680 (((
1681 AT+DEUI: Get or Set the Device EUI
1682 )))
1683
1684 (((
1685 AT+DADDR: Get or Set the Device Address
1686 )))
1687
1688 (((
1689 AT+APPKEY: Get or Set the Application Key
1690 )))
1691
1692 (((
1693 AT+NWKSKEY: Get or Set the Network Session Key
1694 )))
1695
1696 (((
1697 AT+APPSKEY:  Get or Set the Application Session Key
1698 )))
1699
1700 (((
1701 AT+APPEUI:  Get or Set the Application EUI
1702 )))
1703
1704 (((
1705 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1706 )))
1707
1708 (((
1709 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1710 )))
1711
1712 (((
1713 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1714 )))
1715
1716 (((
1717 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1718 )))
1719
1720 (((
1721 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1722 )))
1723
1724 (((
1725 AT+RX2FQ: Get or Set the Rx2 window frequency
1726 )))
1727
1728 (((
1729 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1730 )))
1731
1732 (((
1733 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1734 )))
1735
1736 (((
1737 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1738 )))
1739
1740 (((
1741 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1742 )))
1743
1744 (((
1745 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1746 )))
1747
1748 (((
1749 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1750 )))
1751
1752 (((
1753 AT+NWKID: Get or Set the Network ID
1754 )))
1755
1756 (((
1757 AT+FCU: Get or Set the Frame Counter Uplink
1758 )))
1759
1760 (((
1761 AT+FCD: Get or Set the Frame Counter Downlink
1762 )))
1763
1764 (((
1765 AT+CLASS: Get or Set the Device Class
1766 )))
1767
1768 (((
1769 AT+JOIN: Join network
1770 )))
1771
1772 (((
1773 AT+NJS: Get OTAA Join Status
1774 )))
1775
1776 (((
1777 AT+SENDB: Send hexadecimal data along with the application port
1778 )))
1779
1780 (((
1781 AT+SEND: Send text data along with the application port
1782 )))
1783
1784 (((
1785 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1786 )))
1787
1788 (((
1789 AT+RECV: Print last received data in raw format
1790 )))
1791
1792 (((
1793 AT+VER:  Get current image version and Frequency Band
1794 )))
1795
1796 (((
1797 AT+CFM: Get or Set the confirmation mode (0-1)
1798 )))
1799
1800 (((
1801 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1802 )))
1803
1804 (((
1805 AT+SNR: Get the SNR of the last received packet
1806 )))
1807
1808 (((
1809 AT+RSSI: Get the RSSI of the last received packet
1810 )))
1811
1812 (((
1813 AT+TDC: Get or set the application data transmission interval in ms
1814 )))
1815
1816 (((
1817 AT+PORT: Get or set the application port
1818 )))
1819
1820 (((
1821 AT+DISAT: Disable AT commands
1822 )))
1823
1824 (((
1825 AT+PWORD: Set password, max 9 digits
1826 )))
1827
1828 (((
1829 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1830 )))
1831
1832 (((
1833 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1834 )))
1835
1836 (((
1837 AT+CFG: Print all settings
1838 )))
1839
1840
1841 == 4.2 Common AT Command Sequence ==
1842
1843 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1844
1845 (((
1846
1847
1848 (((
1849 (% style="color:blue" %)**If device has not joined network yet:**
1850 )))
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)**123456**
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)**AT+FDR**
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)**123456**
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)**ATZ**
1871 )))
1872
1873
1874 (((
1875 (% style="color:blue" %)**If device already joined network:**
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)**ATZ**
1884 )))
1885
1886
1887 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1888
1889 (((
1890
1891
1892 (((
1893 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1894 )))
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1911 )))
1912
1913 (((
1914 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1915 )))
1916
1917 (((
1918 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1919 )))
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1943
1944
1945 )))
1946
1947 (((
1948 (% style="color:red" %)**Note:**
1949 )))
1950
1951 (((
1952 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1953
1954 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1955
1956 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1957 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1958
1959 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1960
1961
1962 )))
1963
1964 (((
1965 [[image:1653359097980-169.png||height="188" width="729"]]
1966 )))
1967
1968 (((
1969
1970 )))
1971
1972 === 4.2.3 Change to Class A ===
1973
1974
1975 (((
1976 (% style="color:blue" %)**If sensor JOINED:**
1977
1978 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1979 ATZ**
1980 )))
1981
1982
1983 = 5. Case Study =
1984
1985 == 5.1 Counting how many objects pass in Flow Line ==
1986
1987
1988 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1989
1990
1991 = 6. FAQ =
1992
1993 == 6.1 How to upgrade the image? ==
1994
1995
1996 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1997
1998 * Support new features
1999 * For bug fix
2000 * Change LoRaWAN bands.
2001
2002 Below shows the hardware connection for how to upload an image to the LT:
2003
2004 [[image:1653359603330-121.png]]
2005
2006
2007 (((
2008 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2009 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2010 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2011
2012
2013 (((
2014 (% style="color:blue" %)**For LT-22222-L**(%%):
2015 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2016 )))
2017
2018
2019 )))
2020
2021 [[image:image-20220524103407-12.png]]
2022
2023
2024 [[image:image-20220524103429-13.png]]
2025
2026
2027 [[image:image-20220524104033-15.png]]
2028
2029
2030 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2031
2032
2033 [[image:1653360054704-518.png||height="186" width="745"]]
2034
2035
2036 (((
2037 (((
2038 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2039
2040
2041 )))
2042 )))
2043
2044 (((
2045 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2046 )))
2047
2048 (((
2049
2050
2051 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2052
2053
2054 )))
2055
2056 (((
2057 (((
2058 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2059 )))
2060 )))
2061
2062 (((
2063 (((
2064 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2065
2066
2067 )))
2068 )))
2069
2070 (((
2071 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2072
2073
2074 )))
2075
2076 (((
2077 [[image:1653360231087-571.png||height="401" width="727"]]
2078
2079
2080 )))
2081
2082 (((
2083 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2084 )))
2085
2086
2087
2088 (((
2089 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2090
2091
2092 )))
2093
2094 (((
2095 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2096 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2097 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2098 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2099 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2100 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2101 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2102 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2103 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2104 )))
2105
2106
2107 (((
2108 As shown in below:
2109 )))
2110
2111 [[image:1653360498588-932.png||height="485" width="726"]]
2112
2113
2114 == 6.4 How to change the uplink interval? ==
2115
2116
2117 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2118
2119
2120 == 6.5 Can I see counting event in Serial? ==
2121
2122
2123 (((
2124 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2125
2126
2127 == 6.6 Can i use point to point communication for LT-22222-L? ==
2128
2129
2130 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2131
2132
2133 )))
2134
2135 (((
2136 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2137
2138
2139 If the device is not shut down, but directly powered off.
2140
2141 It will default that this is a power-off state.
2142
2143 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2144
2145 After restart, the status before power failure will be read from flash.
2146
2147
2148 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2149
2150
2151 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2152
2153
2154 [[image:image-20221006170630-1.png||height="610" width="945"]]
2155
2156
2157 == 6.9 Can LT22222-L save RO state? ==
2158
2159
2160 Firmware version needs to be no less than 1.6.0.
2161
2162
2163 = 7. Trouble Shooting =
2164 )))
2165
2166 (((
2167 (((
2168 == 7.1 Downlink doesn't work, how to solve it? ==
2169
2170
2171 )))
2172 )))
2173
2174 (((
2175 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2176 )))
2177
2178 (((
2179
2180
2181 == 7.2 Have trouble to upload image. ==
2182
2183
2184 )))
2185
2186 (((
2187 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2188 )))
2189
2190 (((
2191
2192
2193 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2194
2195
2196 )))
2197
2198 (((
2199 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2200 )))
2201
2202
2203 = 8. Order Info =
2204
2205
2206 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2207
2208 (% style="color:#4f81bd" %)**XXX:**
2209
2210 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2211 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2212 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2213 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2214 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2215 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2216 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2217 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2218 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2219
2220 = 9. Packing Info =
2221
2222
2223 **Package Includes**:
2224
2225 * LT-22222-L I/O Controller x 1
2226 * Stick Antenna for LoRa RF part x 1
2227 * Bracket for controller x1
2228 * Program cable x 1
2229
2230 **Dimension and weight**:
2231
2232 * Device Size: 13.5 x 7 x 3 cm
2233 * Device Weight: 105g
2234 * Package Size / pcs : 14.5 x 8 x 5 cm
2235 * Weight / pcs : 170g
2236
2237 = 10. Support =
2238
2239
2240 * (((
2241 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2242 )))
2243 * (((
2244 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2245
2246
2247
2248 )))
2249
2250 = 11. Reference​​​​​ =
2251
2252
2253 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2254 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2255 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]