Version 118.3 by Xiaoling on 2023/05/17 10:48

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402 )))
403
404 [[image:image-20220523180452-3.png]]
405
406
407 (((
408 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
409 )))
410
411 [[image:image-20220523180506-4.png]]
412
413 * RO is for relay. ROx=1 : close,ROx=0 always open.
414 * FIRST: Indicate this is the first packet after join network.
415 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
416
417 (((
418 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
419 )))
420
421 (((
422
423
424 **To use counting mode, please run:**
425 )))
426
427 (% class="box infomessage" %)
428 (((
429 (((
430 (((
431 **AT+MOD=2**
432 )))
433
434 (((
435 **ATZ**
436 )))
437 )))
438 )))
439
440 (((
441
442
443 (% style="color:#4f81bd" %)**AT Commands for counting:**
444
445
446 )))
447
448 (((
449 **For LT22222-L:**
450
451
452 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
453
454 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
455
456 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
457
458 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
459
460 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
461
462 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
463 )))
464
465
466 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
467
468
469 **LT22222-L**: This mode the DI1 is used as a counting pin.
470
471 [[image:image-20220523181246-5.png]]
472
473 (((
474
475
476 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
477 )))
478
479 [[image:image-20220523181301-6.png]]
480
481 * RO is for relay. ROx=1 : close,ROx=0 always open.
482 * FIRST: Indicate this is the first packet after join network.
483 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
484
485 (((
486 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
487 )))
488
489
490 (((
491 **To use counting mode, please run:**
492 )))
493
494 (% class="box infomessage" %)
495 (((
496 (((
497 (((
498 **AT+MOD=3**
499 )))
500
501 (((
502 **ATZ**
503 )))
504 )))
505 )))
506
507 (((
508 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
509 )))
510
511
512 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
513
514
515 (((
516 **LT22222-L**: This mode the DI1 is used as a counting pin.
517 )))
518
519 (((
520 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
521 )))
522
523 [[image:image-20220523181903-8.png]]
524
525
526 (((
527 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
528 )))
529
530 [[image:image-20220523181727-7.png]]
531
532 * RO is for relay. ROx=1 : close,ROx=0 always open.
533 * FIRST: Indicate this is the first packet after join network.
534 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
535
536 (((
537 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
538 )))
539
540 (((
541
542
543 **To use this mode, please run:**
544 )))
545
546 (% class="box infomessage" %)
547 (((
548 (((
549 (((
550 **AT+MOD=4**
551 )))
552
553 (((
554 **ATZ**
555 )))
556 )))
557 )))
558
559
560 (((
561 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
562 )))
563
564 (((
565
566
567 **Plus below command for AVI1 Counting:**
568
569
570 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
571
572 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
573
574 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
575
576 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
577 )))
578
579
580 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
581
582
583 **LT22222-L**: This mode the DI1 is used as a counting pin.
584
585 [[image:image-20220523182334-9.png]]
586
587 (((
588
589
590 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
591 )))
592
593 * RO is for relay. ROx=1 : close,ROx=0 always open.
594 * FIRST: Indicate this is the first packet after join network.
595 * (((
596 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
597 )))
598
599 (((
600 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
601 )))
602
603 (((
604
605
606 **To use this mode, please run:**
607 )))
608
609 (% class="box infomessage" %)
610 (((
611 (((
612 (((
613 **AT+MOD=5**
614 )))
615
616 (((
617 **ATZ**
618 )))
619 )))
620 )))
621
622 (((
623 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
624 )))
625
626
627 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
628
629
630 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
631
632 For example, if user has configured below commands:
633
634 * **AT+MOD=1 ** **~-~->**  The normal working mode
635 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
636
637 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
638
639 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
640 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
641
642 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
643
644
645 (% style="color:#4f81bd" %)**Trigger base on voltage**:
646
647 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
648
649
650 **Example:**
651
652 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
653
654 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
655
656
657
658 (% style="color:#4f81bd" %)**Trigger base on current**:
659
660 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
661
662
663 **Example:**
664
665 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
666
667
668
669 (% style="color:#4f81bd" %)**Trigger base on DI status**:
670
671 DI status trigger Flag.
672
673 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
674
675
676 **Example:**
677
678 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
679
680
681 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
682
683 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
684
685 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
686
687 AA: Code for this downlink Command:
688
689 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
690
691 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
692
693 yy2 yy2: AC1 or AV1 high limit.
694
695 yy3 yy3: AC2 or AV2 low limit.
696
697 Yy4 yy4: AC2 or AV2 high limit.
698
699
700 **Example1**: AA 00 13 88 00 00 00 00 00 00
701
702 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
703
704
705 **Example2**: AA 02 01 00
706
707 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
708
709
710
711 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
712
713 MOD6 Payload : total 11 bytes payload
714
715 [[image:image-20220524085923-1.png]]
716
717
718 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
719
720 [[image:image-20220524090106-2.png]]
721
722 * Each bits shows if the corresponding trigger has been configured.
723
724 **Example:**
725
726 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
727
728
729
730 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
731
732 [[image:image-20220524090249-3.png]]
733
734 * Each bits shows which status has been trigger on this uplink.
735
736 **Example:**
737
738 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
739
740
741 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
742
743 [[image:image-20220524090456-4.png]]
744
745 * Each bits shows which status has been trigger on this uplink.
746
747 **Example:**
748
749 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
750
751 00000101: Means both DI1 and DI2 trigger are enabled.
752
753
754 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
755
756 Downlink command to poll MOD6 status:
757
758 **AB 06**
759
760 When device got this command, it will send the MOD6 payload.
761
762
763 === 3.3.7 Payload Decoder ===
764
765 (((
766
767
768 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
769 )))
770
771
772 == 3.4 ​Configure LT via AT or Downlink ==
773
774
775 (((
776 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
777 )))
778
779 (((
780 (((
781 There are two kinds of Commands:
782 )))
783 )))
784
785 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
786
787 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
788
789 === 3.4.1 Common Commands ===
790
791
792 (((
793 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
794 )))
795
796
797 === 3.4.2 Sensor related commands ===
798
799 ==== 3.4.2.1 Set Transmit Interval ====
800
801
802 Set device uplink interval.
803
804 * (% style="color:#037691" %)**AT Command:**
805
806 (% style="color:blue" %)**AT+TDC=N **
807
808
809 **Example: **AT+TDC=30000. Means set interval to 30 seconds
810
811
812 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
813
814 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
815
816
817
818 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
819
820
821 Set work mode.
822
823 * (% style="color:#037691" %)**AT Command:**
824
825 (% style="color:blue" %)**AT+MOD=N  **
826
827
828 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
829
830
831 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
832
833 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
834
835
836
837 ==== 3.4.2.3 Poll an uplink ====
838
839
840 * (% style="color:#037691" %)**AT Command:**
841
842 There is no AT Command to poll uplink
843
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
846
847 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
848
849
850 **Example**: 0x08FF, ask device to send an Uplink
851
852
853
854 ==== 3.4.2.4 Enable Trigger Mode ====
855
856
857 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
858
859 * (% style="color:#037691" %)**AT Command:**
860
861 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
862
863 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
864
865 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
866
867
868 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
869
870 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
871
872
873
874 ==== 3.4.2.5 Poll trigger settings ====
875
876
877 Poll trigger settings,
878
879 * (% style="color:#037691" %)**AT Command:**
880
881 There is no AT Command for this feature.
882
883
884 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
885
886 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
887
888
889
890 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
891
892
893 Enable Disable DI1/DI2/DI2 as trigger,
894
895 * (% style="color:#037691" %)**AT Command:**
896
897 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
898
899
900 **Example:**
901
902 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
903
904 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
905
906 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
907
908
909
910 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
911
912
913 Set DI1 or DI3(for LT-33222-L) trigger.
914
915 * (% style="color:#037691" %)**AT Command:**
916
917 (% style="color:blue" %)**AT+TRIG1=a,b**
918
919 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
920
921 (% style="color:red" %)**b :** (%%)delay timing.
922
923
924 **Example:**
925
926 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
927
928
929 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
930
931 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
932
933
934
935 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
936
937
938 Set DI2 trigger.
939
940 * (% style="color:#037691" %)**AT Command:**
941
942 (% style="color:blue" %)**AT+TRIG2=a,b**
943
944 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
945
946 (% style="color:red" %)**b :** (%%)delay timing.
947
948
949 **Example:**
950
951 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
952
953
954 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
955
956 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
957
958
959
960 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
961
962
963 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
964
965 * (% style="color:#037691" %)**AT Command**
966
967 (% style="color:blue" %)**AT+ACLIM**
968
969
970 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
971
972 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
973
974
975
976 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
977
978
979 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
980
981 * (% style="color:#037691" %)**AT Command**
982
983 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
984
985
986 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
987
988 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
989
990
991
992 ==== 3.4.2.11 Trigger – Set minimum interval ====
993
994
995 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
996
997 * (% style="color:#037691" %)**AT Command**
998
999 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1000
1001
1002 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1003
1004 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1005
1006 (((
1007
1008
1009 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1010 )))
1011
1012
1013
1014 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1015
1016
1017 * (% style="color:#037691" %)**AT Command**
1018
1019 There is no AT Command to control Digital Output
1020
1021
1022 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1023 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1024
1025 (((
1026 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1027 )))
1028
1029 (((
1030 01: Low,  00: High ,  11: No action
1031 )))
1032
1033 [[image:image-20220524092754-5.png]]
1034
1035 (((
1036 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1037 )))
1038
1039 (((
1040 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1041 )))
1042
1043
1044
1045 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1046
1047
1048 * (% style="color:#037691" %)**AT Command**
1049
1050 There is no AT Command to control Digital Output
1051
1052
1053 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1054
1055 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1056
1057
1058 This is to control the digital output time of DO pin. Include four bytes:
1059
1060 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1061
1062 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1063
1064 01: DO pins will change back to original state after timeout.
1065
1066 00: DO pins will change to an inverter state after timeout 
1067
1068
1069 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1070
1071 [[image:image-20220524093238-6.png]]
1072
1073
1074 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1075
1076 [[image:image-20220524093328-7.png]]
1077
1078
1079 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1080
1081 [[image:image-20220524093351-8.png]]
1082
1083
1084 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1085
1086 Latching time. Unit: ms
1087
1088
1089 (% style="color:red" %)**Note: **
1090
1091 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1092
1093 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1094
1095
1096 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1097
1098
1099 **Example payload:**
1100
1101 **~1. A9 01 01 01 01 07 D0**
1102
1103 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1104
1105 **2. A9 01 00 01 11 07 D0**
1106
1107 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1108
1109 **3. A9 00 00 00 00 07 D0**
1110
1111 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1112
1113 **4. A9 00 11 01 00 07 D0**
1114
1115 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1116
1117
1118
1119 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1120
1121
1122 * (% style="color:#037691" %)**AT Command:**
1123
1124 There is no AT Command to control Relay Output
1125
1126
1127 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1128
1129 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1130
1131
1132 (((
1133 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1134 )))
1135
1136 (((
1137 01: Close ,  00: Open , 11: No action
1138 )))
1139
1140 (((
1141 [[image:image-20230426161322-1.png]]
1142 )))
1143
1144 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1145
1146
1147
1148 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1149
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 There is no AT Command to control Relay Output
1154
1155
1156 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1157
1158 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1159
1160
1161 This is to control the relay output time of relay. Include four bytes:
1162
1163 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1164
1165 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1166
1167 01: Relays will change back to original state after timeout.
1168
1169 00: Relays will change to an inverter state after timeout
1170
1171
1172 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1173
1174 [[image:image-20221008095908-1.png||height="364" width="564"]]
1175
1176
1177 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1178
1179
1180 (% style="color:red" %)**Note:**
1181
1182 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1183
1184 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1185
1186
1187 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1188
1189
1190 **Example payload:**
1191
1192 **~1. 05 01 11 07 D0**
1193
1194 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1195
1196 **2. 05 01 10 07 D0**
1197
1198 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1199
1200 **3. 05 00 01 07 D0**
1201
1202 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1203
1204 **4. 05 00 00 07 D0**
1205
1206 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1207
1208
1209
1210 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1211
1212
1213 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1221
1222 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1223
1224
1225
1226 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1227
1228
1229 * (% style="color:#037691" %)**AT Command:**
1230
1231 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1232
1233 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1234
1235 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1239
1240 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1241
1242
1243
1244 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1245
1246
1247 Clear counting for counting mode
1248
1249 * (% style="color:#037691" %)**AT Command:**
1250
1251 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1252
1253
1254 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1255
1256 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1257
1258
1259
1260 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1261
1262
1263 * (% style="color:#037691" %)**AT Command:**
1264
1265 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1266
1267
1268 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1269
1270 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1271
1272 (((
1273 range: aa bb cc:0 to 16777215,  (unit:second)
1274 )))
1275
1276
1277
1278 ==== 3.4.2.20 Reset save RO DO state ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1284
1285 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1286
1287
1288 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1289
1290 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1291
1292
1293
1294 ==== 3.4.2.21 Encrypted payload ====
1295
1296
1297 * (% style="color:#037691" %)**AT Command:**
1298
1299 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1300
1301 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1302
1303
1304
1305 ==== 3.4.2.22 Get sensor value ====
1306
1307
1308 * (% style="color:#037691" %)**AT Command:**
1309
1310 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1311
1312 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1313
1314
1315
1316 ==== 3.4.2.23 Resets the downlink packet count ====
1317
1318
1319 * (% style="color:#037691" %)**AT Command:**
1320
1321 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1322
1323 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1324
1325
1326
1327 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1328
1329
1330 * (% style="color:#037691" %)**AT Command:**
1331
1332 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1333
1334 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1335
1336
1337 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1338
1339 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1340
1341
1342
1343 ==== 3.4.2.25 Copy downlink to uplink ====
1344
1345
1346 * (% style="color:#037691" %)**AT Command**(%%)**:**
1347
1348 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1349
1350 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1351
1352
1353 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1354
1355 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1356
1357
1358
1359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1360
1361 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1362
1363
1364
1365 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1366
1367
1368 * (((
1369 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1370
1371 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1372
1373
1374 )))
1375
1376 **Example:**
1377
1378 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1379
1380
1381 == 3.5 Integrate with Mydevice ==
1382
1383
1384 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1385
1386 (((
1387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1388 )))
1389
1390 (((
1391 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392
1393
1394 )))
1395
1396 [[image:image-20220719105525-1.png||height="377" width="677"]]
1397
1398
1399
1400 [[image:image-20220719110247-2.png||height="388" width="683"]]
1401
1402
1403 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1404
1405 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1406
1407 Search under The things network
1408
1409 [[image:1653356838789-523.png||height="337" width="740"]]
1410
1411
1412
1413 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1414
1415 [[image:image-20220524094909-1.png||height="335" width="729"]]
1416
1417
1418 [[image:image-20220524094909-2.png||height="337" width="729"]]
1419
1420
1421 [[image:image-20220524094909-3.png||height="338" width="727"]]
1422
1423
1424 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1425
1426
1427 [[image:image-20220524094909-5.png||height="341" width="734"]]
1428
1429
1430 == 3.6 Interface Detail ==
1431
1432 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1433
1434
1435 Support NPN Type sensor
1436
1437 [[image:1653356991268-289.png]]
1438
1439
1440 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1441
1442
1443 (((
1444 The DI port of LT-22222-L can support NPN or PNP output sensor.
1445 )))
1446
1447 (((
1448 (((
1449 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1450
1451
1452 )))
1453 )))
1454
1455 [[image:1653357170703-587.png]]
1456
1457 (((
1458 (((
1459 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1460 )))
1461 )))
1462
1463 (((
1464
1465 )))
1466
1467 (((
1468 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1469 )))
1470
1471 (((
1472 This type of sensor will output a low signal GND when active.
1473 )))
1474
1475 * (((
1476 Connect sensor's output to DI1-
1477 )))
1478 * (((
1479 Connect sensor's VCC to DI1+.
1480 )))
1481
1482 (((
1483 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1484 )))
1485
1486 (((
1487 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1488 )))
1489
1490 (((
1491 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1492 )))
1493
1494 (((
1495
1496 )))
1497
1498 (((
1499 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1500 )))
1501
1502 (((
1503 This type of sensor will output a high signal (example 24v) when active.
1504 )))
1505
1506 * (((
1507 Connect sensor's output to DI1+
1508 )))
1509 * (((
1510 Connect sensor's GND DI1-.
1511 )))
1512
1513 (((
1514 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1515 )))
1516
1517 (((
1518 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1519 )))
1520
1521 (((
1522 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1523 )))
1524
1525 (((
1526
1527 )))
1528
1529 (((
1530 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1531 )))
1532
1533 (((
1534 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1535 )))
1536
1537 * (((
1538 Connect sensor's output to DI1+ with a serial 50K resistor
1539 )))
1540 * (((
1541 Connect sensor's GND DI1-.
1542 )))
1543
1544 (((
1545 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1546 )))
1547
1548 (((
1549 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1550 )))
1551
1552 (((
1553 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1554 )))
1555
1556
1557 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1558
1559
1560 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1561
1562 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1563
1564 [[image:1653357531600-905.png]]
1565
1566
1567 === 3.6.4 Analog Input Interface ===
1568
1569
1570 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571
1572
1573 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1574
1575 [[image:1653357592296-182.png]]
1576
1577 Example to connect a 4~~20mA sensor
1578
1579 We take the wind speed sensor as an example for reference only.
1580
1581
1582 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1583
1584 (% style="color:red" %)**Red:  12~~24v**
1585
1586 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1587
1588 **Black:  GND**
1589
1590
1591 **Connection diagram:**
1592
1593 [[image:1653357640609-758.png]]
1594
1595 [[image:1653357648330-671.png||height="155" width="733"]]
1596
1597
1598 === 3.6.5 Relay Output ===
1599
1600
1601 (((
1602 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1603
1604 **Note**: RO pins go to Open(NO) when device is power off.
1605 )))
1606
1607 [[image:image-20220524100215-9.png]]
1608
1609
1610 [[image:image-20220524100215-10.png||height="382" width="723"]]
1611
1612
1613 == 3.7 LEDs Indicators ==
1614
1615
1616 [[image:image-20220524100748-11.png]]
1617
1618
1619 = 4. Use AT Command =
1620
1621 == 4.1 Access AT Command ==
1622
1623
1624 (((
1625 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1626 )))
1627
1628 (((
1629
1630 )))
1631
1632 [[image:1653358238933-385.png]]
1633
1634
1635 (((
1636 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1637 )))
1638
1639 [[image:1653358355238-883.png]]
1640
1641
1642 (((
1643 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1644 )))
1645
1646 (((
1647 AT+<CMD>?        : Help on <CMD>
1648 )))
1649
1650 (((
1651 AT+<CMD>         : Run <CMD>
1652 )))
1653
1654 (((
1655 AT+<CMD>=<value> : Set the value
1656 )))
1657
1658 (((
1659 AT+<CMD>=?       :  Get the value
1660 )))
1661
1662 (((
1663 ATZ: Trig a reset of the MCU
1664 )))
1665
1666 (((
1667 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1668 )))
1669
1670 (((
1671 AT+DEUI: Get or Set the Device EUI
1672 )))
1673
1674 (((
1675 AT+DADDR: Get or Set the Device Address
1676 )))
1677
1678 (((
1679 AT+APPKEY: Get or Set the Application Key
1680 )))
1681
1682 (((
1683 AT+NWKSKEY: Get or Set the Network Session Key
1684 )))
1685
1686 (((
1687 AT+APPSKEY:  Get or Set the Application Session Key
1688 )))
1689
1690 (((
1691 AT+APPEUI:  Get or Set the Application EUI
1692 )))
1693
1694 (((
1695 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1696 )))
1697
1698 (((
1699 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1700 )))
1701
1702 (((
1703 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1704 )))
1705
1706 (((
1707 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1708 )))
1709
1710 (((
1711 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1712 )))
1713
1714 (((
1715 AT+RX2FQ: Get or Set the Rx2 window frequency
1716 )))
1717
1718 (((
1719 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1720 )))
1721
1722 (((
1723 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1724 )))
1725
1726 (((
1727 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1728 )))
1729
1730 (((
1731 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1732 )))
1733
1734 (((
1735 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1736 )))
1737
1738 (((
1739 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1740 )))
1741
1742 (((
1743 AT+NWKID: Get or Set the Network ID
1744 )))
1745
1746 (((
1747 AT+FCU: Get or Set the Frame Counter Uplink
1748 )))
1749
1750 (((
1751 AT+FCD: Get or Set the Frame Counter Downlink
1752 )))
1753
1754 (((
1755 AT+CLASS: Get or Set the Device Class
1756 )))
1757
1758 (((
1759 AT+JOIN: Join network
1760 )))
1761
1762 (((
1763 AT+NJS: Get OTAA Join Status
1764 )))
1765
1766 (((
1767 AT+SENDB: Send hexadecimal data along with the application port
1768 )))
1769
1770 (((
1771 AT+SEND: Send text data along with the application port
1772 )))
1773
1774 (((
1775 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1776 )))
1777
1778 (((
1779 AT+RECV: Print last received data in raw format
1780 )))
1781
1782 (((
1783 AT+VER:  Get current image version and Frequency Band
1784 )))
1785
1786 (((
1787 AT+CFM: Get or Set the confirmation mode (0-1)
1788 )))
1789
1790 (((
1791 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1792 )))
1793
1794 (((
1795 AT+SNR: Get the SNR of the last received packet
1796 )))
1797
1798 (((
1799 AT+RSSI: Get the RSSI of the last received packet
1800 )))
1801
1802 (((
1803 AT+TDC: Get or set the application data transmission interval in ms
1804 )))
1805
1806 (((
1807 AT+PORT: Get or set the application port
1808 )))
1809
1810 (((
1811 AT+DISAT: Disable AT commands
1812 )))
1813
1814 (((
1815 AT+PWORD: Set password, max 9 digits
1816 )))
1817
1818 (((
1819 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1820 )))
1821
1822 (((
1823 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1824 )))
1825
1826 (((
1827 AT+CFG: Print all settings
1828 )))
1829
1830
1831 == 4.2 Common AT Command Sequence ==
1832
1833 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1834
1835 (((
1836
1837
1838 (((
1839 (% style="color:blue" %)**If device has not joined network yet:**
1840 )))
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %)**123456**
1845 )))
1846
1847 (((
1848 (% style="background-color:#dcdcdc" %)**AT+FDR**
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %)**123456**
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)**ATZ**
1861 )))
1862
1863
1864 (((
1865 (% style="color:blue" %)**If device already joined network:**
1866 )))
1867
1868 (((
1869 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1870 )))
1871
1872 (((
1873 (% style="background-color:#dcdcdc" %)**ATZ**
1874 )))
1875
1876
1877 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1878
1879 (((
1880
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1884 )))
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1905 )))
1906
1907 (((
1908 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1909 )))
1910
1911 (((
1912 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1913 )))
1914
1915 (((
1916 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1917 )))
1918
1919 (((
1920 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1933
1934
1935 )))
1936
1937 (((
1938 (% style="color:red" %)**Note:**
1939 )))
1940
1941 (((
1942 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1943
1944 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1945
1946 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1947 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1948
1949 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1950
1951
1952 )))
1953
1954 (((
1955 [[image:1653359097980-169.png||height="188" width="729"]]
1956 )))
1957
1958 (((
1959
1960 )))
1961
1962 === 4.2.3 Change to Class A ===
1963
1964
1965 (((
1966 (% style="color:blue" %)**If sensor JOINED:**
1967
1968 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1969 ATZ**
1970 )))
1971
1972
1973 = 5. Case Study =
1974
1975 == 5.1 Counting how many objects pass in Flow Line ==
1976
1977
1978 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1979
1980
1981 = 6. FAQ =
1982
1983 == 6.1 How to upgrade the image? ==
1984
1985
1986 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1987
1988 * Support new features
1989 * For bug fix
1990 * Change LoRaWAN bands.
1991
1992 Below shows the hardware connection for how to upload an image to the LT:
1993
1994 [[image:1653359603330-121.png]]
1995
1996
1997 (((
1998 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1999 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2000 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2001
2002
2003 (((
2004 (% style="color:blue" %)**For LT-22222-L**(%%):
2005 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2006 )))
2007
2008
2009 )))
2010
2011 [[image:image-20220524103407-12.png]]
2012
2013
2014 [[image:image-20220524103429-13.png]]
2015
2016
2017 [[image:image-20220524104033-15.png]]
2018
2019
2020 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2021
2022
2023 [[image:1653360054704-518.png||height="186" width="745"]]
2024
2025
2026 (((
2027 (((
2028 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2029
2030
2031 )))
2032 )))
2033
2034 (((
2035 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2036 )))
2037
2038 (((
2039
2040
2041 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2042
2043
2044 )))
2045
2046 (((
2047 (((
2048 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2049 )))
2050 )))
2051
2052 (((
2053 (((
2054 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2055
2056
2057 )))
2058 )))
2059
2060 (((
2061 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2062
2063
2064 )))
2065
2066 (((
2067 [[image:1653360231087-571.png||height="401" width="727"]]
2068
2069
2070 )))
2071
2072 (((
2073 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2074 )))
2075
2076
2077
2078 (((
2079 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2080
2081
2082 )))
2083
2084 (((
2085 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2086 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2087 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2088 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2089 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2090 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2091 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2092 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2093 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2094 )))
2095
2096
2097 (((
2098 As shown in below:
2099 )))
2100
2101 [[image:1653360498588-932.png||height="485" width="726"]]
2102
2103
2104 == 6.4 How to change the uplink interval? ==
2105
2106
2107 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2108
2109
2110 == 6.5 Can I see counting event in Serial? ==
2111
2112
2113 (((
2114 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2115
2116
2117 == 6.6 Can i use point to point communication for LT-22222-L? ==
2118
2119
2120 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2121
2122
2123 )))
2124
2125 (((
2126 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2127
2128
2129 If the device is not shut down, but directly powered off.
2130
2131 It will default that this is a power-off state.
2132
2133 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2134
2135 After restart, the status before power failure will be read from flash.
2136
2137
2138 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2139
2140
2141 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2142
2143
2144 [[image:image-20221006170630-1.png||height="610" width="945"]]
2145
2146
2147 == 6.9 Can LT22222-L save RO state? ==
2148
2149
2150 Firmware version needs to be no less than 1.6.0.
2151
2152
2153 = 7. Trouble Shooting =
2154 )))
2155
2156 (((
2157 (((
2158 == 7.1 Downlink doesn't work, how to solve it? ==
2159
2160
2161 )))
2162 )))
2163
2164 (((
2165 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2166 )))
2167
2168 (((
2169
2170
2171 == 7.2 Have trouble to upload image. ==
2172
2173
2174 )))
2175
2176 (((
2177 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2178 )))
2179
2180 (((
2181
2182
2183 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2184
2185
2186 )))
2187
2188 (((
2189 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2190 )))
2191
2192
2193 = 8. Order Info =
2194
2195
2196 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2197
2198 (% style="color:#4f81bd" %)**XXX:**
2199
2200 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2201 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2202 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2203 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2204 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2205 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2206 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2207 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2208 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2209
2210 = 9. Packing Info =
2211
2212
2213 **Package Includes**:
2214
2215 * LT-22222-L I/O Controller x 1
2216 * Stick Antenna for LoRa RF part x 1
2217 * Bracket for controller x1
2218 * Program cable x 1
2219
2220 **Dimension and weight**:
2221
2222 * Device Size: 13.5 x 7 x 3 cm
2223 * Device Weight: 105g
2224 * Package Size / pcs : 14.5 x 8 x 5 cm
2225 * Weight / pcs : 170g
2226
2227 = 10. Support =
2228
2229
2230 * (((
2231 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2232 )))
2233 * (((
2234 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2235
2236
2237
2238 )))
2239
2240 = 11. Reference​​​​​ =
2241
2242
2243 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2244 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2245 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]