Version 112.6 by Xiaoling on 2023/04/24 11:38

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192
193 == 1.4  Applications ==
194
195
196 * Smart Buildings & Home Automation
197
198 * Logistics and Supply Chain Management
199
200 * Smart Metering
201
202 * Smart Agriculture
203
204 * Smart Cities
205
206 * Smart Factory
207
208
209 == 1.5 Hardware Variants ==
210
211
212 (% border="1" style="background-color:#f2f2f2; width:500px" %)
213 |(% style="width:103px;background-color:#D9E2F3;color:#0070C0" %)**Model**|(% style="width:131px;background-color:#D9E2F3;color:#0070C0" %)**Photo**|(% style="width:334px;background-color:#D9E2F3;color:#0070C0" %)**Description**
214 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
215 * 2 x Digital Input (Bi-direction)
216 * 2 x Digital Output
217 * 2 x Relay Output (5A@250VAC / 30VDC)
218 * 2 x 0~~20mA Analog Input (res:0.01mA)
219 * 2 x 0~~30V Analog Input (res:0.01v)
220 * 1 x Counting Port
221 )))
222
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:1653297924498-393.png]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317
318 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
319
320
321 (((
322 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
323 )))
324
325 [[image:image-20220523174024-3.png]]
326
327 (((
328
329
330 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
331 )))
332
333 [[image:image-20220523174254-4.png]]
334
335 * RO is for relay. ROx=1 : close,ROx=0 always open.
336 * DI is for digital input. DIx=1: high or float, DIx=0: low.
337 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338
339 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340
341 For example if payload is: [[image:image-20220523175847-2.png]]
342
343
344 **The value for the interface is:  **
345
346 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347
348 AVI2 channel voltage is 0x04AC/1000=1.196V
349
350 ACI1 channel current is 0x1310/1000=4.880mA
351
352 ACI2 channel current is 0x1300/1000=4.864mA
353
354 The last byte 0xAA= 10101010(B) means
355
356 * [1] RO1 relay channel is close and the RO1 LED is ON.
357 * [0] RO2 relay channel is open and RO2 LED is OFF;
358
359 **LT22222-L:**
360
361 * [1] DI2 channel is high input and DI2 LED is ON;
362 * [0] DI1 channel is low input;
363
364 * [0] DO3 channel output state
365 ** DO3 is float in case no load between DO3 and V+.;
366 ** DO3 is high in case there is load between DO3 and V+.
367 ** DO3 LED is off in both case
368 * [1] DO2 channel output is low and DO2 LED is ON.
369 * [0] DO1 channel output state
370 ** DO1 is float in case no load between DO1 and V+.;
371 ** DO1 is high in case there is load between DO1 and V+.
372 ** DO1 LED is off in both case
373
374 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
375
376
377 (((
378 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
379 )))
380
381 (((
382 Total : 11 bytes payload
383 )))
384
385 [[image:image-20220523180452-3.png]]
386
387
388 (((
389 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
390 )))
391
392 [[image:image-20220523180506-4.png]]
393
394 * RO is for relay. ROx=1 : close,ROx=0 always open.
395 * FIRST: Indicate this is the first packet after join network.
396 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397
398 (((
399 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
400 )))
401
402 (((
403
404
405 **To use counting mode, please run:**
406 )))
407
408 (% class="box infomessage" %)
409 (((
410 (((
411 (((
412 **AT+MOD=2**
413 )))
414
415 (((
416 **ATZ**
417 )))
418 )))
419 )))
420
421 (((
422
423
424 (% style="color:#4f81bd" %)**AT Commands for counting:**
425
426
427 )))
428
429 (((
430 **For LT22222-L:**
431
432
433 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
434
435 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
436
437 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
438
439 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
440
441 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
442
443 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
444 )))
445
446
447 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
448
449
450 **LT22222-L**: This mode the DI1 is used as a counting pin.
451
452 [[image:image-20220523181246-5.png]]
453
454 (((
455
456
457 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 )))
459
460 [[image:image-20220523181301-6.png]]
461
462 * RO is for relay. ROx=1 : close,ROx=0 always open.
463 * FIRST: Indicate this is the first packet after join network.
464 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
465
466 (((
467 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 )))
469
470
471 (((
472 **To use counting mode, please run:**
473 )))
474
475 (% class="box infomessage" %)
476 (((
477 (((
478 (((
479 **AT+MOD=3**
480 )))
481
482 (((
483 **ATZ**
484 )))
485 )))
486 )))
487
488 (((
489 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
490 )))
491
492
493 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
494
495
496 (((
497 **LT22222-L**: This mode the DI1 is used as a counting pin.
498 )))
499
500 (((
501 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
502 )))
503
504 [[image:image-20220523181903-8.png]]
505
506
507 (((
508 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
509 )))
510
511 [[image:image-20220523181727-7.png]]
512
513 * RO is for relay. ROx=1 : close,ROx=0 always open.
514 * FIRST: Indicate this is the first packet after join network.
515 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
516
517 (((
518 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
519 )))
520
521 (((
522
523
524 **To use this mode, please run:**
525 )))
526
527 (% class="box infomessage" %)
528 (((
529 (((
530 (((
531 **AT+MOD=4**
532 )))
533
534 (((
535 **ATZ**
536 )))
537 )))
538 )))
539
540
541 (((
542 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
543 )))
544
545 (((
546
547
548 **Plus below command for AVI1 Counting:**
549
550
551 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
552
553 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
554
555 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
556
557 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
558 )))
559
560
561 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
562
563
564 **LT22222-L**: This mode the DI1 is used as a counting pin.
565
566 [[image:image-20220523182334-9.png]]
567
568 (((
569
570
571 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
572 )))
573
574 * RO is for relay. ROx=1 : close,ROx=0 always open.
575 * FIRST: Indicate this is the first packet after join network.
576 * (((
577 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
578 )))
579
580 (((
581 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
582 )))
583
584 (((
585
586
587 **To use this mode, please run:**
588 )))
589
590 (% class="box infomessage" %)
591 (((
592 (((
593 (((
594 **AT+MOD=5**
595 )))
596
597 (((
598 **ATZ**
599 )))
600 )))
601 )))
602
603 (((
604 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
605 )))
606
607
608 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
609
610
611 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
612
613 For example, if user has configured below commands:
614
615 * **AT+MOD=1 ** **~-~->**  The normal working mode
616 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
617
618 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
619
620 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
621 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622
623 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
624
625
626 (% style="color:#4f81bd" %)**Trigger base on voltage**:
627
628 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
629
630
631 **Example:**
632
633 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634
635 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636
637
638
639 (% style="color:#4f81bd" %)**Trigger base on current**:
640
641 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
642
643
644 **Example:**
645
646 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
647
648
649
650 (% style="color:#4f81bd" %)**Trigger base on DI status**:
651
652 DI status trigger Flag.
653
654 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
655
656
657 **Example:**
658
659 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
660
661
662 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
663
664 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
665
666 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
667
668 AA: Code for this downlink Command:
669
670 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
671
672 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
673
674 yy2 yy2: AC1 or AV1 high limit.
675
676 yy3 yy3: AC2 or AV2 low limit.
677
678 Yy4 yy4: AC2 or AV2 high limit.
679
680
681 **Example1**: AA 00 13 88 00 00 00 00 00 00
682
683 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
684
685
686 **Example2**: AA 02 01 00
687
688 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
689
690
691
692 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
693
694 MOD6 Payload : total 11 bytes payload
695
696 [[image:image-20220524085923-1.png]]
697
698
699 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
700
701 [[image:image-20220524090106-2.png]]
702
703 * Each bits shows if the corresponding trigger has been configured.
704
705 **Example:**
706
707 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
708
709
710
711 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
712
713 [[image:image-20220524090249-3.png]]
714
715 * Each bits shows which status has been trigger on this uplink.
716
717 **Example:**
718
719 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
720
721
722 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
723
724 [[image:image-20220524090456-4.png]]
725
726 * Each bits shows which status has been trigger on this uplink.
727
728 **Example:**
729
730 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
731
732 00000101: Means both DI1 and DI2 trigger are enabled.
733
734
735 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
736
737 Downlink command to poll MOD6 status:
738
739 **AB 06**
740
741 When device got this command, it will send the MOD6 payload.
742
743
744 === 3.3.7 Payload Decoder ===
745
746 (((
747
748
749 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
750 )))
751
752
753 == 3.4 ​Configure LT via AT or Downlink ==
754
755
756 (((
757 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
758 )))
759
760 (((
761 (((
762 There are two kinds of Commands:
763 )))
764 )))
765
766 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
767
768 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
769
770
771 === 3.4.1 Common Commands ===
772
773
774 (((
775 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
776 )))
777
778
779 === 3.4.2 Sensor related commands ===
780
781
782 ==== 3.4.2.1 Set Transmit Interval ====
783
784
785 Set device uplink interval.
786
787 * (% style="color:#037691" %)**AT Command:**
788
789 (% style="color:blue" %)**AT+TDC=N **
790
791
792 **Example: **AT+TDC=30000. Means set interval to 30 seconds
793
794
795 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
796
797 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
798
799
800
801 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
802
803
804 Set work mode.
805
806 * (% style="color:#037691" %)**AT Command:**
807
808 (% style="color:blue" %)**AT+MOD=N  **
809
810
811 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
812
813
814 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
815
816 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
817
818
819
820 ==== 3.4.2.3 Poll an uplink ====
821
822
823 * (% style="color:#037691" %)**AT Command:**
824
825 There is no AT Command to poll uplink
826
827
828 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
829
830 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
831
832
833 **Example**: 0x08FF, ask device to send an Uplink
834
835
836
837 ==== 3.4.2.4 Enable Trigger Mode ====
838
839
840 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
841
842 * (% style="color:#037691" %)**AT Command:**
843
844 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
845
846 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
847
848 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
849
850
851 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
852
853 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
854
855
856
857 ==== 3.4.2.5 Poll trigger settings ====
858
859
860 Poll trigger settings,
861
862 * (% style="color:#037691" %)**AT Command:**
863
864 There is no AT Command for this feature.
865
866
867 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
868
869 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
870
871
872
873 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
874
875
876 Enable Disable DI1/DI2/DI2 as trigger,
877
878 * (% style="color:#037691" %)**AT Command:**
879
880 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
881
882
883 **Example:**
884
885 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
888
889 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
890
891
892
893 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
894
895
896 Set DI1 or DI3(for LT-33222-L) trigger.
897
898 * (% style="color:#037691" %)**AT Command:**
899
900 (% style="color:blue" %)**AT+TRIG1=a,b**
901
902 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
903
904 (% style="color:red" %)**b :** (%%)delay timing.
905
906
907 **Example:**
908
909 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
910
911
912 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
913
914 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
915
916
917
918 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
919
920
921 Set DI2 trigger.
922
923 * (% style="color:#037691" %)**AT Command:**
924
925 (% style="color:blue" %)**AT+TRIG2=a,b**
926
927 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
928
929 (% style="color:red" %)**b :** (%%)delay timing.
930
931
932 **Example:**
933
934 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
938
939 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
940
941
942
943 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
944
945
946 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
947
948 * (% style="color:#037691" %)**AT Command**
949
950 (% style="color:blue" %)**AT+ACLIM**
951
952
953 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
954
955 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
956
957
958
959 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
960
961
962 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
963
964 * (% style="color:#037691" %)**AT Command**
965
966 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
967
968
969 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
970
971 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
972
973
974
975 ==== 3.4.2.11 Trigger – Set minimum interval ====
976
977
978 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
979
980 * (% style="color:#037691" %)**AT Command**
981
982 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
986
987 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
988
989 (((
990
991
992 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
993 )))
994
995
996
997 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
998
999
1000 * (% style="color:#037691" %)**AT Command**
1001
1002 There is no AT Command to control Digital Output
1003
1004
1005 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1006 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1007
1008 (((
1009 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1010 )))
1011
1012 (((
1013 01: Low,  00: High ,  11: No action
1014 )))
1015
1016 [[image:image-20220524092754-5.png]]
1017
1018 (((
1019 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1020 )))
1021
1022 (((
1023 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1024 )))
1025
1026
1027
1028 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1029
1030
1031 * (% style="color:#037691" %)**AT Command**
1032
1033 There is no AT Command to control Digital Output
1034
1035
1036 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1037
1038 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1039
1040
1041 This is to control the digital output time of DO pin. Include four bytes:
1042
1043 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1044
1045 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1046
1047 01: DO pins will change back to original state after timeout.
1048
1049 00: DO pins will change to an inverter state after timeout 
1050
1051
1052 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1053
1054 [[image:image-20220524093238-6.png]]
1055
1056
1057 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1058
1059 [[image:image-20220524093328-7.png]]
1060
1061
1062 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1063
1064 [[image:image-20220524093351-8.png]]
1065
1066
1067 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1068
1069 Latching time. Unit: ms
1070
1071
1072 (% style="color:red" %)**Note: **
1073
1074 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1075
1076 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1077
1078
1079 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1080
1081
1082 **Example payload:**
1083
1084 **~1. A9 01 01 01 01 07 D0**
1085
1086 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1087
1088 **2. A9 01 00 01 11 07 D0**
1089
1090 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1091
1092 **3. A9 00 00 00 00 07 D0**
1093
1094 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1095
1096 **4. A9 00 11 01 00 07 D0**
1097
1098 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1099
1100
1101
1102 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1103
1104
1105 * (% style="color:#037691" %)**AT Command:**
1106
1107 There is no AT Command to control Relay Output
1108
1109
1110 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1111
1112 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1113
1114
1115 (((
1116 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1117 )))
1118
1119 (((
1120 01: Close ,  00: Open , 11: No action
1121 )))
1122
1123 (((
1124 [[image:image-20220524093724-9.png]]
1125 )))
1126
1127 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1128
1129
1130
1131 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1132
1133
1134 * (% style="color:#037691" %)**AT Command:**
1135
1136 There is no AT Command to control Relay Output
1137
1138
1139 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1140
1141 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1142
1143
1144 This is to control the relay output time of relay. Include four bytes:
1145
1146 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1147
1148 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1149
1150 01: Relays will change back to original state after timeout.
1151
1152 00: Relays will change to an inverter state after timeout
1153
1154
1155 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1156
1157 [[image:image-20221008095908-1.png||height="364" width="564"]]
1158
1159
1160 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1161
1162
1163 (% style="color:red" %)**Note:**
1164
1165 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1166
1167 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1168
1169
1170 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1171
1172
1173 **Example payload:**
1174
1175 **~1. 05 01 11 07 D0**
1176
1177 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1178
1179 **2. 05 01 10 07 D0**
1180
1181 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1182
1183 **3. 05 00 01 07 D0**
1184
1185 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1186
1187 **4. 05 00 00 07 D0**
1188
1189 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1190
1191
1192
1193 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1194
1195
1196 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197
1198 * (% style="color:#037691" %)**AT Command:**
1199
1200 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1201
1202
1203 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1204
1205 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1206
1207
1208
1209 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1210
1211
1212 * (% style="color:#037691" %)**AT Command:**
1213
1214 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1215
1216 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1217
1218 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1219
1220
1221 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1222
1223 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1224
1225
1226
1227 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1228
1229
1230 Clear counting for counting mode
1231
1232 * (% style="color:#037691" %)**AT Command:**
1233
1234 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1235
1236
1237 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1238
1239 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1240
1241
1242
1243 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1244
1245
1246 * (% style="color:#037691" %)**AT Command:**
1247
1248 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1249
1250
1251 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1252
1253 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1254
1255 (((
1256 range: aa bb cc:0 to 16777215,  (unit:second)
1257 )))
1258
1259
1260
1261 ==== 3.4.2.20 Reset save RO DO state ====
1262
1263
1264 * (% style="color:#037691" %)**AT Command:**
1265
1266 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1267
1268 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1269
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1272
1273 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1274
1275
1276
1277 ==== 3.4.2.21 Encrypted payload ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**
1281
1282 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1283
1284 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1285
1286
1287
1288 ==== 3.4.2.22 Get sensor value ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1294
1295 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1296
1297
1298
1299 ==== 3.4.2.23 Resets the downlink packet count ====
1300
1301
1302 * (% style="color:#037691" %)**AT Command:**
1303
1304 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1305
1306 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1307
1308
1309
1310 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1311
1312
1313 * (% style="color:#037691" %)**AT Command:**
1314
1315 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1316
1317 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1318
1319
1320 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1321
1322 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1323
1324
1325
1326 ==== 3.4.2.25 Copy downlink to uplink ====
1327
1328
1329 * (% style="color:#037691" %)**AT Command**(%%)**:**
1330
1331 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1332
1333 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1334
1335
1336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1337
1338 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1339
1340
1341
1342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1343
1344 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1345
1346
1347
1348 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1349
1350
1351 * (((
1352 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1353
1354 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1355
1356
1357 )))
1358
1359 **Example:**
1360
1361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1362
1363
1364 == 3.5 Integrate with Mydevice ==
1365
1366
1367 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1368
1369 (((
1370 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1371 )))
1372
1373 (((
1374 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1375
1376
1377 )))
1378
1379 [[image:image-20220719105525-1.png||height="377" width="677"]]
1380
1381
1382
1383 [[image:image-20220719110247-2.png||height="388" width="683"]]
1384
1385
1386 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1387
1388 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1389
1390 Search under The things network
1391
1392 [[image:1653356838789-523.png||height="337" width="740"]]
1393
1394
1395
1396 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1397
1398 [[image:image-20220524094909-1.png||height="335" width="729"]]
1399
1400
1401 [[image:image-20220524094909-2.png||height="337" width="729"]]
1402
1403
1404 [[image:image-20220524094909-3.png||height="338" width="727"]]
1405
1406
1407 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1408
1409
1410 [[image:image-20220524094909-5.png||height="341" width="734"]]
1411
1412
1413 == 3.6 Interface Detail ==
1414
1415 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1416
1417
1418 Support NPN Type sensor
1419
1420 [[image:1653356991268-289.png]]
1421
1422
1423 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1424
1425
1426 (((
1427 The DI port of LT-22222-L can support NPN or PNP output sensor.
1428 )))
1429
1430 (((
1431 (((
1432 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1433
1434
1435 )))
1436 )))
1437
1438 [[image:1653357170703-587.png]]
1439
1440 (((
1441 (((
1442 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1443 )))
1444 )))
1445
1446 (((
1447
1448 )))
1449
1450 (((
1451 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1452 )))
1453
1454 (((
1455 This type of sensor will output a low signal GND when active.
1456 )))
1457
1458 * (((
1459 Connect sensor's output to DI1-
1460 )))
1461 * (((
1462 Connect sensor's VCC to DI1+.
1463 )))
1464
1465 (((
1466 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1467 )))
1468
1469 (((
1470 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1471 )))
1472
1473 (((
1474 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1475 )))
1476
1477 (((
1478
1479 )))
1480
1481 (((
1482 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1483 )))
1484
1485 (((
1486 This type of sensor will output a high signal (example 24v) when active.
1487 )))
1488
1489 * (((
1490 Connect sensor's output to DI1+
1491 )))
1492 * (((
1493 Connect sensor's GND DI1-.
1494 )))
1495
1496 (((
1497 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1498 )))
1499
1500 (((
1501 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1502 )))
1503
1504 (((
1505 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1506 )))
1507
1508 (((
1509
1510 )))
1511
1512 (((
1513 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1514 )))
1515
1516 (((
1517 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1518 )))
1519
1520 * (((
1521 Connect sensor's output to DI1+ with a serial 50K resistor
1522 )))
1523 * (((
1524 Connect sensor's GND DI1-.
1525 )))
1526
1527 (((
1528 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1529 )))
1530
1531 (((
1532 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1533 )))
1534
1535 (((
1536 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1537 )))
1538
1539
1540 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1541
1542
1543 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1544
1545 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1546
1547 [[image:1653357531600-905.png]]
1548
1549
1550 === 3.6.4 Analog Input Interface ===
1551
1552
1553 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1554
1555
1556 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1557
1558 [[image:1653357592296-182.png]]
1559
1560 Example to connect a 4~~20mA sensor
1561
1562 We take the wind speed sensor as an example for reference only.
1563
1564
1565 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1566
1567 (% style="color:red" %)**Red:  12~~24v**
1568
1569 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1570
1571 **Black:  GND**
1572
1573
1574 **Connection diagram:**
1575
1576 [[image:1653357640609-758.png]]
1577
1578 [[image:1653357648330-671.png||height="155" width="733"]]
1579
1580
1581 === 3.6.5 Relay Output ===
1582
1583
1584 (((
1585 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1586
1587 **Note**: RO pins go to Open(NO) when device is power off.
1588 )))
1589
1590 [[image:image-20220524100215-9.png]]
1591
1592
1593 [[image:image-20220524100215-10.png||height="382" width="723"]]
1594
1595
1596 == 3.7 LEDs Indicators ==
1597
1598
1599 [[image:image-20220524100748-11.png]]
1600
1601
1602 = 4. Use AT Command =
1603
1604 == 4.1 Access AT Command ==
1605
1606
1607 (((
1608 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1609 )))
1610
1611 (((
1612
1613 )))
1614
1615 [[image:1653358238933-385.png]]
1616
1617
1618 (((
1619 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1620 )))
1621
1622 [[image:1653358355238-883.png]]
1623
1624
1625 (((
1626 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1627 )))
1628
1629 (((
1630 AT+<CMD>?        : Help on <CMD>
1631 )))
1632
1633 (((
1634 AT+<CMD>         : Run <CMD>
1635 )))
1636
1637 (((
1638 AT+<CMD>=<value> : Set the value
1639 )))
1640
1641 (((
1642 AT+<CMD>=?       :  Get the value
1643 )))
1644
1645 (((
1646 ATZ: Trig a reset of the MCU
1647 )))
1648
1649 (((
1650 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1651 )))
1652
1653 (((
1654 AT+DEUI: Get or Set the Device EUI
1655 )))
1656
1657 (((
1658 AT+DADDR: Get or Set the Device Address
1659 )))
1660
1661 (((
1662 AT+APPKEY: Get or Set the Application Key
1663 )))
1664
1665 (((
1666 AT+NWKSKEY: Get or Set the Network Session Key
1667 )))
1668
1669 (((
1670 AT+APPSKEY:  Get or Set the Application Session Key
1671 )))
1672
1673 (((
1674 AT+APPEUI:  Get or Set the Application EUI
1675 )))
1676
1677 (((
1678 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1679 )))
1680
1681 (((
1682 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1683 )))
1684
1685 (((
1686 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1687 )))
1688
1689 (((
1690 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1691 )))
1692
1693 (((
1694 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1695 )))
1696
1697 (((
1698 AT+RX2FQ: Get or Set the Rx2 window frequency
1699 )))
1700
1701 (((
1702 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1703 )))
1704
1705 (((
1706 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1707 )))
1708
1709 (((
1710 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1711 )))
1712
1713 (((
1714 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1715 )))
1716
1717 (((
1718 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1719 )))
1720
1721 (((
1722 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1723 )))
1724
1725 (((
1726 AT+NWKID: Get or Set the Network ID
1727 )))
1728
1729 (((
1730 AT+FCU: Get or Set the Frame Counter Uplink
1731 )))
1732
1733 (((
1734 AT+FCD: Get or Set the Frame Counter Downlink
1735 )))
1736
1737 (((
1738 AT+CLASS: Get or Set the Device Class
1739 )))
1740
1741 (((
1742 AT+JOIN: Join network
1743 )))
1744
1745 (((
1746 AT+NJS: Get OTAA Join Status
1747 )))
1748
1749 (((
1750 AT+SENDB: Send hexadecimal data along with the application port
1751 )))
1752
1753 (((
1754 AT+SEND: Send text data along with the application port
1755 )))
1756
1757 (((
1758 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1759 )))
1760
1761 (((
1762 AT+RECV: Print last received data in raw format
1763 )))
1764
1765 (((
1766 AT+VER:  Get current image version and Frequency Band
1767 )))
1768
1769 (((
1770 AT+CFM: Get or Set the confirmation mode (0-1)
1771 )))
1772
1773 (((
1774 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1775 )))
1776
1777 (((
1778 AT+SNR: Get the SNR of the last received packet
1779 )))
1780
1781 (((
1782 AT+RSSI: Get the RSSI of the last received packet
1783 )))
1784
1785 (((
1786 AT+TDC: Get or set the application data transmission interval in ms
1787 )))
1788
1789 (((
1790 AT+PORT: Get or set the application port
1791 )))
1792
1793 (((
1794 AT+DISAT: Disable AT commands
1795 )))
1796
1797 (((
1798 AT+PWORD: Set password, max 9 digits
1799 )))
1800
1801 (((
1802 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1803 )))
1804
1805 (((
1806 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1807 )))
1808
1809 (((
1810 AT+CFG: Print all settings
1811 )))
1812
1813
1814 == 4.2 Common AT Command Sequence ==
1815
1816 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1817
1818 (((
1819
1820
1821 (((
1822 (% style="color:blue" %)**If device has not joined network yet:**
1823 )))
1824 )))
1825
1826 (((
1827 (% style="background-color:#dcdcdc" %)**123456**
1828 )))
1829
1830 (((
1831 (% style="background-color:#dcdcdc" %)**AT+FDR**
1832 )))
1833
1834 (((
1835 (% style="background-color:#dcdcdc" %)**123456**
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)**ATZ**
1844 )))
1845
1846
1847 (((
1848 (% style="color:blue" %)**If device already joined network:**
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %)**ATZ**
1857 )))
1858
1859
1860 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1861
1862 (((
1863
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1867 )))
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1916
1917
1918 )))
1919
1920 (((
1921 (% style="color:red" %)**Note:**
1922 )))
1923
1924 (((
1925 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1926
1927 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1928
1929 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1930 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1931
1932 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1933
1934
1935 )))
1936
1937 (((
1938 [[image:1653359097980-169.png||height="188" width="729"]]
1939 )))
1940
1941 (((
1942
1943 )))
1944
1945 === 4.2.3 Change to Class A ===
1946
1947
1948 (((
1949 (% style="color:blue" %)**If sensor JOINED:**
1950
1951 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1952 ATZ**
1953 )))
1954
1955
1956 = 5. Case Study =
1957
1958 == 5.1 Counting how many objects pass in Flow Line ==
1959
1960
1961 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1962
1963
1964 = 6. FAQ =
1965
1966 == 6.1 How to upgrade the image? ==
1967
1968
1969 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1970
1971 * Support new features
1972 * For bug fix
1973 * Change LoRaWAN bands.
1974
1975 Below shows the hardware connection for how to upload an image to the LT:
1976
1977 [[image:1653359603330-121.png]]
1978
1979
1980 (((
1981 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1982 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1983 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1984
1985
1986 (((
1987 (% style="color:blue" %)**For LT-22222-L**(%%):
1988 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1989 )))
1990
1991
1992 )))
1993
1994 [[image:image-20220524103407-12.png]]
1995
1996
1997 [[image:image-20220524103429-13.png]]
1998
1999
2000 [[image:image-20220524104033-15.png]]
2001
2002
2003 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2004
2005
2006 [[image:1653360054704-518.png||height="186" width="745"]]
2007
2008
2009 (((
2010 (((
2011 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2012
2013
2014 )))
2015 )))
2016
2017 (((
2018 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2019 )))
2020
2021 (((
2022
2023
2024 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2025
2026
2027 )))
2028
2029 (((
2030 (((
2031 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2032 )))
2033 )))
2034
2035 (((
2036 (((
2037 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2038
2039
2040 )))
2041 )))
2042
2043 (((
2044 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2045
2046
2047 )))
2048
2049 (((
2050 [[image:1653360231087-571.png||height="401" width="727"]]
2051
2052
2053 )))
2054
2055 (((
2056 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2057 )))
2058
2059
2060
2061 (((
2062 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2063
2064
2065 )))
2066
2067 (((
2068 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2069 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2070 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2071 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2072 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2073 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2074 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2075 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2076 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2077 )))
2078
2079
2080 (((
2081 As shown in below:
2082 )))
2083
2084 [[image:1653360498588-932.png||height="485" width="726"]]
2085
2086
2087 == 6.4 Can I see counting event in Serial? ==
2088
2089
2090 (((
2091 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2092
2093
2094 == 6.5 Can i use point to point communication for LT-22222-L? ==
2095
2096
2097 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2098
2099
2100 )))
2101
2102 (((
2103 == 6.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2104
2105
2106 If the device is not shut down, but directly powered off.
2107
2108 It will default that this is a power-off state.
2109
2110 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2111
2112 After restart, the status before power failure will be read from flash.
2113
2114
2115 == 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2116
2117
2118 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2119
2120
2121 [[image:image-20221006170630-1.png||height="610" width="945"]]
2122
2123
2124 == 6.8 Can LT22222-L save RO state? ==
2125
2126
2127 Firmware version needs to be no less than 1.6.0.
2128
2129
2130 = 7. Trouble Shooting =
2131 )))
2132
2133 (((
2134 (((
2135 == 7.1 Downlink doesn't work, how to solve it? ==
2136
2137
2138 )))
2139 )))
2140
2141 (((
2142 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2143 )))
2144
2145 (((
2146
2147
2148 == 7.2 Have trouble to upload image. ==
2149
2150
2151 )))
2152
2153 (((
2154 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2155 )))
2156
2157 (((
2158
2159
2160 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2161
2162
2163 )))
2164
2165 (((
2166 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2167 )))
2168
2169
2170 = 8. Order Info =
2171
2172
2173 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2174
2175 (% style="color:#4f81bd" %)**XXX:**
2176
2177 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2178 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2179 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2180 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2181 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2182 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2183 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2184 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2185 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2186
2187
2188 = 9. Packing Info =
2189
2190
2191 **Package Includes**:
2192
2193 * LT-22222-L I/O Controller x 1
2194 * Stick Antenna for LoRa RF part x 1
2195 * Bracket for controller x1
2196 * Program cable x 1
2197
2198 **Dimension and weight**:
2199
2200 * Device Size: 13.5 x 7 x 3 cm
2201 * Device Weight: 105g
2202 * Package Size / pcs : 14.5 x 8 x 5 cm
2203 * Weight / pcs : 170g
2204
2205
2206 = 10. Support =
2207
2208
2209 * (((
2210 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2211 )))
2212 * (((
2213 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2214
2215
2216
2217 )))
2218
2219 = 11. Reference​​​​​ =
2220
2221
2222 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2223 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2224 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2225
2226