Version 118.10 by Xiaoling on 2023/05/17 11:20

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |Size(bytes)|4|4|1|1|1
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407
408
409 )))|MOD
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420
421 RO is for relay. ROx=1 : close,ROx=0 always open.
422 )))
423
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 )))
430
431 (((
432
433
434 **To use counting mode, please run:**
435 )))
436
437 (% class="box infomessage" %)
438 (((
439 (((
440 (((
441 **AT+MOD=2**
442 )))
443
444 (((
445 **ATZ**
446 )))
447 )))
448 )))
449
450 (((
451
452
453 (% style="color:#4f81bd" %)**AT Commands for counting:**
454
455
456 )))
457
458 (((
459 **For LT22222-L:**
460
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |Size(bytes)|4|2|2|1|1|1
483 |Value|COUNT1|(((
484 ACI1 Current
485 )))|(((
486 ACI2 Current
487 )))|DIDORO*|Reserve|MOD
488
489 (((
490
491
492 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493
494 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
497 )))
498
499
500 * RO is for relay. ROx=1 : close,ROx=0 always open.
501 * FIRST: Indicate this is the first packet after join network.
502 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503
504 (((
505 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
506 )))
507
508
509 (((
510 **To use counting mode, please run:**
511 )))
512
513 (% class="box infomessage" %)
514 (((
515 (((
516 (((
517 **AT+MOD=3**
518 )))
519
520 (((
521 **ATZ**
522 )))
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530
531 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
532
533
534 (((
535 **LT22222-L**: This mode the DI1 is used as a counting pin.
536 )))
537
538 (((
539 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |Size(bytes)|4|4|1|1|1
543 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 Reserve
545
546
547 )))|MOD
548 )))
549
550
551
552 (((
553 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
558 )))
559
560
561 * RO is for relay. ROx=1 : close,ROx=0 always open.
562 * FIRST: Indicate this is the first packet after join network.
563 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564
565 (((
566 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 )))
568
569 (((
570
571
572 **To use this mode, please run:**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 (((
579 **AT+MOD=4**
580 )))
581
582 (((
583 **ATZ**
584 )))
585 )))
586 )))
587
588
589 (((
590 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
591 )))
592
593 (((
594
595
596 **Plus below command for AVI1 Counting:**
597
598
599 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600
601 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
606 )))
607
608
609 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610
611
612 **LT22222-L**: This mode the DI1 is used as a counting pin.
613
614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 |Size(bytes)|2|2|2|2|1|1|1
616 |Value|(((
617 AVI1
618 voltage
619 )))|(((
620 AVI2
621 voltage
622 )))|(((
623 ACI1
624 Current
625 )))|COUNT1|DIDORO*|(((
626 Reserve
627 )))|MOD
628
629 (((
630
631
632 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
633
634 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
635 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
636 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 )))
638
639 * RO is for relay. ROx=1 : close,ROx=0 always open.
640 * FIRST: Indicate this is the first packet after join network.
641 * (((
642 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
643 )))
644
645 (((
646 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
647 )))
648
649 (((
650
651
652 **To use this mode, please run:**
653 )))
654
655 (% class="box infomessage" %)
656 (((
657 (((
658 (((
659 **AT+MOD=5**
660 )))
661
662 (((
663 **ATZ**
664 )))
665 )))
666 )))
667
668 (((
669 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
670 )))
671
672
673 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
674
675
676 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
677
678 For example, if user has configured below commands:
679
680 * **AT+MOD=1 ** **~-~->**  The normal working mode
681 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
682
683 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
684
685 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
686 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
687
688 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
689
690
691 (% style="color:#4f81bd" %)**Trigger base on voltage**:
692
693 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
694
695
696 **Example:**
697
698 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
699
700 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
701
702
703
704 (% style="color:#4f81bd" %)**Trigger base on current**:
705
706 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707
708
709 **Example:**
710
711 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
712
713
714
715 (% style="color:#4f81bd" %)**Trigger base on DI status**:
716
717 DI status trigger Flag.
718
719 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720
721
722 **Example:**
723
724 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725
726
727 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
728
729 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730
731 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732
733 AA: Code for this downlink Command:
734
735 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
736
737 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
738
739 yy2 yy2: AC1 or AV1 high limit.
740
741 yy3 yy3: AC2 or AV2 low limit.
742
743 Yy4 yy4: AC2 or AV2 high limit.
744
745
746 **Example1**: AA 00 13 88 00 00 00 00 00 00
747
748 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
749
750
751 **Example2**: AA 02 01 00
752
753 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
754
755
756
757 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
758
759 MOD6 Payload : total 11 bytes payload
760
761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
762 |Size(bytes)|1|1|1|6|1|1
763 |Value|(((
764 TRI_A
765 FLAG
766 )))|(((
767 TRI_A
768 Status
769 )))|(((
770 TRI_DI
771 FLAG+STA
772 )))|Reserve|Enable/Disable MOD6|(((
773 MOD
774 (6)
775 )))
776
777 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
778
779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
780 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
781 |(((
782 AV1_
783 LOW
784 )))|(((
785 AV1_
786 HIGH
787 )))|(((
788 AV2_
789 LOW
790 )))|(((
791 AV2_
792 HIGH
793 )))|(((
794 AC1_
795 LOW
796 )))|(((
797 AC1_
798 HIGH
799 )))|(((
800 AC2_
801 LOW
802 )))|(((
803 AC2_
804 HIGH
805 )))
806
807 * Each bits shows if the corresponding trigger has been configured.
808
809 **Example:**
810
811 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
812
813
814
815 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
816
817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
818 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
819 |(((
820 AV1_
821 LOW
822 )))|(((
823 AV1_
824 HIGH
825 )))|(((
826 AV2_
827 LOW
828 )))|(((
829 AV2_
830 HIGH
831 )))|(((
832 AC1_
833 LOW
834 )))|(((
835 AC1_
836 HIGH
837 )))|(((
838 AC2_
839 LOW
840 )))|(((
841 AC2_
842 HIGH
843 )))
844
845
846 * Each bits shows which status has been trigger on this uplink.
847
848 **Example:**
849
850 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
851
852
853 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
854
855 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
856 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
857 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
858
859 * Each bits shows which status has been trigger on this uplink.
860
861 **Example:**
862
863 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
864
865 00000101: Means both DI1 and DI2 trigger are enabled.
866
867
868 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
869
870 Downlink command to poll MOD6 status:
871
872 **AB 06**
873
874 When device got this command, it will send the MOD6 payload.
875
876
877 === 3.3.7 Payload Decoder ===
878
879 (((
880
881
882 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
883 )))
884
885
886 == 3.4 ​Configure LT via AT or Downlink ==
887
888
889 (((
890 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
891 )))
892
893 (((
894 (((
895 There are two kinds of Commands:
896 )))
897 )))
898
899 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
900
901 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
902
903 === 3.4.1 Common Commands ===
904
905
906 (((
907 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
908 )))
909
910
911 === 3.4.2 Sensor related commands ===
912
913 ==== 3.4.2.1 Set Transmit Interval ====
914
915
916 Set device uplink interval.
917
918 * (% style="color:#037691" %)**AT Command:**
919
920 (% style="color:blue" %)**AT+TDC=N **
921
922
923 **Example: **AT+TDC=30000. Means set interval to 30 seconds
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
927
928 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
929
930
931
932 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
933
934
935 Set work mode.
936
937 * (% style="color:#037691" %)**AT Command:**
938
939 (% style="color:blue" %)**AT+MOD=N  **
940
941
942 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
946
947 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
948
949
950
951 ==== 3.4.2.3 Poll an uplink ====
952
953
954 * (% style="color:#037691" %)**AT Command:**
955
956 There is no AT Command to poll uplink
957
958
959 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
960
961 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
962
963
964 **Example**: 0x08FF, ask device to send an Uplink
965
966
967
968 ==== 3.4.2.4 Enable Trigger Mode ====
969
970
971 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
972
973 * (% style="color:#037691" %)**AT Command:**
974
975 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
976
977 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
978
979 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
980
981
982 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
983
984 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
985
986
987
988 ==== 3.4.2.5 Poll trigger settings ====
989
990
991 Poll trigger settings,
992
993 * (% style="color:#037691" %)**AT Command:**
994
995 There is no AT Command for this feature.
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
999
1000 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1001
1002
1003
1004 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1005
1006
1007 Enable Disable DI1/DI2/DI2 as trigger,
1008
1009 * (% style="color:#037691" %)**AT Command:**
1010
1011 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1012
1013
1014 **Example:**
1015
1016 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1019
1020 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1021
1022
1023
1024 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1025
1026
1027 Set DI1 or DI3(for LT-33222-L) trigger.
1028
1029 * (% style="color:#037691" %)**AT Command:**
1030
1031 (% style="color:blue" %)**AT+TRIG1=a,b**
1032
1033 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1034
1035 (% style="color:red" %)**b :** (%%)delay timing.
1036
1037
1038 **Example:**
1039
1040 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1041
1042
1043 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1044
1045 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1046
1047
1048
1049 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1050
1051
1052 Set DI2 trigger.
1053
1054 * (% style="color:#037691" %)**AT Command:**
1055
1056 (% style="color:blue" %)**AT+TRIG2=a,b**
1057
1058 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1059
1060 (% style="color:red" %)**b :** (%%)delay timing.
1061
1062
1063 **Example:**
1064
1065 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1066
1067
1068 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1069
1070 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1071
1072
1073
1074 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1075
1076
1077 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1078
1079 * (% style="color:#037691" %)**AT Command**
1080
1081 (% style="color:blue" %)**AT+ACLIM**
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1085
1086 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1087
1088
1089
1090 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1091
1092
1093 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1094
1095 * (% style="color:#037691" %)**AT Command**
1096
1097 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1098
1099
1100 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1101
1102 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1103
1104
1105
1106 ==== 3.4.2.11 Trigger – Set minimum interval ====
1107
1108
1109 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1110
1111 * (% style="color:#037691" %)**AT Command**
1112
1113 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1114
1115
1116 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1117
1118 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1119
1120 (((
1121
1122
1123 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1124 )))
1125
1126
1127
1128 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1129
1130
1131 * (% style="color:#037691" %)**AT Command**
1132
1133 There is no AT Command to control Digital Output
1134
1135
1136 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1137 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1138
1139 (((
1140 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1141 )))
1142
1143 (((
1144 01: Low,  00: High ,  11: No action
1145
1146 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1147 |Downlink Code|DO1|DO2|DO3
1148 |02  01  00  11|Low|High|No Action
1149 |02  00  11  01|High|No Action|Low
1150 |02  11  01  00|No Action|Low|High
1151 )))
1152
1153
1154 (((
1155 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1156 )))
1157
1158 (((
1159 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1160 )))
1161
1162
1163
1164 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1165
1166
1167 * (% style="color:#037691" %)**AT Command**
1168
1169 There is no AT Command to control Digital Output
1170
1171
1172 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1173
1174 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1175
1176
1177 This is to control the digital output time of DO pin. Include four bytes:
1178
1179 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1180
1181 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1182
1183 01: DO pins will change back to original state after timeout.
1184
1185 00: DO pins will change to an inverter state after timeout 
1186
1187
1188 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1189
1190 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1191 |**Second Byte**|**Status**
1192 |0x01|DO1 set to low
1193 |0x00|DO1 set to high
1194 |0x11|DO1 NO Action
1195
1196
1197
1198 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1199
1200 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1201 |**Second Byte**|**Status**
1202 |0x01|DO2 set to low
1203 |0x00|DO2 set to high
1204 |0x11|DO2 NO Action
1205
1206
1207
1208 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1209
1210 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1211 |**Second Byte**|**Status**
1212 |0x01|DO3 set to low
1213 |0x00|DO3 set to high
1214 |0x11|DO3 NO Action
1215
1216
1217
1218 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1219
1220 Latching time. Unit: ms
1221
1222
1223 (% style="color:red" %)**Note: **
1224
1225 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1226
1227 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1228
1229
1230 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1231
1232
1233 **Example payload:**
1234
1235 **~1. A9 01 01 01 01 07 D0**
1236
1237 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1238
1239 **2. A9 01 00 01 11 07 D0**
1240
1241 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1242
1243 **3. A9 00 00 00 00 07 D0**
1244
1245 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1246
1247 **4. A9 00 11 01 00 07 D0**
1248
1249 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1250
1251
1252
1253 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 There is no AT Command to control Relay Output
1259
1260
1261 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1262
1263 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1264
1265
1266 (((
1267 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1268 )))
1269
1270 (((
1271 01: Close ,  00: Open , 11: No action
1272
1273 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1274 |**Downlink Code**|**RO1**|**RO2**
1275 |03  00  11|Open|No Action
1276 |03  01  11|Close|No Action
1277 |03  11  00|No Action|Open
1278 |03  11  01|No Action|Close
1279 |03  00  00|Open|Open
1280 |03  01  01|Close|Close
1281 |03  01  00|Close|Open
1282 |03  00  01|Open|Close
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1290
1291
1292
1293 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1294
1295
1296 * (% style="color:#037691" %)**AT Command:**
1297
1298 There is no AT Command to control Relay Output
1299
1300
1301 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1302
1303 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1304
1305
1306 This is to control the relay output time of relay. Include four bytes:
1307
1308 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1309
1310 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1311
1312 01: Relays will change back to original state after timeout.
1313
1314 00: Relays will change to an inverter state after timeout
1315
1316
1317 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1318
1319 [[image:image-20221008095908-1.png||height="364" width="564"]]
1320
1321
1322 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1323
1324
1325 (% style="color:red" %)**Note:**
1326
1327 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1328
1329 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1330
1331
1332 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1333
1334
1335 **Example payload:**
1336
1337 **~1. 05 01 11 07 D0**
1338
1339 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1340
1341 **2. 05 01 10 07 D0**
1342
1343 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1344
1345 **3. 05 00 01 07 D0**
1346
1347 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1348
1349 **4. 05 00 00 07 D0**
1350
1351 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1352
1353
1354
1355 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1356
1357
1358 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1359
1360 * (% style="color:#037691" %)**AT Command:**
1361
1362 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1363
1364
1365 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1366
1367 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1368
1369
1370
1371 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1372
1373
1374 * (% style="color:#037691" %)**AT Command:**
1375
1376 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1377
1378 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1379
1380 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1381
1382
1383 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1384
1385 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1386
1387
1388
1389 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1390
1391
1392 Clear counting for counting mode
1393
1394 * (% style="color:#037691" %)**AT Command:**
1395
1396 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1397
1398
1399 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1400
1401 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1402
1403
1404
1405 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1406
1407
1408 * (% style="color:#037691" %)**AT Command:**
1409
1410 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1411
1412
1413 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1414
1415 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1416
1417 (((
1418 range: aa bb cc:0 to 16777215,  (unit:second)
1419 )))
1420
1421
1422
1423 ==== 3.4.2.20 Reset save RO DO state ====
1424
1425
1426 * (% style="color:#037691" %)**AT Command:**
1427
1428 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1429
1430 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1431
1432
1433 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1434
1435 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1436
1437
1438
1439 ==== 3.4.2.21 Encrypted payload ====
1440
1441
1442 * (% style="color:#037691" %)**AT Command:**
1443
1444 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1445
1446 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1447
1448
1449
1450 ==== 3.4.2.22 Get sensor value ====
1451
1452
1453 * (% style="color:#037691" %)**AT Command:**
1454
1455 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1456
1457 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1458
1459
1460
1461 ==== 3.4.2.23 Resets the downlink packet count ====
1462
1463
1464 * (% style="color:#037691" %)**AT Command:**
1465
1466 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1467
1468 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1469
1470
1471
1472 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1473
1474
1475 * (% style="color:#037691" %)**AT Command:**
1476
1477 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1478
1479 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1480
1481
1482 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1483
1484 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1485
1486
1487
1488 ==== 3.4.2.25 Copy downlink to uplink ====
1489
1490
1491 * (% style="color:#037691" %)**AT Command**(%%)**:**
1492
1493 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1494
1495 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1496
1497
1498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1499
1500 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1501
1502
1503
1504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1505
1506 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1507
1508
1509
1510 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1511
1512
1513 * (((
1514 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1515
1516 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1517
1518
1519 )))
1520
1521 **Example:**
1522
1523 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1524
1525
1526 == 3.5 Integrate with Mydevice ==
1527
1528
1529 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1530
1531 (((
1532 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1533 )))
1534
1535 (((
1536 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1537
1538
1539 )))
1540
1541 [[image:image-20220719105525-1.png||height="377" width="677"]]
1542
1543
1544
1545 [[image:image-20220719110247-2.png||height="388" width="683"]]
1546
1547
1548 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1549
1550 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1551
1552 Search under The things network
1553
1554 [[image:1653356838789-523.png||height="337" width="740"]]
1555
1556
1557
1558 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1559
1560 [[image:image-20220524094909-1.png||height="335" width="729"]]
1561
1562
1563 [[image:image-20220524094909-2.png||height="337" width="729"]]
1564
1565
1566 [[image:image-20220524094909-3.png||height="338" width="727"]]
1567
1568
1569 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1570
1571
1572 [[image:image-20220524094909-5.png||height="341" width="734"]]
1573
1574
1575 == 3.6 Interface Detail ==
1576
1577 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1578
1579
1580 Support NPN Type sensor
1581
1582 [[image:1653356991268-289.png]]
1583
1584
1585 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1586
1587
1588 (((
1589 The DI port of LT-22222-L can support NPN or PNP output sensor.
1590 )))
1591
1592 (((
1593 (((
1594 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1595
1596
1597 )))
1598 )))
1599
1600 [[image:1653357170703-587.png]]
1601
1602 (((
1603 (((
1604 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1605 )))
1606 )))
1607
1608 (((
1609
1610 )))
1611
1612 (((
1613 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1614 )))
1615
1616 (((
1617 This type of sensor will output a low signal GND when active.
1618 )))
1619
1620 * (((
1621 Connect sensor's output to DI1-
1622 )))
1623 * (((
1624 Connect sensor's VCC to DI1+.
1625 )))
1626
1627 (((
1628 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1629 )))
1630
1631 (((
1632 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1633 )))
1634
1635 (((
1636 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1637 )))
1638
1639 (((
1640
1641 )))
1642
1643 (((
1644 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1645 )))
1646
1647 (((
1648 This type of sensor will output a high signal (example 24v) when active.
1649 )))
1650
1651 * (((
1652 Connect sensor's output to DI1+
1653 )))
1654 * (((
1655 Connect sensor's GND DI1-.
1656 )))
1657
1658 (((
1659 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1660 )))
1661
1662 (((
1663 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1664 )))
1665
1666 (((
1667 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1668 )))
1669
1670 (((
1671
1672 )))
1673
1674 (((
1675 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1676 )))
1677
1678 (((
1679 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1680 )))
1681
1682 * (((
1683 Connect sensor's output to DI1+ with a serial 50K resistor
1684 )))
1685 * (((
1686 Connect sensor's GND DI1-.
1687 )))
1688
1689 (((
1690 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1691 )))
1692
1693 (((
1694 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1695 )))
1696
1697 (((
1698 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1699 )))
1700
1701
1702 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1703
1704
1705 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1706
1707 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1708
1709 [[image:1653357531600-905.png]]
1710
1711
1712 === 3.6.4 Analog Input Interface ===
1713
1714
1715 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1716
1717
1718 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1719
1720 [[image:1653357592296-182.png]]
1721
1722 Example to connect a 4~~20mA sensor
1723
1724 We take the wind speed sensor as an example for reference only.
1725
1726
1727 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1728
1729 (% style="color:red" %)**Red:  12~~24v**
1730
1731 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1732
1733 **Black:  GND**
1734
1735
1736 **Connection diagram:**
1737
1738 [[image:1653357640609-758.png]]
1739
1740 [[image:1653357648330-671.png||height="155" width="733"]]
1741
1742
1743 === 3.6.5 Relay Output ===
1744
1745
1746 (((
1747 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1748
1749 **Note**: RO pins go to Open(NO) when device is power off.
1750 )))
1751
1752 [[image:image-20220524100215-9.png]]
1753
1754
1755 [[image:image-20220524100215-10.png||height="382" width="723"]]
1756
1757
1758 == 3.7 LEDs Indicators ==
1759
1760
1761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1762 |**LEDs**|**Feature**
1763 |**PWR**|Always on if there is power
1764 |**SYS**|After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1765 |**TX**|(((
1766 Device boot: TX blinks 5 times.
1767
1768 Successful join network: TX ON for 5 seconds.
1769
1770 Transmit a LoRa packet: TX blinks once
1771 )))
1772 |**RX**|RX blinks once when receive a packet.
1773 |**DO1**|
1774 |**DO2**|
1775 |**DO3**|
1776 |**DI2**|(((
1777 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1778 )))
1779 |**DI2**|(((
1780 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1781 )))
1782 |**DI2**|(((
1783 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1784 )))
1785 |**RO1**|
1786 |**RO2**|
1787
1788 [[image:image-20220524100748-11.png]]
1789
1790
1791 = 4. Use AT Command =
1792
1793 == 4.1 Access AT Command ==
1794
1795
1796 (((
1797 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1798 )))
1799
1800 (((
1801
1802 )))
1803
1804 [[image:1653358238933-385.png]]
1805
1806
1807 (((
1808 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1809 )))
1810
1811 [[image:1653358355238-883.png]]
1812
1813
1814 (((
1815 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1816 )))
1817
1818 (((
1819 AT+<CMD>?        : Help on <CMD>
1820 )))
1821
1822 (((
1823 AT+<CMD>         : Run <CMD>
1824 )))
1825
1826 (((
1827 AT+<CMD>=<value> : Set the value
1828 )))
1829
1830 (((
1831 AT+<CMD>=?       :  Get the value
1832 )))
1833
1834 (((
1835 ATZ: Trig a reset of the MCU
1836 )))
1837
1838 (((
1839 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1840 )))
1841
1842 (((
1843 AT+DEUI: Get or Set the Device EUI
1844 )))
1845
1846 (((
1847 AT+DADDR: Get or Set the Device Address
1848 )))
1849
1850 (((
1851 AT+APPKEY: Get or Set the Application Key
1852 )))
1853
1854 (((
1855 AT+NWKSKEY: Get or Set the Network Session Key
1856 )))
1857
1858 (((
1859 AT+APPSKEY:  Get or Set the Application Session Key
1860 )))
1861
1862 (((
1863 AT+APPEUI:  Get or Set the Application EUI
1864 )))
1865
1866 (((
1867 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1868 )))
1869
1870 (((
1871 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1872 )))
1873
1874 (((
1875 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1876 )))
1877
1878 (((
1879 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1880 )))
1881
1882 (((
1883 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1884 )))
1885
1886 (((
1887 AT+RX2FQ: Get or Set the Rx2 window frequency
1888 )))
1889
1890 (((
1891 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1892 )))
1893
1894 (((
1895 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1896 )))
1897
1898 (((
1899 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1900 )))
1901
1902 (((
1903 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1904 )))
1905
1906 (((
1907 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1908 )))
1909
1910 (((
1911 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1912 )))
1913
1914 (((
1915 AT+NWKID: Get or Set the Network ID
1916 )))
1917
1918 (((
1919 AT+FCU: Get or Set the Frame Counter Uplink
1920 )))
1921
1922 (((
1923 AT+FCD: Get or Set the Frame Counter Downlink
1924 )))
1925
1926 (((
1927 AT+CLASS: Get or Set the Device Class
1928 )))
1929
1930 (((
1931 AT+JOIN: Join network
1932 )))
1933
1934 (((
1935 AT+NJS: Get OTAA Join Status
1936 )))
1937
1938 (((
1939 AT+SENDB: Send hexadecimal data along with the application port
1940 )))
1941
1942 (((
1943 AT+SEND: Send text data along with the application port
1944 )))
1945
1946 (((
1947 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1948 )))
1949
1950 (((
1951 AT+RECV: Print last received data in raw format
1952 )))
1953
1954 (((
1955 AT+VER:  Get current image version and Frequency Band
1956 )))
1957
1958 (((
1959 AT+CFM: Get or Set the confirmation mode (0-1)
1960 )))
1961
1962 (((
1963 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1964 )))
1965
1966 (((
1967 AT+SNR: Get the SNR of the last received packet
1968 )))
1969
1970 (((
1971 AT+RSSI: Get the RSSI of the last received packet
1972 )))
1973
1974 (((
1975 AT+TDC: Get or set the application data transmission interval in ms
1976 )))
1977
1978 (((
1979 AT+PORT: Get or set the application port
1980 )))
1981
1982 (((
1983 AT+DISAT: Disable AT commands
1984 )))
1985
1986 (((
1987 AT+PWORD: Set password, max 9 digits
1988 )))
1989
1990 (((
1991 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1992 )))
1993
1994 (((
1995 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1996 )))
1997
1998 (((
1999 AT+CFG: Print all settings
2000 )))
2001
2002
2003 == 4.2 Common AT Command Sequence ==
2004
2005 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2006
2007 (((
2008
2009
2010 (((
2011 (% style="color:blue" %)**If device has not joined network yet:**
2012 )))
2013 )))
2014
2015 (((
2016 (% style="background-color:#dcdcdc" %)**123456**
2017 )))
2018
2019 (((
2020 (% style="background-color:#dcdcdc" %)**AT+FDR**
2021 )))
2022
2023 (((
2024 (% style="background-color:#dcdcdc" %)**123456**
2025 )))
2026
2027 (((
2028 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
2029 )))
2030
2031 (((
2032 (% style="background-color:#dcdcdc" %)**ATZ**
2033 )))
2034
2035
2036 (((
2037 (% style="color:blue" %)**If device already joined network:**
2038 )))
2039
2040 (((
2041 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
2042 )))
2043
2044 (((
2045 (% style="background-color:#dcdcdc" %)**ATZ**
2046 )))
2047
2048
2049 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2050
2051 (((
2052
2053
2054 (((
2055 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2056 )))
2057 )))
2058
2059 (((
2060 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2061 )))
2062
2063 (((
2064 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2065 )))
2066
2067 (((
2068 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2069 )))
2070
2071 (((
2072 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2073 )))
2074
2075 (((
2076 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2077 )))
2078
2079 (((
2080 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2081 )))
2082
2083 (((
2084 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2085 )))
2086
2087 (((
2088 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2089 )))
2090
2091 (((
2092 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2093 )))
2094
2095 (((
2096 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2097 )))
2098
2099 (((
2100 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2101 )))
2102
2103 (((
2104 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2105
2106
2107 )))
2108
2109 (((
2110 (% style="color:red" %)**Note:**
2111 )))
2112
2113 (((
2114 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2115
2116 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2117
2118 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2119 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2120
2121 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2122
2123
2124 )))
2125
2126 (((
2127 [[image:1653359097980-169.png||height="188" width="729"]]
2128 )))
2129
2130 (((
2131
2132 )))
2133
2134 === 4.2.3 Change to Class A ===
2135
2136
2137 (((
2138 (% style="color:blue" %)**If sensor JOINED:**
2139
2140 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2141 ATZ**
2142 )))
2143
2144
2145 = 5. Case Study =
2146
2147 == 5.1 Counting how many objects pass in Flow Line ==
2148
2149
2150 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2151
2152
2153 = 6. FAQ =
2154
2155 == 6.1 How to upgrade the image? ==
2156
2157
2158 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2159
2160 * Support new features
2161 * For bug fix
2162 * Change LoRaWAN bands.
2163
2164 Below shows the hardware connection for how to upload an image to the LT:
2165
2166 [[image:1653359603330-121.png]]
2167
2168
2169 (((
2170 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2171 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2172 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2173
2174
2175 (((
2176 (% style="color:blue" %)**For LT-22222-L**(%%):
2177 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2178 )))
2179
2180
2181 )))
2182
2183 [[image:image-20220524103407-12.png]]
2184
2185
2186 [[image:image-20220524103429-13.png]]
2187
2188
2189 [[image:image-20220524104033-15.png]]
2190
2191
2192 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2193
2194
2195 [[image:1653360054704-518.png||height="186" width="745"]]
2196
2197
2198 (((
2199 (((
2200 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2201
2202
2203 )))
2204 )))
2205
2206 (((
2207 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2208 )))
2209
2210 (((
2211
2212
2213 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2214
2215
2216 )))
2217
2218 (((
2219 (((
2220 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2221 )))
2222 )))
2223
2224 (((
2225 (((
2226 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2227
2228
2229 )))
2230 )))
2231
2232 (((
2233 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2234
2235
2236 )))
2237
2238 (((
2239 [[image:1653360231087-571.png||height="401" width="727"]]
2240
2241
2242 )))
2243
2244 (((
2245 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2246 )))
2247
2248
2249
2250 (((
2251 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2252
2253
2254 )))
2255
2256 (((
2257 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2258 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2259 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2260 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2261 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2262 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2263 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2264 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2265 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2266 )))
2267
2268
2269 (((
2270 As shown in below:
2271 )))
2272
2273 [[image:1653360498588-932.png||height="485" width="726"]]
2274
2275
2276 == 6.4 How to change the uplink interval? ==
2277
2278
2279 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2280
2281
2282 == 6.5 Can I see counting event in Serial? ==
2283
2284
2285 (((
2286 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2287
2288
2289 == 6.6 Can i use point to point communication for LT-22222-L? ==
2290
2291
2292 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2293
2294
2295 )))
2296
2297 (((
2298 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2299
2300
2301 If the device is not shut down, but directly powered off.
2302
2303 It will default that this is a power-off state.
2304
2305 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2306
2307 After restart, the status before power failure will be read from flash.
2308
2309
2310 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2311
2312
2313 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2314
2315
2316 [[image:image-20221006170630-1.png||height="610" width="945"]]
2317
2318
2319 == 6.9 Can LT22222-L save RO state? ==
2320
2321
2322 Firmware version needs to be no less than 1.6.0.
2323
2324
2325 = 7. Trouble Shooting =
2326 )))
2327
2328 (((
2329 (((
2330 == 7.1 Downlink doesn't work, how to solve it? ==
2331
2332
2333 )))
2334 )))
2335
2336 (((
2337 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2338 )))
2339
2340 (((
2341
2342
2343 == 7.2 Have trouble to upload image. ==
2344
2345
2346 )))
2347
2348 (((
2349 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2350 )))
2351
2352 (((
2353
2354
2355 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2356
2357
2358 )))
2359
2360 (((
2361 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2362 )))
2363
2364
2365 = 8. Order Info =
2366
2367
2368 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2369
2370 (% style="color:#4f81bd" %)**XXX:**
2371
2372 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2373 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2374 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2375 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2376 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2377 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2378 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2379 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2380 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2381
2382 = 9. Packing Info =
2383
2384
2385 **Package Includes**:
2386
2387 * LT-22222-L I/O Controller x 1
2388 * Stick Antenna for LoRa RF part x 1
2389 * Bracket for controller x1
2390 * Program cable x 1
2391
2392 **Dimension and weight**:
2393
2394 * Device Size: 13.5 x 7 x 3 cm
2395 * Device Weight: 105g
2396 * Package Size / pcs : 14.5 x 8 x 5 cm
2397 * Weight / pcs : 170g
2398
2399 = 10. Support =
2400
2401
2402 * (((
2403 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2404 )))
2405 * (((
2406 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2407
2408
2409
2410 )))
2411
2412 = 11. Reference​​​​​ =
2413
2414
2415 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2416 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2417 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]