Version 112.5 by Xiaoling on 2023/03/31 09:47

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188 == 1.4  Applications ==
189
190
191 * Smart Buildings & Home Automation
192 * Logistics and Supply Chain Management
193 * Smart Metering
194 * Smart Agriculture
195 * Smart Cities
196 * Smart Factory
197
198
199
200 == 1.5 Hardware Variants ==
201
202
203 (% border="1" style="background-color:#f7faff; width:500px" %)
204 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
205 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
206 * 2 x Digital Input (Bi-direction)
207 * 2 x Digital Output
208 * 2 x Relay Output (5A@250VAC / 30VDC)
209 * 2 x 0~~20mA Analog Input (res:0.01mA)
210 * 2 x 0~~30V Analog Input (res:0.01v)
211 * 1 x Counting Port
212 )))
213
214
215
216 = 2. Power ON Device =
217
218
219 (((
220 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
221 )))
222
223 (((
224 PWR will on when device is properly powered.
225
226
227 )))
228
229 [[image:1653297104069-180.png]]
230
231
232 = 3. Operation Mode =
233
234 == 3.1 How it works? ==
235
236
237 (((
238 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
239 )))
240
241 (((
242 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
243 )))
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 **Add APP EUI in the application.**
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 **Add APP KEY and DEV EUI**
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290
291
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297 == 3.3 Uplink Payload ==
298
299
300 There are five working modes + one interrupt mode on LT for different type application:
301
302 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
303 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
304 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
305 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
306 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
307 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
308
309
310
311 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
312
313
314 (((
315 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
316 )))
317
318 [[image:image-20220523174024-3.png]]
319
320 (((
321
322
323 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
324 )))
325
326 [[image:image-20220523174254-4.png]]
327
328 * RO is for relay. ROx=1 : close,ROx=0 always open.
329 * DI is for digital input. DIx=1: high or float, DIx=0: low.
330 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
331
332 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
333
334 For example if payload is: [[image:image-20220523175847-2.png]]
335
336
337 **The value for the interface is:  **
338
339 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
340
341 AVI2 channel voltage is 0x04AC/1000=1.196V
342
343 ACI1 channel current is 0x1310/1000=4.880mA
344
345 ACI2 channel current is 0x1300/1000=4.864mA
346
347 The last byte 0xAA= 10101010(B) means
348
349 * [1] RO1 relay channel is close and the RO1 LED is ON.
350 * [0] RO2 relay channel is open and RO2 LED is OFF;
351
352 **LT22222-L:**
353
354 * [1] DI2 channel is high input and DI2 LED is ON;
355 * [0] DI1 channel is low input;
356
357 * [0] DO3 channel output state
358 ** DO3 is float in case no load between DO3 and V+.;
359 ** DO3 is high in case there is load between DO3 and V+.
360 ** DO3 LED is off in both case
361 * [1] DO2 channel output is low and DO2 LED is ON.
362 * [0] DO1 channel output state
363 ** DO1 is float in case no load between DO1 and V+.;
364 ** DO1 is high in case there is load between DO1 and V+.
365 ** DO1 LED is off in both case
366
367
368 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
369
370
371 (((
372 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
373 )))
374
375 (((
376 Total : 11 bytes payload
377 )))
378
379 [[image:image-20220523180452-3.png]]
380
381
382 (((
383 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
384 )))
385
386 [[image:image-20220523180506-4.png]]
387
388 * RO is for relay. ROx=1 : close,ROx=0 always open.
389 * FIRST: Indicate this is the first packet after join network.
390 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
391
392 (((
393 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
394 )))
395
396 (((
397
398
399 **To use counting mode, please run:**
400 )))
401
402 (% class="box infomessage" %)
403 (((
404 (((
405 (((
406 **AT+MOD=2**
407 )))
408
409 (((
410 **ATZ**
411 )))
412 )))
413 )))
414
415 (((
416
417
418 (% style="color:#4f81bd" %)**AT Commands for counting:**
419
420
421 )))
422
423 (((
424 **For LT22222-L:**
425
426
427 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428
429 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430
431 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432
433 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434
435 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436
437 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 )))
439
440
441 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
442
443
444 **LT22222-L**: This mode the DI1 is used as a counting pin.
445
446 [[image:image-20220523181246-5.png]]
447
448 (((
449
450
451 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
452 )))
453
454 [[image:image-20220523181301-6.png]]
455
456 * RO is for relay. ROx=1 : close,ROx=0 always open.
457 * FIRST: Indicate this is the first packet after join network.
458 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
459
460 (((
461 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
462 )))
463
464
465 (((
466 **To use counting mode, please run:**
467 )))
468
469 (% class="box infomessage" %)
470 (((
471 (((
472 (((
473 **AT+MOD=3**
474 )))
475
476 (((
477 **ATZ**
478 )))
479 )))
480 )))
481
482 (((
483 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
484 )))
485
486
487 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
488
489
490 (((
491 **LT22222-L**: This mode the DI1 is used as a counting pin.
492 )))
493
494 (((
495 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
496 )))
497
498 [[image:image-20220523181903-8.png]]
499
500
501 (((
502 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
503 )))
504
505 [[image:image-20220523181727-7.png]]
506
507 * RO is for relay. ROx=1 : close,ROx=0 always open.
508 * FIRST: Indicate this is the first packet after join network.
509 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
510
511 (((
512 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
513 )))
514
515 (((
516
517
518 **To use this mode, please run:**
519 )))
520
521 (% class="box infomessage" %)
522 (((
523 (((
524 (((
525 **AT+MOD=4**
526 )))
527
528 (((
529 **ATZ**
530 )))
531 )))
532 )))
533
534
535 (((
536 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
537 )))
538
539 (((
540
541
542 **Plus below command for AVI1 Counting:**
543
544
545 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
546
547 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
548
549 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
550
551 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
552 )))
553
554
555 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
556
557
558 **LT22222-L**: This mode the DI1 is used as a counting pin.
559
560 [[image:image-20220523182334-9.png]]
561
562 (((
563
564
565 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
566 )))
567
568 * RO is for relay. ROx=1 : close,ROx=0 always open.
569 * FIRST: Indicate this is the first packet after join network.
570 * (((
571 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
572 )))
573
574 (((
575 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
576 )))
577
578 (((
579
580
581 **To use this mode, please run:**
582 )))
583
584 (% class="box infomessage" %)
585 (((
586 (((
587 (((
588 **AT+MOD=5**
589 )))
590
591 (((
592 **ATZ**
593 )))
594 )))
595 )))
596
597 (((
598 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
599 )))
600
601
602 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
603
604
605 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
606
607 For example, if user has configured below commands:
608
609 * **AT+MOD=1 ** **~-~->**  The normal working mode
610 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
611
612 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
613
614 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
615 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
616
617 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
618
619
620 (% style="color:#4f81bd" %)**Trigger base on voltage**:
621
622 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
623
624
625 **Example:**
626
627 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
628
629 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
630
631
632
633 (% style="color:#4f81bd" %)**Trigger base on current**:
634
635 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
636
637
638 **Example:**
639
640 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
641
642
643
644 (% style="color:#4f81bd" %)**Trigger base on DI status**:
645
646 DI status trigger Flag.
647
648 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
649
650
651 **Example:**
652
653 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
654
655
656 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
657
658 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
659
660 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
661
662 AA: Code for this downlink Command:
663
664 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
665
666 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
667
668 yy2 yy2: AC1 or AV1 high limit.
669
670 yy3 yy3: AC2 or AV2 low limit.
671
672 Yy4 yy4: AC2 or AV2 high limit.
673
674
675 **Example1**: AA 00 13 88 00 00 00 00 00 00
676
677 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
678
679
680 **Example2**: AA 02 01 00
681
682 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
683
684
685
686 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
687
688 MOD6 Payload : total 11 bytes payload
689
690 [[image:image-20220524085923-1.png]]
691
692
693 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
694
695 [[image:image-20220524090106-2.png]]
696
697 * Each bits shows if the corresponding trigger has been configured.
698
699 **Example:**
700
701 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702
703
704
705 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706
707 [[image:image-20220524090249-3.png]]
708
709 * Each bits shows which status has been trigger on this uplink.
710
711 **Example:**
712
713 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
714
715
716 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
717
718 [[image:image-20220524090456-4.png]]
719
720 * Each bits shows which status has been trigger on this uplink.
721
722 **Example:**
723
724 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
725
726 00000101: Means both DI1 and DI2 trigger are enabled.
727
728
729 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
730
731 Downlink command to poll MOD6 status:
732
733 **AB 06**
734
735 When device got this command, it will send the MOD6 payload.
736
737
738 === 3.3.7 Payload Decoder ===
739
740 (((
741
742
743 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
744 )))
745
746
747 == 3.4 ​Configure LT via AT or Downlink ==
748
749
750 (((
751 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
752 )))
753
754 (((
755 (((
756 There are two kinds of Commands:
757 )))
758 )))
759
760 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
761
762 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
763
764
765
766 === 3.4.1 Common Commands ===
767
768
769 (((
770 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
771 )))
772
773
774 === 3.4.2 Sensor related commands ===
775
776
777 ==== 3.4.2.1 Set Transmit Interval ====
778
779
780 Set device uplink interval.
781
782 * (% style="color:#037691" %)**AT Command:**
783
784 (% style="color:blue" %)**AT+TDC=N **
785
786
787 **Example: **AT+TDC=30000. Means set interval to 30 seconds
788
789
790 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
791
792 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
793
794
795
796 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
797
798
799 Set work mode.
800
801 * (% style="color:#037691" %)**AT Command:**
802
803 (% style="color:blue" %)**AT+MOD=N  **
804
805
806 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
810
811 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
812
813
814
815 ==== 3.4.2.3 Poll an uplink ====
816
817
818 * (% style="color:#037691" %)**AT Command:**
819
820 There is no AT Command to poll uplink
821
822
823 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
824
825 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
826
827
828 **Example**: 0x08FF, ask device to send an Uplink
829
830
831
832 ==== 3.4.2.4 Enable Trigger Mode ====
833
834
835 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
836
837 * (% style="color:#037691" %)**AT Command:**
838
839 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
840
841 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
842
843 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
844
845
846 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
847
848 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
849
850
851
852 ==== 3.4.2.5 Poll trigger settings ====
853
854
855 Poll trigger settings,
856
857 * (% style="color:#037691" %)**AT Command:**
858
859 There is no AT Command for this feature.
860
861
862 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
863
864 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
865
866
867
868 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
869
870
871 Enable Disable DI1/DI2/DI2 as trigger,
872
873 * (% style="color:#037691" %)**AT Command:**
874
875 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
876
877
878 **Example:**
879
880 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
881
882 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
883
884 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
885
886
887
888 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
889
890
891 Set DI1 or DI3(for LT-33222-L) trigger.
892
893 * (% style="color:#037691" %)**AT Command:**
894
895 (% style="color:blue" %)**AT+TRIG1=a,b**
896
897 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
898
899 (% style="color:red" %)**b :** (%%)delay timing.
900
901
902 **Example:**
903
904 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
905
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
908
909 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
910
911
912
913 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
914
915
916 Set DI2 trigger.
917
918 * (% style="color:#037691" %)**AT Command:**
919
920 (% style="color:blue" %)**AT+TRIG2=a,b**
921
922 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
923
924 (% style="color:red" %)**b :** (%%)delay timing.
925
926
927 **Example:**
928
929 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
930
931
932 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
933
934 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
935
936
937
938 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
939
940
941 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
942
943 * (% style="color:#037691" %)**AT Command**
944
945 (% style="color:blue" %)**AT+ACLIM**
946
947
948 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
949
950 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
951
952
953
954 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
955
956
957 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
958
959 * (% style="color:#037691" %)**AT Command**
960
961 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
962
963
964 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
965
966 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
967
968
969
970 ==== 3.4.2.11 Trigger – Set minimum interval ====
971
972
973 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
974
975 * (% style="color:#037691" %)**AT Command**
976
977 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
978
979
980 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
981
982 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
983
984 (((
985
986
987 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
988 )))
989
990
991
992 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
993
994
995 * (% style="color:#037691" %)**AT Command**
996
997 There is no AT Command to control Digital Output
998
999
1000 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1001 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1002
1003 (((
1004 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1005 )))
1006
1007 (((
1008 01: Low,  00: High ,  11: No action
1009 )))
1010
1011 [[image:image-20220524092754-5.png]]
1012
1013 (((
1014 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1015 )))
1016
1017 (((
1018 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1019 )))
1020
1021
1022
1023 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1024
1025
1026 * (% style="color:#037691" %)**AT Command**
1027
1028 There is no AT Command to control Digital Output
1029
1030
1031 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1032
1033 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1034
1035
1036 This is to control the digital output time of DO pin. Include four bytes:
1037
1038 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1039
1040 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1041
1042 01: DO pins will change back to original state after timeout.
1043
1044 00: DO pins will change to an inverter state after timeout 
1045
1046
1047 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1048
1049 [[image:image-20220524093238-6.png]]
1050
1051
1052 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1053
1054 [[image:image-20220524093328-7.png]]
1055
1056
1057 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1058
1059 [[image:image-20220524093351-8.png]]
1060
1061
1062 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1063
1064 Latching time. Unit: ms
1065
1066
1067 (% style="color:red" %)**Note: **
1068
1069 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1070
1071 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1072
1073
1074 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1075
1076
1077 **Example payload:**
1078
1079 **~1. A9 01 01 01 01 07 D0**
1080
1081 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1082
1083 **2. A9 01 00 01 11 07 D0**
1084
1085 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1086
1087 **3. A9 00 00 00 00 07 D0**
1088
1089 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1090
1091 **4. A9 00 11 01 00 07 D0**
1092
1093 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1094
1095
1096
1097 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1098
1099
1100 * (% style="color:#037691" %)**AT Command:**
1101
1102 There is no AT Command to control Relay Output
1103
1104
1105 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1106
1107 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1108
1109
1110 (((
1111 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1112 )))
1113
1114 (((
1115 01: Close ,  00: Open , 11: No action
1116 )))
1117
1118 (((
1119 [[image:image-20220524093724-9.png]]
1120 )))
1121
1122 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1123
1124
1125
1126 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1127
1128
1129 * (% style="color:#037691" %)**AT Command:**
1130
1131 There is no AT Command to control Relay Output
1132
1133
1134 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1135
1136 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1137
1138
1139 This is to control the relay output time of relay. Include four bytes:
1140
1141 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1142
1143 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1144
1145 01: Relays will change back to original state after timeout.
1146
1147 00: Relays will change to an inverter state after timeout
1148
1149
1150 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1151
1152 [[image:image-20221008095908-1.png||height="364" width="564"]]
1153
1154
1155 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1156
1157
1158 (% style="color:red" %)**Note:**
1159
1160 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1161
1162 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1163
1164
1165 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1166
1167
1168 **Example payload:**
1169
1170 **~1. 05 01 11 07 D0**
1171
1172 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1173
1174 **2. 05 01 10 07 D0**
1175
1176 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1177
1178 **3. 05 00 01 07 D0**
1179
1180 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1181
1182 **4. 05 00 00 07 D0**
1183
1184 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1185
1186
1187
1188 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1189
1190
1191 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1192
1193 * (% style="color:#037691" %)**AT Command:**
1194
1195 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1196
1197
1198 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1199
1200 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1201
1202
1203
1204 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1205
1206
1207 * (% style="color:#037691" %)**AT Command:**
1208
1209 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1210
1211 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1212
1213 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1217
1218 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1219
1220
1221
1222 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1223
1224
1225 Clear counting for counting mode
1226
1227 * (% style="color:#037691" %)**AT Command:**
1228
1229 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1230
1231
1232 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1233
1234 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1235
1236
1237
1238 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1239
1240
1241 * (% style="color:#037691" %)**AT Command:**
1242
1243 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1244
1245
1246 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1247
1248 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1249
1250 (((
1251 range: aa bb cc:0 to 16777215,  (unit:second)
1252 )))
1253
1254
1255
1256 ==== 3.4.2.20 Reset save RO DO state ====
1257
1258
1259 * (% style="color:#037691" %)**AT Command:**
1260
1261 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1262
1263 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1264
1265
1266 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1267
1268 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1269
1270
1271
1272 ==== 3.4.2.21 Encrypted payload ====
1273
1274
1275 * (% style="color:#037691" %)**AT Command:**
1276
1277 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1278
1279 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1280
1281
1282
1283 ==== 3.4.2.22 Get sensor value ====
1284
1285
1286 * (% style="color:#037691" %)**AT Command:**
1287
1288 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1289
1290 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1291
1292
1293
1294 ==== 3.4.2.23 Resets the downlink packet count ====
1295
1296
1297 * (% style="color:#037691" %)**AT Command:**
1298
1299 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1300
1301 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1302
1303
1304
1305 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1306
1307
1308 * (% style="color:#037691" %)**AT Command:**
1309
1310 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1311
1312 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1313
1314
1315 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1316
1317 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1318
1319
1320
1321 ==== 3.4.2.25 Copy downlink to uplink ====
1322
1323
1324 * (% style="color:#037691" %)**AT Command**(%%)**:**
1325
1326 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1327
1328 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1329
1330
1331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1332
1333 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1334
1335
1336
1337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1338
1339 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1340
1341
1342
1343 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1344
1345
1346 * (((
1347 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1348
1349 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1350
1351
1352 )))
1353
1354 **Example:**
1355
1356 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1357
1358
1359 == 3.5 Integrate with Mydevice ==
1360
1361
1362 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1363
1364 (((
1365 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1366 )))
1367
1368 (((
1369 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1370
1371
1372 )))
1373
1374 [[image:image-20220719105525-1.png||height="377" width="677"]]
1375
1376
1377
1378 [[image:image-20220719110247-2.png||height="388" width="683"]]
1379
1380
1381 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1382
1383 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1384
1385 Search under The things network
1386
1387 [[image:1653356838789-523.png||height="337" width="740"]]
1388
1389
1390
1391 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1392
1393 [[image:image-20220524094909-1.png||height="335" width="729"]]
1394
1395
1396 [[image:image-20220524094909-2.png||height="337" width="729"]]
1397
1398
1399 [[image:image-20220524094909-3.png||height="338" width="727"]]
1400
1401
1402 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1403
1404
1405 [[image:image-20220524094909-5.png||height="341" width="734"]]
1406
1407
1408 == 3.6 Interface Detail ==
1409
1410 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1411
1412
1413 Support NPN Type sensor
1414
1415 [[image:1653356991268-289.png]]
1416
1417
1418 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1419
1420
1421 (((
1422 The DI port of LT-22222-L can support NPN or PNP output sensor.
1423 )))
1424
1425 (((
1426 (((
1427 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1428
1429
1430 )))
1431 )))
1432
1433 [[image:1653357170703-587.png]]
1434
1435 (((
1436 (((
1437 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1438 )))
1439 )))
1440
1441 (((
1442
1443 )))
1444
1445 (((
1446 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1447 )))
1448
1449 (((
1450 This type of sensor will output a low signal GND when active.
1451 )))
1452
1453 * (((
1454 Connect sensor's output to DI1-
1455 )))
1456 * (((
1457 Connect sensor's VCC to DI1+.
1458 )))
1459
1460 (((
1461 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1462 )))
1463
1464 (((
1465 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1466 )))
1467
1468 (((
1469 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1470 )))
1471
1472 (((
1473
1474 )))
1475
1476 (((
1477 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1478 )))
1479
1480 (((
1481 This type of sensor will output a high signal (example 24v) when active.
1482 )))
1483
1484 * (((
1485 Connect sensor's output to DI1+
1486 )))
1487 * (((
1488 Connect sensor's GND DI1-.
1489 )))
1490
1491 (((
1492 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1493 )))
1494
1495 (((
1496 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1497 )))
1498
1499 (((
1500 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1501 )))
1502
1503 (((
1504
1505 )))
1506
1507 (((
1508 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1509 )))
1510
1511 (((
1512 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1513 )))
1514
1515 * (((
1516 Connect sensor's output to DI1+ with a serial 50K resistor
1517 )))
1518 * (((
1519 Connect sensor's GND DI1-.
1520 )))
1521
1522 (((
1523 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1524 )))
1525
1526 (((
1527 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1528 )))
1529
1530 (((
1531 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1532 )))
1533
1534
1535 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1536
1537
1538 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1539
1540 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1541
1542 [[image:1653357531600-905.png]]
1543
1544
1545 === 3.6.4 Analog Input Interface ===
1546
1547
1548 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1549
1550
1551 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1552
1553 [[image:1653357592296-182.png]]
1554
1555 Example to connect a 4~~20mA sensor
1556
1557 We take the wind speed sensor as an example for reference only.
1558
1559
1560 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1561
1562 (% style="color:red" %)**Red:  12~~24v**
1563
1564 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1565
1566 **Black:  GND**
1567
1568
1569 **Connection diagram:**
1570
1571 [[image:1653357640609-758.png]]
1572
1573 [[image:1653357648330-671.png||height="155" width="733"]]
1574
1575
1576 === 3.6.5 Relay Output ===
1577
1578
1579 (((
1580 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1581
1582 **Note**: RO pins go to Open(NO) when device is power off.
1583 )))
1584
1585 [[image:image-20220524100215-9.png]]
1586
1587
1588 [[image:image-20220524100215-10.png||height="382" width="723"]]
1589
1590
1591 == 3.7 LEDs Indicators ==
1592
1593
1594 [[image:image-20220524100748-11.png]]
1595
1596
1597 = 4. Use AT Command =
1598
1599 == 4.1 Access AT Command ==
1600
1601
1602 (((
1603 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1604 )))
1605
1606 (((
1607
1608 )))
1609
1610 [[image:1653358238933-385.png]]
1611
1612
1613 (((
1614 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1615 )))
1616
1617 [[image:1653358355238-883.png]]
1618
1619
1620 (((
1621 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1622 )))
1623
1624 (((
1625 AT+<CMD>?        : Help on <CMD>
1626 )))
1627
1628 (((
1629 AT+<CMD>         : Run <CMD>
1630 )))
1631
1632 (((
1633 AT+<CMD>=<value> : Set the value
1634 )))
1635
1636 (((
1637 AT+<CMD>=?       :  Get the value
1638 )))
1639
1640 (((
1641 ATZ: Trig a reset of the MCU
1642 )))
1643
1644 (((
1645 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1646 )))
1647
1648 (((
1649 AT+DEUI: Get or Set the Device EUI
1650 )))
1651
1652 (((
1653 AT+DADDR: Get or Set the Device Address
1654 )))
1655
1656 (((
1657 AT+APPKEY: Get or Set the Application Key
1658 )))
1659
1660 (((
1661 AT+NWKSKEY: Get or Set the Network Session Key
1662 )))
1663
1664 (((
1665 AT+APPSKEY:  Get or Set the Application Session Key
1666 )))
1667
1668 (((
1669 AT+APPEUI:  Get or Set the Application EUI
1670 )))
1671
1672 (((
1673 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1674 )))
1675
1676 (((
1677 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1678 )))
1679
1680 (((
1681 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1682 )))
1683
1684 (((
1685 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1686 )))
1687
1688 (((
1689 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1690 )))
1691
1692 (((
1693 AT+RX2FQ: Get or Set the Rx2 window frequency
1694 )))
1695
1696 (((
1697 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1698 )))
1699
1700 (((
1701 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1702 )))
1703
1704 (((
1705 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1706 )))
1707
1708 (((
1709 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1710 )))
1711
1712 (((
1713 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1714 )))
1715
1716 (((
1717 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1718 )))
1719
1720 (((
1721 AT+NWKID: Get or Set the Network ID
1722 )))
1723
1724 (((
1725 AT+FCU: Get or Set the Frame Counter Uplink
1726 )))
1727
1728 (((
1729 AT+FCD: Get or Set the Frame Counter Downlink
1730 )))
1731
1732 (((
1733 AT+CLASS: Get or Set the Device Class
1734 )))
1735
1736 (((
1737 AT+JOIN: Join network
1738 )))
1739
1740 (((
1741 AT+NJS: Get OTAA Join Status
1742 )))
1743
1744 (((
1745 AT+SENDB: Send hexadecimal data along with the application port
1746 )))
1747
1748 (((
1749 AT+SEND: Send text data along with the application port
1750 )))
1751
1752 (((
1753 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1754 )))
1755
1756 (((
1757 AT+RECV: Print last received data in raw format
1758 )))
1759
1760 (((
1761 AT+VER:  Get current image version and Frequency Band
1762 )))
1763
1764 (((
1765 AT+CFM: Get or Set the confirmation mode (0-1)
1766 )))
1767
1768 (((
1769 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1770 )))
1771
1772 (((
1773 AT+SNR: Get the SNR of the last received packet
1774 )))
1775
1776 (((
1777 AT+RSSI: Get the RSSI of the last received packet
1778 )))
1779
1780 (((
1781 AT+TDC: Get or set the application data transmission interval in ms
1782 )))
1783
1784 (((
1785 AT+PORT: Get or set the application port
1786 )))
1787
1788 (((
1789 AT+DISAT: Disable AT commands
1790 )))
1791
1792 (((
1793 AT+PWORD: Set password, max 9 digits
1794 )))
1795
1796 (((
1797 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1798 )))
1799
1800 (((
1801 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1802 )))
1803
1804 (((
1805 AT+CFG: Print all settings
1806 )))
1807
1808
1809 == 4.2 Common AT Command Sequence ==
1810
1811 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1812
1813 (((
1814
1815
1816 (((
1817 (% style="color:blue" %)**If device has not joined network yet:**
1818 )))
1819 )))
1820
1821 (((
1822 (% style="background-color:#dcdcdc" %)**123456**
1823 )))
1824
1825 (((
1826 (% style="background-color:#dcdcdc" %)**AT+FDR**
1827 )))
1828
1829 (((
1830 (% style="background-color:#dcdcdc" %)**123456**
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1835 )))
1836
1837 (((
1838 (% style="background-color:#dcdcdc" %)**ATZ**
1839 )))
1840
1841
1842 (((
1843 (% style="color:blue" %)**If device already joined network:**
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1848 )))
1849
1850 (((
1851 (% style="background-color:#dcdcdc" %)**ATZ**
1852 )))
1853
1854
1855 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1856
1857 (((
1858
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1862 )))
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1911
1912
1913 )))
1914
1915 (((
1916 (% style="color:red" %)**Note:**
1917 )))
1918
1919 (((
1920 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1921
1922 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1923
1924 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1925 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1926
1927 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1928
1929
1930 )))
1931
1932 (((
1933 [[image:1653359097980-169.png||height="188" width="729"]]
1934 )))
1935
1936 (((
1937
1938 )))
1939
1940 === 4.2.3 Change to Class A ===
1941
1942
1943 (((
1944 (% style="color:blue" %)**If sensor JOINED:**
1945
1946 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1947 ATZ**
1948 )))
1949
1950
1951 = 5. Case Study =
1952
1953 == 5.1 Counting how many objects pass in Flow Line ==
1954
1955
1956 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1957
1958
1959 = 6. FAQ =
1960
1961 == 6.1 How to upgrade the image? ==
1962
1963
1964 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1965
1966 * Support new features
1967 * For bug fix
1968 * Change LoRaWAN bands.
1969
1970 Below shows the hardware connection for how to upload an image to the LT:
1971
1972 [[image:1653359603330-121.png]]
1973
1974
1975 (((
1976 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1977 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1978 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1979
1980
1981 (((
1982 (% style="color:blue" %)**For LT-22222-L**(%%):
1983 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1984 )))
1985
1986
1987 )))
1988
1989 [[image:image-20220524103407-12.png]]
1990
1991
1992 [[image:image-20220524103429-13.png]]
1993
1994
1995 [[image:image-20220524104033-15.png]]
1996
1997
1998 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1999
2000
2001 [[image:1653360054704-518.png||height="186" width="745"]]
2002
2003
2004 (((
2005 (((
2006 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2007
2008
2009 )))
2010 )))
2011
2012 (((
2013 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2014 )))
2015
2016 (((
2017
2018
2019 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2020
2021
2022 )))
2023
2024 (((
2025 (((
2026 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2027 )))
2028 )))
2029
2030 (((
2031 (((
2032 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2033
2034
2035 )))
2036 )))
2037
2038 (((
2039 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2040
2041
2042 )))
2043
2044 (((
2045 [[image:1653360231087-571.png||height="401" width="727"]]
2046
2047
2048 )))
2049
2050 (((
2051 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2052 )))
2053
2054
2055
2056 (((
2057 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2058
2059
2060 )))
2061
2062 (((
2063 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2064 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2065 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2066 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2067 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2068 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2069 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2070 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2071 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2072 )))
2073
2074
2075 (((
2076 As shown in below:
2077 )))
2078
2079 [[image:1653360498588-932.png||height="485" width="726"]]
2080
2081
2082 == 6.4 Can I see counting event in Serial? ==
2083
2084
2085 (((
2086 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2087
2088
2089 == 6.5 Can i use point to point communication for LT-22222-L? ==
2090
2091
2092 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2093
2094
2095 )))
2096
2097 (((
2098 == 6.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2099
2100
2101 If the device is not shut down, but directly powered off.
2102
2103 It will default that this is a power-off state.
2104
2105 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2106
2107 After restart, the status before power failure will be read from flash.
2108
2109
2110 == 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2111
2112
2113 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2114
2115
2116 [[image:image-20221006170630-1.png||height="610" width="945"]]
2117
2118
2119 == 6.8 Can LT22222-L save RO state? ==
2120
2121
2122 Firmware version needs to be no less than 1.6.0.
2123
2124
2125 = 7. Trouble Shooting =
2126 )))
2127
2128 (((
2129 (((
2130 == 7.1 Downlink doesn't work, how to solve it? ==
2131
2132
2133 )))
2134 )))
2135
2136 (((
2137 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2138 )))
2139
2140 (((
2141
2142
2143 == 7.2 Have trouble to upload image. ==
2144
2145
2146 )))
2147
2148 (((
2149 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2150 )))
2151
2152 (((
2153
2154
2155 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2156
2157
2158 )))
2159
2160 (((
2161 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2162 )))
2163
2164
2165 = 8. Order Info =
2166
2167
2168 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2169
2170 (% style="color:#4f81bd" %)**XXX:**
2171
2172 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2173 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2174 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2175 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2176 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2177 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2178 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2179 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2180 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2181
2182
2183
2184 = 9. Packing Info =
2185
2186
2187 **Package Includes**:
2188
2189 * LT-22222-L I/O Controller x 1
2190 * Stick Antenna for LoRa RF part x 1
2191 * Bracket for controller x1
2192 * Program cable x 1
2193
2194
2195 **Dimension and weight**:
2196
2197 * Device Size: 13.5 x 7 x 3 cm
2198 * Device Weight: 105g
2199 * Package Size / pcs : 14.5 x 8 x 5 cm
2200 * Weight / pcs : 170g
2201
2202
2203
2204 = 10. Support =
2205
2206
2207 * (((
2208 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2209 )))
2210 * (((
2211 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2212
2213
2214
2215 )))
2216
2217 = 11. Reference​​​​​ =
2218
2219
2220 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2221 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2222 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2223
2224