Version 118.2 by Xiaoling on 2023/05/17 10:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327
328 voltage
329 )))|(((
330 AVI2
331
332 voltage
333 )))|(((
334 ACI1
335
336 Current
337 )))|(((
338 ACI2
339
340 Current
341 )))|DIDORO*|(((
342 Reserve
343
344
345 )))|MOD
346 )))
347
348
349 (((
350
351
352 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
353
354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
356 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
357 )))
358
359
360 * RO is for relay. ROx=1 : close,ROx=0 always open.
361 * DI is for digital input. DIx=1: high or float, DIx=0: low.
362 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
363
364 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
365
366 For example if payload is: [[image:image-20220523175847-2.png]]
367
368
369 **The value for the interface is:  **
370
371 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
372
373 AVI2 channel voltage is 0x04AC/1000=1.196V
374
375 ACI1 channel current is 0x1310/1000=4.880mA
376
377 ACI2 channel current is 0x1300/1000=4.864mA
378
379 The last byte 0xAA= 10101010(B) means
380
381 * [1] RO1 relay channel is close and the RO1 LED is ON.
382 * [0] RO2 relay channel is open and RO2 LED is OFF;
383
384 **LT22222-L:**
385
386 * [1] DI2 channel is high input and DI2 LED is ON;
387 * [0] DI1 channel is low input;
388
389 * [0] DO3 channel output state
390 ** DO3 is float in case no load between DO3 and V+.;
391 ** DO3 is high in case there is load between DO3 and V+.
392 ** DO3 LED is off in both case
393 * [1] DO2 channel output is low and DO2 LED is ON.
394 * [0] DO1 channel output state
395 ** DO1 is float in case no load between DO1 and V+.;
396 ** DO1 is high in case there is load between DO1 and V+.
397 ** DO1 LED is off in both case
398
399 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
400
401
402 (((
403 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
404 )))
405
406 (((
407 Total : 11 bytes payload
408 )))
409
410 [[image:image-20220523180452-3.png]]
411
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
415 )))
416
417 [[image:image-20220523180506-4.png]]
418
419 * RO is for relay. ROx=1 : close,ROx=0 always open.
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
425 )))
426
427 (((
428
429
430 **To use counting mode, please run:**
431 )))
432
433 (% class="box infomessage" %)
434 (((
435 (((
436 (((
437 **AT+MOD=2**
438 )))
439
440 (((
441 **ATZ**
442 )))
443 )))
444 )))
445
446 (((
447
448
449 (% style="color:#4f81bd" %)**AT Commands for counting:**
450
451
452 )))
453
454 (((
455 **For LT22222-L:**
456
457
458 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
459
460 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
461
462 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
467
468 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
469 )))
470
471
472 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
473
474
475 **LT22222-L**: This mode the DI1 is used as a counting pin.
476
477 [[image:image-20220523181246-5.png]]
478
479 (((
480
481
482 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
483 )))
484
485 [[image:image-20220523181301-6.png]]
486
487 * RO is for relay. ROx=1 : close,ROx=0 always open.
488 * FIRST: Indicate this is the first packet after join network.
489 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
490
491 (((
492 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 )))
494
495
496 (((
497 **To use counting mode, please run:**
498 )))
499
500 (% class="box infomessage" %)
501 (((
502 (((
503 (((
504 **AT+MOD=3**
505 )))
506
507 (((
508 **ATZ**
509 )))
510 )))
511 )))
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517
518 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
519
520
521 (((
522 **LT22222-L**: This mode the DI1 is used as a counting pin.
523 )))
524
525 (((
526 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
527 )))
528
529 [[image:image-20220523181903-8.png]]
530
531
532 (((
533 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
534 )))
535
536 [[image:image-20220523181727-7.png]]
537
538 * RO is for relay. ROx=1 : close,ROx=0 always open.
539 * FIRST: Indicate this is the first packet after join network.
540 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
541
542 (((
543 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
544 )))
545
546 (((
547
548
549 **To use this mode, please run:**
550 )))
551
552 (% class="box infomessage" %)
553 (((
554 (((
555 (((
556 **AT+MOD=4**
557 )))
558
559 (((
560 **ATZ**
561 )))
562 )))
563 )))
564
565
566 (((
567 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
568 )))
569
570 (((
571
572
573 **Plus below command for AVI1 Counting:**
574
575
576 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
577
578 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
579
580 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
581
582 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
583 )))
584
585
586 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
587
588
589 **LT22222-L**: This mode the DI1 is used as a counting pin.
590
591 [[image:image-20220523182334-9.png]]
592
593 (((
594
595
596 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
597 )))
598
599 * RO is for relay. ROx=1 : close,ROx=0 always open.
600 * FIRST: Indicate this is the first packet after join network.
601 * (((
602 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
603 )))
604
605 (((
606 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
607 )))
608
609 (((
610
611
612 **To use this mode, please run:**
613 )))
614
615 (% class="box infomessage" %)
616 (((
617 (((
618 (((
619 **AT+MOD=5**
620 )))
621
622 (((
623 **ATZ**
624 )))
625 )))
626 )))
627
628 (((
629 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
630 )))
631
632
633 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
634
635
636 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
637
638 For example, if user has configured below commands:
639
640 * **AT+MOD=1 ** **~-~->**  The normal working mode
641 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
642
643 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
644
645 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
646 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
647
648 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
649
650
651 (% style="color:#4f81bd" %)**Trigger base on voltage**:
652
653 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
654
655
656 **Example:**
657
658 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
659
660 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
661
662
663
664 (% style="color:#4f81bd" %)**Trigger base on current**:
665
666 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
667
668
669 **Example:**
670
671 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
672
673
674
675 (% style="color:#4f81bd" %)**Trigger base on DI status**:
676
677 DI status trigger Flag.
678
679 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
680
681
682 **Example:**
683
684 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
685
686
687 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
688
689 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
690
691 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
692
693 AA: Code for this downlink Command:
694
695 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
696
697 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
698
699 yy2 yy2: AC1 or AV1 high limit.
700
701 yy3 yy3: AC2 or AV2 low limit.
702
703 Yy4 yy4: AC2 or AV2 high limit.
704
705
706 **Example1**: AA 00 13 88 00 00 00 00 00 00
707
708 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
709
710
711 **Example2**: AA 02 01 00
712
713 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
714
715
716
717 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
718
719 MOD6 Payload : total 11 bytes payload
720
721 [[image:image-20220524085923-1.png]]
722
723
724 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
725
726 [[image:image-20220524090106-2.png]]
727
728 * Each bits shows if the corresponding trigger has been configured.
729
730 **Example:**
731
732 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
733
734
735
736 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
737
738 [[image:image-20220524090249-3.png]]
739
740 * Each bits shows which status has been trigger on this uplink.
741
742 **Example:**
743
744 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
745
746
747 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
748
749 [[image:image-20220524090456-4.png]]
750
751 * Each bits shows which status has been trigger on this uplink.
752
753 **Example:**
754
755 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
756
757 00000101: Means both DI1 and DI2 trigger are enabled.
758
759
760 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
761
762 Downlink command to poll MOD6 status:
763
764 **AB 06**
765
766 When device got this command, it will send the MOD6 payload.
767
768
769 === 3.3.7 Payload Decoder ===
770
771 (((
772
773
774 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
775 )))
776
777
778 == 3.4 ​Configure LT via AT or Downlink ==
779
780
781 (((
782 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
783 )))
784
785 (((
786 (((
787 There are two kinds of Commands:
788 )))
789 )))
790
791 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
792
793 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
794
795 === 3.4.1 Common Commands ===
796
797
798 (((
799 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
800 )))
801
802
803 === 3.4.2 Sensor related commands ===
804
805 ==== 3.4.2.1 Set Transmit Interval ====
806
807
808 Set device uplink interval.
809
810 * (% style="color:#037691" %)**AT Command:**
811
812 (% style="color:blue" %)**AT+TDC=N **
813
814
815 **Example: **AT+TDC=30000. Means set interval to 30 seconds
816
817
818 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
819
820 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
821
822
823
824 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
825
826
827 Set work mode.
828
829 * (% style="color:#037691" %)**AT Command:**
830
831 (% style="color:blue" %)**AT+MOD=N  **
832
833
834 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
835
836
837 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
838
839 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
840
841
842
843 ==== 3.4.2.3 Poll an uplink ====
844
845
846 * (% style="color:#037691" %)**AT Command:**
847
848 There is no AT Command to poll uplink
849
850
851 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
852
853 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
854
855
856 **Example**: 0x08FF, ask device to send an Uplink
857
858
859
860 ==== 3.4.2.4 Enable Trigger Mode ====
861
862
863 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
864
865 * (% style="color:#037691" %)**AT Command:**
866
867 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
868
869 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
870
871 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
872
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
875
876 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
877
878
879
880 ==== 3.4.2.5 Poll trigger settings ====
881
882
883 Poll trigger settings,
884
885 * (% style="color:#037691" %)**AT Command:**
886
887 There is no AT Command for this feature.
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
891
892 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
893
894
895
896 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
897
898
899 Enable Disable DI1/DI2/DI2 as trigger,
900
901 * (% style="color:#037691" %)**AT Command:**
902
903 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
904
905
906 **Example:**
907
908 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
911
912 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
913
914
915
916 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
917
918
919 Set DI1 or DI3(for LT-33222-L) trigger.
920
921 * (% style="color:#037691" %)**AT Command:**
922
923 (% style="color:blue" %)**AT+TRIG1=a,b**
924
925 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
926
927 (% style="color:red" %)**b :** (%%)delay timing.
928
929
930 **Example:**
931
932 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
933
934
935 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
936
937 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
938
939
940
941 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
942
943
944 Set DI2 trigger.
945
946 * (% style="color:#037691" %)**AT Command:**
947
948 (% style="color:blue" %)**AT+TRIG2=a,b**
949
950 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951
952 (% style="color:red" %)**b :** (%%)delay timing.
953
954
955 **Example:**
956
957 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
958
959
960 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
961
962 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
963
964
965
966 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
967
968
969 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
970
971 * (% style="color:#037691" %)**AT Command**
972
973 (% style="color:blue" %)**AT+ACLIM**
974
975
976 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
977
978 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
979
980
981
982 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
983
984
985 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
986
987 * (% style="color:#037691" %)**AT Command**
988
989 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
990
991
992 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
993
994 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
995
996
997
998 ==== 3.4.2.11 Trigger – Set minimum interval ====
999
1000
1001 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1002
1003 * (% style="color:#037691" %)**AT Command**
1004
1005 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1006
1007
1008 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1009
1010 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1011
1012 (((
1013
1014
1015 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1016 )))
1017
1018
1019
1020 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1021
1022
1023 * (% style="color:#037691" %)**AT Command**
1024
1025 There is no AT Command to control Digital Output
1026
1027
1028 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1029 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1030
1031 (((
1032 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1033 )))
1034
1035 (((
1036 01: Low,  00: High ,  11: No action
1037 )))
1038
1039 [[image:image-20220524092754-5.png]]
1040
1041 (((
1042 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1043 )))
1044
1045 (((
1046 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1047 )))
1048
1049
1050
1051 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1052
1053
1054 * (% style="color:#037691" %)**AT Command**
1055
1056 There is no AT Command to control Digital Output
1057
1058
1059 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1060
1061 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1062
1063
1064 This is to control the digital output time of DO pin. Include four bytes:
1065
1066 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1067
1068 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1069
1070 01: DO pins will change back to original state after timeout.
1071
1072 00: DO pins will change to an inverter state after timeout 
1073
1074
1075 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1076
1077 [[image:image-20220524093238-6.png]]
1078
1079
1080 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1081
1082 [[image:image-20220524093328-7.png]]
1083
1084
1085 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1086
1087 [[image:image-20220524093351-8.png]]
1088
1089
1090 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1091
1092 Latching time. Unit: ms
1093
1094
1095 (% style="color:red" %)**Note: **
1096
1097 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1098
1099 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1100
1101
1102 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1103
1104
1105 **Example payload:**
1106
1107 **~1. A9 01 01 01 01 07 D0**
1108
1109 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1110
1111 **2. A9 01 00 01 11 07 D0**
1112
1113 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1114
1115 **3. A9 00 00 00 00 07 D0**
1116
1117 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1118
1119 **4. A9 00 11 01 00 07 D0**
1120
1121 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1122
1123
1124
1125 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1126
1127
1128 * (% style="color:#037691" %)**AT Command:**
1129
1130 There is no AT Command to control Relay Output
1131
1132
1133 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1134
1135 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1136
1137
1138 (((
1139 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1140 )))
1141
1142 (((
1143 01: Close ,  00: Open , 11: No action
1144 )))
1145
1146 (((
1147 [[image:image-20230426161322-1.png]]
1148 )))
1149
1150 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1151
1152
1153
1154 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1155
1156
1157 * (% style="color:#037691" %)**AT Command:**
1158
1159 There is no AT Command to control Relay Output
1160
1161
1162 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1163
1164 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1165
1166
1167 This is to control the relay output time of relay. Include four bytes:
1168
1169 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1170
1171 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1172
1173 01: Relays will change back to original state after timeout.
1174
1175 00: Relays will change to an inverter state after timeout
1176
1177
1178 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1179
1180 [[image:image-20221008095908-1.png||height="364" width="564"]]
1181
1182
1183 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1184
1185
1186 (% style="color:red" %)**Note:**
1187
1188 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1189
1190 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1191
1192
1193 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1194
1195
1196 **Example payload:**
1197
1198 **~1. 05 01 11 07 D0**
1199
1200 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1201
1202 **2. 05 01 10 07 D0**
1203
1204 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1205
1206 **3. 05 00 01 07 D0**
1207
1208 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1209
1210 **4. 05 00 00 07 D0**
1211
1212 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1213
1214
1215
1216 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1217
1218
1219 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1220
1221 * (% style="color:#037691" %)**AT Command:**
1222
1223 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1227
1228 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1229
1230
1231
1232 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1233
1234
1235 * (% style="color:#037691" %)**AT Command:**
1236
1237 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1238
1239 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1240
1241 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1242
1243
1244 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1245
1246 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1247
1248
1249
1250 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1251
1252
1253 Clear counting for counting mode
1254
1255 * (% style="color:#037691" %)**AT Command:**
1256
1257 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1258
1259
1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1261
1262 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1263
1264
1265
1266 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1272
1273
1274 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1275
1276 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1277
1278 (((
1279 range: aa bb cc:0 to 16777215,  (unit:second)
1280 )))
1281
1282
1283
1284 ==== 3.4.2.20 Reset save RO DO state ====
1285
1286
1287 * (% style="color:#037691" %)**AT Command:**
1288
1289 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1290
1291 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1292
1293
1294 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1295
1296 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1297
1298
1299
1300 ==== 3.4.2.21 Encrypted payload ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1306
1307 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1308
1309
1310
1311 ==== 3.4.2.22 Get sensor value ====
1312
1313
1314 * (% style="color:#037691" %)**AT Command:**
1315
1316 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1317
1318 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1319
1320
1321
1322 ==== 3.4.2.23 Resets the downlink packet count ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1328
1329 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1330
1331
1332
1333 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1334
1335
1336 * (% style="color:#037691" %)**AT Command:**
1337
1338 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1339
1340 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1341
1342
1343 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1344
1345 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1346
1347
1348
1349 ==== 3.4.2.25 Copy downlink to uplink ====
1350
1351
1352 * (% style="color:#037691" %)**AT Command**(%%)**:**
1353
1354 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1355
1356 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1357
1358
1359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1360
1361 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1362
1363
1364
1365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1366
1367 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1368
1369
1370
1371 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1372
1373
1374 * (((
1375 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1376
1377 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1378
1379
1380 )))
1381
1382 **Example:**
1383
1384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1385
1386
1387 == 3.5 Integrate with Mydevice ==
1388
1389
1390 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1391
1392 (((
1393 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1394 )))
1395
1396 (((
1397 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1398
1399
1400 )))
1401
1402 [[image:image-20220719105525-1.png||height="377" width="677"]]
1403
1404
1405
1406 [[image:image-20220719110247-2.png||height="388" width="683"]]
1407
1408
1409 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1410
1411 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1412
1413 Search under The things network
1414
1415 [[image:1653356838789-523.png||height="337" width="740"]]
1416
1417
1418
1419 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1420
1421 [[image:image-20220524094909-1.png||height="335" width="729"]]
1422
1423
1424 [[image:image-20220524094909-2.png||height="337" width="729"]]
1425
1426
1427 [[image:image-20220524094909-3.png||height="338" width="727"]]
1428
1429
1430 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1431
1432
1433 [[image:image-20220524094909-5.png||height="341" width="734"]]
1434
1435
1436 == 3.6 Interface Detail ==
1437
1438 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1439
1440
1441 Support NPN Type sensor
1442
1443 [[image:1653356991268-289.png]]
1444
1445
1446 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1447
1448
1449 (((
1450 The DI port of LT-22222-L can support NPN or PNP output sensor.
1451 )))
1452
1453 (((
1454 (((
1455 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1456
1457
1458 )))
1459 )))
1460
1461 [[image:1653357170703-587.png]]
1462
1463 (((
1464 (((
1465 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1466 )))
1467 )))
1468
1469 (((
1470
1471 )))
1472
1473 (((
1474 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1475 )))
1476
1477 (((
1478 This type of sensor will output a low signal GND when active.
1479 )))
1480
1481 * (((
1482 Connect sensor's output to DI1-
1483 )))
1484 * (((
1485 Connect sensor's VCC to DI1+.
1486 )))
1487
1488 (((
1489 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1490 )))
1491
1492 (((
1493 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1494 )))
1495
1496 (((
1497 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1498 )))
1499
1500 (((
1501
1502 )))
1503
1504 (((
1505 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1506 )))
1507
1508 (((
1509 This type of sensor will output a high signal (example 24v) when active.
1510 )))
1511
1512 * (((
1513 Connect sensor's output to DI1+
1514 )))
1515 * (((
1516 Connect sensor's GND DI1-.
1517 )))
1518
1519 (((
1520 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1521 )))
1522
1523 (((
1524 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1525 )))
1526
1527 (((
1528 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1529 )))
1530
1531 (((
1532
1533 )))
1534
1535 (((
1536 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1537 )))
1538
1539 (((
1540 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1541 )))
1542
1543 * (((
1544 Connect sensor's output to DI1+ with a serial 50K resistor
1545 )))
1546 * (((
1547 Connect sensor's GND DI1-.
1548 )))
1549
1550 (((
1551 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1552 )))
1553
1554 (((
1555 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1556 )))
1557
1558 (((
1559 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1560 )))
1561
1562
1563 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1564
1565
1566 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1567
1568 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1569
1570 [[image:1653357531600-905.png]]
1571
1572
1573 === 3.6.4 Analog Input Interface ===
1574
1575
1576 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1577
1578
1579 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1580
1581 [[image:1653357592296-182.png]]
1582
1583 Example to connect a 4~~20mA sensor
1584
1585 We take the wind speed sensor as an example for reference only.
1586
1587
1588 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1589
1590 (% style="color:red" %)**Red:  12~~24v**
1591
1592 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1593
1594 **Black:  GND**
1595
1596
1597 **Connection diagram:**
1598
1599 [[image:1653357640609-758.png]]
1600
1601 [[image:1653357648330-671.png||height="155" width="733"]]
1602
1603
1604 === 3.6.5 Relay Output ===
1605
1606
1607 (((
1608 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1609
1610 **Note**: RO pins go to Open(NO) when device is power off.
1611 )))
1612
1613 [[image:image-20220524100215-9.png]]
1614
1615
1616 [[image:image-20220524100215-10.png||height="382" width="723"]]
1617
1618
1619 == 3.7 LEDs Indicators ==
1620
1621
1622 [[image:image-20220524100748-11.png]]
1623
1624
1625 = 4. Use AT Command =
1626
1627 == 4.1 Access AT Command ==
1628
1629
1630 (((
1631 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1632 )))
1633
1634 (((
1635
1636 )))
1637
1638 [[image:1653358238933-385.png]]
1639
1640
1641 (((
1642 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1643 )))
1644
1645 [[image:1653358355238-883.png]]
1646
1647
1648 (((
1649 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1650 )))
1651
1652 (((
1653 AT+<CMD>?        : Help on <CMD>
1654 )))
1655
1656 (((
1657 AT+<CMD>         : Run <CMD>
1658 )))
1659
1660 (((
1661 AT+<CMD>=<value> : Set the value
1662 )))
1663
1664 (((
1665 AT+<CMD>=?       :  Get the value
1666 )))
1667
1668 (((
1669 ATZ: Trig a reset of the MCU
1670 )))
1671
1672 (((
1673 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1674 )))
1675
1676 (((
1677 AT+DEUI: Get or Set the Device EUI
1678 )))
1679
1680 (((
1681 AT+DADDR: Get or Set the Device Address
1682 )))
1683
1684 (((
1685 AT+APPKEY: Get or Set the Application Key
1686 )))
1687
1688 (((
1689 AT+NWKSKEY: Get or Set the Network Session Key
1690 )))
1691
1692 (((
1693 AT+APPSKEY:  Get or Set the Application Session Key
1694 )))
1695
1696 (((
1697 AT+APPEUI:  Get or Set the Application EUI
1698 )))
1699
1700 (((
1701 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1702 )))
1703
1704 (((
1705 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1706 )))
1707
1708 (((
1709 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1710 )))
1711
1712 (((
1713 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1714 )))
1715
1716 (((
1717 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1718 )))
1719
1720 (((
1721 AT+RX2FQ: Get or Set the Rx2 window frequency
1722 )))
1723
1724 (((
1725 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1726 )))
1727
1728 (((
1729 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1730 )))
1731
1732 (((
1733 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1734 )))
1735
1736 (((
1737 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1738 )))
1739
1740 (((
1741 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1742 )))
1743
1744 (((
1745 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1746 )))
1747
1748 (((
1749 AT+NWKID: Get or Set the Network ID
1750 )))
1751
1752 (((
1753 AT+FCU: Get or Set the Frame Counter Uplink
1754 )))
1755
1756 (((
1757 AT+FCD: Get or Set the Frame Counter Downlink
1758 )))
1759
1760 (((
1761 AT+CLASS: Get or Set the Device Class
1762 )))
1763
1764 (((
1765 AT+JOIN: Join network
1766 )))
1767
1768 (((
1769 AT+NJS: Get OTAA Join Status
1770 )))
1771
1772 (((
1773 AT+SENDB: Send hexadecimal data along with the application port
1774 )))
1775
1776 (((
1777 AT+SEND: Send text data along with the application port
1778 )))
1779
1780 (((
1781 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1782 )))
1783
1784 (((
1785 AT+RECV: Print last received data in raw format
1786 )))
1787
1788 (((
1789 AT+VER:  Get current image version and Frequency Band
1790 )))
1791
1792 (((
1793 AT+CFM: Get or Set the confirmation mode (0-1)
1794 )))
1795
1796 (((
1797 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1798 )))
1799
1800 (((
1801 AT+SNR: Get the SNR of the last received packet
1802 )))
1803
1804 (((
1805 AT+RSSI: Get the RSSI of the last received packet
1806 )))
1807
1808 (((
1809 AT+TDC: Get or set the application data transmission interval in ms
1810 )))
1811
1812 (((
1813 AT+PORT: Get or set the application port
1814 )))
1815
1816 (((
1817 AT+DISAT: Disable AT commands
1818 )))
1819
1820 (((
1821 AT+PWORD: Set password, max 9 digits
1822 )))
1823
1824 (((
1825 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1826 )))
1827
1828 (((
1829 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1830 )))
1831
1832 (((
1833 AT+CFG: Print all settings
1834 )))
1835
1836
1837 == 4.2 Common AT Command Sequence ==
1838
1839 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1840
1841 (((
1842
1843
1844 (((
1845 (% style="color:blue" %)**If device has not joined network yet:**
1846 )))
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %)**123456**
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)**AT+FDR**
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)**123456**
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**ATZ**
1867 )))
1868
1869
1870 (((
1871 (% style="color:blue" %)**If device already joined network:**
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)**ATZ**
1880 )))
1881
1882
1883 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1884
1885 (((
1886
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1890 )))
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1911 )))
1912
1913 (((
1914 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1915 )))
1916
1917 (((
1918 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1919 )))
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1939
1940
1941 )))
1942
1943 (((
1944 (% style="color:red" %)**Note:**
1945 )))
1946
1947 (((
1948 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1949
1950 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1951
1952 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1953 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1954
1955 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1956
1957
1958 )))
1959
1960 (((
1961 [[image:1653359097980-169.png||height="188" width="729"]]
1962 )))
1963
1964 (((
1965
1966 )))
1967
1968 === 4.2.3 Change to Class A ===
1969
1970
1971 (((
1972 (% style="color:blue" %)**If sensor JOINED:**
1973
1974 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1975 ATZ**
1976 )))
1977
1978
1979 = 5. Case Study =
1980
1981 == 5.1 Counting how many objects pass in Flow Line ==
1982
1983
1984 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1985
1986
1987 = 6. FAQ =
1988
1989 == 6.1 How to upgrade the image? ==
1990
1991
1992 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1993
1994 * Support new features
1995 * For bug fix
1996 * Change LoRaWAN bands.
1997
1998 Below shows the hardware connection for how to upload an image to the LT:
1999
2000 [[image:1653359603330-121.png]]
2001
2002
2003 (((
2004 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2005 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2006 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2007
2008
2009 (((
2010 (% style="color:blue" %)**For LT-22222-L**(%%):
2011 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2012 )))
2013
2014
2015 )))
2016
2017 [[image:image-20220524103407-12.png]]
2018
2019
2020 [[image:image-20220524103429-13.png]]
2021
2022
2023 [[image:image-20220524104033-15.png]]
2024
2025
2026 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2027
2028
2029 [[image:1653360054704-518.png||height="186" width="745"]]
2030
2031
2032 (((
2033 (((
2034 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2035
2036
2037 )))
2038 )))
2039
2040 (((
2041 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2042 )))
2043
2044 (((
2045
2046
2047 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2048
2049
2050 )))
2051
2052 (((
2053 (((
2054 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2055 )))
2056 )))
2057
2058 (((
2059 (((
2060 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2061
2062
2063 )))
2064 )))
2065
2066 (((
2067 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2068
2069
2070 )))
2071
2072 (((
2073 [[image:1653360231087-571.png||height="401" width="727"]]
2074
2075
2076 )))
2077
2078 (((
2079 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2080 )))
2081
2082
2083
2084 (((
2085 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2086
2087
2088 )))
2089
2090 (((
2091 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2092 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2093 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2094 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2095 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2096 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2097 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2098 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2099 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2100 )))
2101
2102
2103 (((
2104 As shown in below:
2105 )))
2106
2107 [[image:1653360498588-932.png||height="485" width="726"]]
2108
2109
2110 == 6.4 How to change the uplink interval? ==
2111
2112
2113 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2114
2115
2116 == 6.5 Can I see counting event in Serial? ==
2117
2118
2119 (((
2120 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121
2122
2123 == 6.6 Can i use point to point communication for LT-22222-L? ==
2124
2125
2126 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2127
2128
2129 )))
2130
2131 (((
2132 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2133
2134
2135 If the device is not shut down, but directly powered off.
2136
2137 It will default that this is a power-off state.
2138
2139 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2140
2141 After restart, the status before power failure will be read from flash.
2142
2143
2144 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2145
2146
2147 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2148
2149
2150 [[image:image-20221006170630-1.png||height="610" width="945"]]
2151
2152
2153 == 6.9 Can LT22222-L save RO state? ==
2154
2155
2156 Firmware version needs to be no less than 1.6.0.
2157
2158
2159 = 7. Trouble Shooting =
2160 )))
2161
2162 (((
2163 (((
2164 == 7.1 Downlink doesn't work, how to solve it? ==
2165
2166
2167 )))
2168 )))
2169
2170 (((
2171 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 )))
2173
2174 (((
2175
2176
2177 == 7.2 Have trouble to upload image. ==
2178
2179
2180 )))
2181
2182 (((
2183 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 )))
2185
2186 (((
2187
2188
2189 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190
2191
2192 )))
2193
2194 (((
2195 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 )))
2197
2198
2199 = 8. Order Info =
2200
2201
2202 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2203
2204 (% style="color:#4f81bd" %)**XXX:**
2205
2206 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2207 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2208 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2209 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2210 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2211 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2212 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2213 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2214 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2215
2216 = 9. Packing Info =
2217
2218
2219 **Package Includes**:
2220
2221 * LT-22222-L I/O Controller x 1
2222 * Stick Antenna for LoRa RF part x 1
2223 * Bracket for controller x1
2224 * Program cable x 1
2225
2226 **Dimension and weight**:
2227
2228 * Device Size: 13.5 x 7 x 3 cm
2229 * Device Weight: 105g
2230 * Package Size / pcs : 14.5 x 8 x 5 cm
2231 * Weight / pcs : 170g
2232
2233 = 10. Support =
2234
2235
2236 * (((
2237 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2238 )))
2239 * (((
2240 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2241
2242
2243
2244 )))
2245
2246 = 11. Reference​​​​​ =
2247
2248
2249 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2250 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2251 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]