Version 112.4 by Xiaoling on 2023/03/31 09:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186 == 1.4  Applications ==
187
188
189 * Smart Buildings & Home Automation
190 * Logistics and Supply Chain Management
191 * Smart Metering
192 * Smart Agriculture
193 * Smart Cities
194 * Smart Factory
195
196 == 1.5 Hardware Variants ==
197
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210 = 2. Power ON Device =
211
212
213 (((
214 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
215 )))
216
217 (((
218 PWR will on when device is properly powered.
219
220
221 )))
222
223 [[image:1653297104069-180.png]]
224
225
226 = 3. Operation Mode =
227
228 == 3.1 How it works? ==
229
230
231 (((
232 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
233 )))
234
235 (((
236 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
237 )))
238
239
240 == 3.2 Example to join LoRaWAN network ==
241
242
243 (((
244 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
245
246
247 )))
248
249 [[image:image-20220523172350-1.png||height="266" width="864"]]
250
251
252 (((
253 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
254
255
256 )))
257
258 (((
259 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
260 )))
261
262 (((
263 Each LT is shipped with a sticker with the default device EUI as below:
264 )))
265
266 [[image:1653297924498-393.png]]
267
268
269 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
270
271 **Add APP EUI in the application.**
272
273 [[image:1653297955910-247.png||height="321" width="716"]]
274
275
276 **Add APP KEY and DEV EUI**
277
278 [[image:1653298023685-319.png]]
279
280
281
282 (((
283 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
284
285
286 )))
287
288 [[image:1653298044601-602.png||height="405" width="709"]]
289
290
291 == 3.3 Uplink Payload ==
292
293
294 There are five working modes + one interrupt mode on LT for different type application:
295
296 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
297 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
298 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
299 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
300 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
301 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
302
303 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
304
305
306 (((
307 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
308 )))
309
310 [[image:image-20220523174024-3.png]]
311
312 (((
313
314
315 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
316 )))
317
318 [[image:image-20220523174254-4.png]]
319
320 * RO is for relay. ROx=1 : close,ROx=0 always open.
321 * DI is for digital input. DIx=1: high or float, DIx=0: low.
322 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
323
324 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
325
326 For example if payload is: [[image:image-20220523175847-2.png]]
327
328
329 **The value for the interface is:  **
330
331 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
332
333 AVI2 channel voltage is 0x04AC/1000=1.196V
334
335 ACI1 channel current is 0x1310/1000=4.880mA
336
337 ACI2 channel current is 0x1300/1000=4.864mA
338
339 The last byte 0xAA= 10101010(B) means
340
341 * [1] RO1 relay channel is close and the RO1 LED is ON.
342 * [0] RO2 relay channel is open and RO2 LED is OFF;
343
344 **LT22222-L:**
345
346 * [1] DI2 channel is high input and DI2 LED is ON;
347 * [0] DI1 channel is low input;
348
349 * [0] DO3 channel output state
350 ** DO3 is float in case no load between DO3 and V+.;
351 ** DO3 is high in case there is load between DO3 and V+.
352 ** DO3 LED is off in both case
353 * [1] DO2 channel output is low and DO2 LED is ON.
354 * [0] DO1 channel output state
355 ** DO1 is float in case no load between DO1 and V+.;
356 ** DO1 is high in case there is load between DO1 and V+.
357 ** DO1 LED is off in both case
358
359 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
360
361
362 (((
363 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
364 )))
365
366 (((
367 Total : 11 bytes payload
368 )))
369
370 [[image:image-20220523180452-3.png]]
371
372
373 (((
374 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
375 )))
376
377 [[image:image-20220523180506-4.png]]
378
379 * RO is for relay. ROx=1 : close,ROx=0 always open.
380 * FIRST: Indicate this is the first packet after join network.
381 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
382
383 (((
384 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
385 )))
386
387 (((
388
389
390 **To use counting mode, please run:**
391 )))
392
393 (% class="box infomessage" %)
394 (((
395 (((
396 (((
397 **AT+MOD=2**
398 )))
399
400 (((
401 **ATZ**
402 )))
403 )))
404 )))
405
406 (((
407
408
409 (% style="color:#4f81bd" %)**AT Commands for counting:**
410
411
412 )))
413
414 (((
415 **For LT22222-L:**
416
417
418 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
419
420 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
421
422 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
423
424 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
425
426 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
427
428 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
429 )))
430
431
432 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
433
434
435 **LT22222-L**: This mode the DI1 is used as a counting pin.
436
437 [[image:image-20220523181246-5.png]]
438
439 (((
440
441
442 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
443 )))
444
445 [[image:image-20220523181301-6.png]]
446
447 * RO is for relay. ROx=1 : close,ROx=0 always open.
448 * FIRST: Indicate this is the first packet after join network.
449 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
450
451 (((
452 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
453 )))
454
455
456 (((
457 **To use counting mode, please run:**
458 )))
459
460 (% class="box infomessage" %)
461 (((
462 (((
463 (((
464 **AT+MOD=3**
465 )))
466
467 (((
468 **ATZ**
469 )))
470 )))
471 )))
472
473 (((
474 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
475 )))
476
477
478 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
479
480
481 (((
482 **LT22222-L**: This mode the DI1 is used as a counting pin.
483 )))
484
485 (((
486 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
487 )))
488
489 [[image:image-20220523181903-8.png]]
490
491
492 (((
493 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
494 )))
495
496 [[image:image-20220523181727-7.png]]
497
498 * RO is for relay. ROx=1 : close,ROx=0 always open.
499 * FIRST: Indicate this is the first packet after join network.
500 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
501
502 (((
503 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
504 )))
505
506 (((
507
508
509 **To use this mode, please run:**
510 )))
511
512 (% class="box infomessage" %)
513 (((
514 (((
515 (((
516 **AT+MOD=4**
517 )))
518
519 (((
520 **ATZ**
521 )))
522 )))
523 )))
524
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530 (((
531
532
533 **Plus below command for AVI1 Counting:**
534
535
536 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
537
538 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
539
540 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
541
542 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
543 )))
544
545
546 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
547
548
549 **LT22222-L**: This mode the DI1 is used as a counting pin.
550
551 [[image:image-20220523182334-9.png]]
552
553 (((
554
555
556 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
557 )))
558
559 * RO is for relay. ROx=1 : close,ROx=0 always open.
560 * FIRST: Indicate this is the first packet after join network.
561 * (((
562 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
563 )))
564
565 (((
566 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 )))
568
569 (((
570
571
572 **To use this mode, please run:**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 (((
579 **AT+MOD=5**
580 )))
581
582 (((
583 **ATZ**
584 )))
585 )))
586 )))
587
588 (((
589 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
590 )))
591
592
593 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
594
595
596 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
597
598 For example, if user has configured below commands:
599
600 * **AT+MOD=1 ** **~-~->**  The normal working mode
601 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
602
603 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
604
605 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
606 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
607
608 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
609
610
611 (% style="color:#4f81bd" %)**Trigger base on voltage**:
612
613 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
614
615
616 **Example:**
617
618 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
619
620 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
621
622
623
624 (% style="color:#4f81bd" %)**Trigger base on current**:
625
626 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
627
628
629 **Example:**
630
631 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
632
633
634
635 (% style="color:#4f81bd" %)**Trigger base on DI status**:
636
637 DI status trigger Flag.
638
639 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
640
641
642 **Example:**
643
644 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
645
646
647 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
648
649 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
650
651 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
652
653 AA: Code for this downlink Command:
654
655 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
656
657 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
658
659 yy2 yy2: AC1 or AV1 high limit.
660
661 yy3 yy3: AC2 or AV2 low limit.
662
663 Yy4 yy4: AC2 or AV2 high limit.
664
665
666 **Example1**: AA 00 13 88 00 00 00 00 00 00
667
668 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
669
670
671 **Example2**: AA 02 01 00
672
673 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
674
675
676
677 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
678
679 MOD6 Payload : total 11 bytes payload
680
681 [[image:image-20220524085923-1.png]]
682
683
684 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
685
686 [[image:image-20220524090106-2.png]]
687
688 * Each bits shows if the corresponding trigger has been configured.
689
690 **Example:**
691
692 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
693
694
695
696 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
697
698 [[image:image-20220524090249-3.png]]
699
700 * Each bits shows which status has been trigger on this uplink.
701
702 **Example:**
703
704 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
705
706
707 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
708
709 [[image:image-20220524090456-4.png]]
710
711 * Each bits shows which status has been trigger on this uplink.
712
713 **Example:**
714
715 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
716
717 00000101: Means both DI1 and DI2 trigger are enabled.
718
719
720 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
721
722 Downlink command to poll MOD6 status:
723
724 **AB 06**
725
726 When device got this command, it will send the MOD6 payload.
727
728
729 === 3.3.7 Payload Decoder ===
730
731 (((
732
733
734 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
735 )))
736
737
738 == 3.4 ​Configure LT via AT or Downlink ==
739
740
741 (((
742 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
743 )))
744
745 (((
746 (((
747 There are two kinds of Commands:
748 )))
749 )))
750
751 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
752
753 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
754
755 === 3.4.1 Common Commands ===
756
757
758 (((
759 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
760 )))
761
762
763 === 3.4.2 Sensor related commands ===
764
765 ==== 3.4.2.1 Set Transmit Interval ====
766
767
768 Set device uplink interval.
769
770 * (% style="color:#037691" %)**AT Command:**
771
772 (% style="color:blue" %)**AT+TDC=N **
773
774
775 **Example: **AT+TDC=30000. Means set interval to 30 seconds
776
777
778 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
779
780 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
781
782
783
784 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
785
786
787 Set work mode.
788
789 * (% style="color:#037691" %)**AT Command:**
790
791 (% style="color:blue" %)**AT+MOD=N  **
792
793
794 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
795
796
797 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
798
799 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
800
801
802
803 ==== 3.4.2.3 Poll an uplink ====
804
805
806 * (% style="color:#037691" %)**AT Command:**
807
808 There is no AT Command to poll uplink
809
810
811 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
812
813 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
814
815
816 **Example**: 0x08FF, ask device to send an Uplink
817
818
819
820 ==== 3.4.2.4 Enable Trigger Mode ====
821
822
823 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
824
825 * (% style="color:#037691" %)**AT Command:**
826
827 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
828
829 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
830
831 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
832
833
834 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
835
836 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
837
838
839
840 ==== 3.4.2.5 Poll trigger settings ====
841
842
843 Poll trigger settings,
844
845 * (% style="color:#037691" %)**AT Command:**
846
847 There is no AT Command for this feature.
848
849
850 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
851
852 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
853
854
855
856 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
857
858
859 Enable Disable DI1/DI2/DI2 as trigger,
860
861 * (% style="color:#037691" %)**AT Command:**
862
863 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
864
865
866 **Example:**
867
868 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
869
870 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
871
872 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
873
874
875
876 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
877
878
879 Set DI1 or DI3(for LT-33222-L) trigger.
880
881 * (% style="color:#037691" %)**AT Command:**
882
883 (% style="color:blue" %)**AT+TRIG1=a,b**
884
885 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
886
887 (% style="color:red" %)**b :** (%%)delay timing.
888
889
890 **Example:**
891
892 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
893
894
895 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
896
897 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
898
899
900
901 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
902
903
904 Set DI2 trigger.
905
906 * (% style="color:#037691" %)**AT Command:**
907
908 (% style="color:blue" %)**AT+TRIG2=a,b**
909
910 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
911
912 (% style="color:red" %)**b :** (%%)delay timing.
913
914
915 **Example:**
916
917 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
918
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
921
922 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
923
924
925
926 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
927
928
929 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
930
931 * (% style="color:#037691" %)**AT Command**
932
933 (% style="color:blue" %)**AT+ACLIM**
934
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
937
938 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
939
940
941
942 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
943
944
945 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
946
947 * (% style="color:#037691" %)**AT Command**
948
949 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
950
951
952 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
953
954 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
955
956
957
958 ==== 3.4.2.11 Trigger – Set minimum interval ====
959
960
961 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
962
963 * (% style="color:#037691" %)**AT Command**
964
965 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
966
967
968 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
969
970 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
971
972 (((
973
974
975 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
976 )))
977
978
979
980 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
981
982
983 * (% style="color:#037691" %)**AT Command**
984
985 There is no AT Command to control Digital Output
986
987
988 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
989 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
990
991 (((
992 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
993 )))
994
995 (((
996 01: Low,  00: High ,  11: No action
997 )))
998
999 [[image:image-20220524092754-5.png]]
1000
1001 (((
1002 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1003 )))
1004
1005 (((
1006 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1007 )))
1008
1009
1010
1011 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1012
1013
1014 * (% style="color:#037691" %)**AT Command**
1015
1016 There is no AT Command to control Digital Output
1017
1018
1019 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1020
1021 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1022
1023
1024 This is to control the digital output time of DO pin. Include four bytes:
1025
1026 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1027
1028 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1029
1030 01: DO pins will change back to original state after timeout.
1031
1032 00: DO pins will change to an inverter state after timeout 
1033
1034
1035 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1036
1037 [[image:image-20220524093238-6.png]]
1038
1039
1040 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1041
1042 [[image:image-20220524093328-7.png]]
1043
1044
1045 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1046
1047 [[image:image-20220524093351-8.png]]
1048
1049
1050 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1051
1052 Latching time. Unit: ms
1053
1054
1055 (% style="color:red" %)**Note: **
1056
1057 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1058
1059 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1060
1061
1062 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1063
1064
1065 **Example payload:**
1066
1067 **~1. A9 01 01 01 01 07 D0**
1068
1069 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1070
1071 **2. A9 01 00 01 11 07 D0**
1072
1073 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1074
1075 **3. A9 00 00 00 00 07 D0**
1076
1077 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1078
1079 **4. A9 00 11 01 00 07 D0**
1080
1081 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1082
1083
1084
1085 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1086
1087
1088 * (% style="color:#037691" %)**AT Command:**
1089
1090 There is no AT Command to control Relay Output
1091
1092
1093 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1094
1095 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1096
1097
1098 (((
1099 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1100 )))
1101
1102 (((
1103 01: Close ,  00: Open , 11: No action
1104 )))
1105
1106 (((
1107 [[image:image-20220524093724-9.png]]
1108 )))
1109
1110 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1111
1112
1113
1114 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1115
1116
1117 * (% style="color:#037691" %)**AT Command:**
1118
1119 There is no AT Command to control Relay Output
1120
1121
1122 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1123
1124 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1125
1126
1127 This is to control the relay output time of relay. Include four bytes:
1128
1129 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1130
1131 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1132
1133 01: Relays will change back to original state after timeout.
1134
1135 00: Relays will change to an inverter state after timeout
1136
1137
1138 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1139
1140 [[image:image-20221008095908-1.png||height="364" width="564"]]
1141
1142
1143 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1144
1145
1146 (% style="color:red" %)**Note:**
1147
1148 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1149
1150 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1151
1152
1153 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1154
1155
1156 **Example payload:**
1157
1158 **~1. 05 01 11 07 D0**
1159
1160 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1161
1162 **2. 05 01 10 07 D0**
1163
1164 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1165
1166 **3. 05 00 01 07 D0**
1167
1168 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1169
1170 **4. 05 00 00 07 D0**
1171
1172 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1173
1174
1175
1176 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1177
1178
1179 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1180
1181 * (% style="color:#037691" %)**AT Command:**
1182
1183 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1184
1185
1186 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1187
1188 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1189
1190
1191
1192 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1193
1194
1195 * (% style="color:#037691" %)**AT Command:**
1196
1197 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1198
1199 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1200
1201 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1202
1203
1204 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1205
1206 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1207
1208
1209
1210 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1211
1212
1213 Clear counting for counting mode
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1221
1222 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1223
1224
1225
1226 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1227
1228
1229 * (% style="color:#037691" %)**AT Command:**
1230
1231 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1232
1233
1234 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1235
1236 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1237
1238 (((
1239 range: aa bb cc:0 to 16777215,  (unit:second)
1240 )))
1241
1242
1243
1244 ==== 3.4.2.20 Reset save RO DO state ====
1245
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1250
1251 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1252
1253
1254 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1255
1256 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1257
1258
1259
1260 ==== 3.4.2.21 Encrypted payload ====
1261
1262
1263 * (% style="color:#037691" %)**AT Command:**
1264
1265 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1266
1267 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1268
1269
1270
1271 ==== 3.4.2.22 Get sensor value ====
1272
1273
1274 * (% style="color:#037691" %)**AT Command:**
1275
1276 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1277
1278 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1279
1280
1281
1282 ==== 3.4.2.23 Resets the downlink packet count ====
1283
1284
1285 * (% style="color:#037691" %)**AT Command:**
1286
1287 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1288
1289 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1290
1291
1292
1293 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1294
1295
1296 * (% style="color:#037691" %)**AT Command:**
1297
1298 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1299
1300 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1301
1302
1303 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1304
1305 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1306
1307
1308
1309 ==== 3.4.2.25 Copy downlink to uplink ====
1310
1311
1312 * (% style="color:#037691" %)**AT Command**(%%)**:**
1313
1314 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1315
1316 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1317
1318
1319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1320
1321 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1322
1323
1324
1325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1326
1327 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1328
1329
1330
1331 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1332
1333
1334 * (((
1335 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1336
1337 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1338
1339
1340 )))
1341
1342 **Example:**
1343
1344 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1345
1346
1347 == 3.5 Integrate with Mydevice ==
1348
1349
1350 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1351
1352 (((
1353 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1354 )))
1355
1356 (((
1357 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1358
1359
1360 )))
1361
1362 [[image:image-20220719105525-1.png||height="377" width="677"]]
1363
1364
1365
1366 [[image:image-20220719110247-2.png||height="388" width="683"]]
1367
1368
1369 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1370
1371 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1372
1373 Search under The things network
1374
1375 [[image:1653356838789-523.png||height="337" width="740"]]
1376
1377
1378
1379 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1380
1381 [[image:image-20220524094909-1.png||height="335" width="729"]]
1382
1383
1384 [[image:image-20220524094909-2.png||height="337" width="729"]]
1385
1386
1387 [[image:image-20220524094909-3.png||height="338" width="727"]]
1388
1389
1390 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1391
1392
1393 [[image:image-20220524094909-5.png||height="341" width="734"]]
1394
1395
1396 == 3.6 Interface Detail ==
1397
1398 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1399
1400
1401 Support NPN Type sensor
1402
1403 [[image:1653356991268-289.png]]
1404
1405
1406 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1407
1408
1409 (((
1410 The DI port of LT-22222-L can support NPN or PNP output sensor.
1411 )))
1412
1413 (((
1414 (((
1415 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1416
1417
1418 )))
1419 )))
1420
1421 [[image:1653357170703-587.png]]
1422
1423 (((
1424 (((
1425 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1426 )))
1427 )))
1428
1429 (((
1430
1431 )))
1432
1433 (((
1434 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1435 )))
1436
1437 (((
1438 This type of sensor will output a low signal GND when active.
1439 )))
1440
1441 * (((
1442 Connect sensor's output to DI1-
1443 )))
1444 * (((
1445 Connect sensor's VCC to DI1+.
1446 )))
1447
1448 (((
1449 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1450 )))
1451
1452 (((
1453 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1454 )))
1455
1456 (((
1457 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1458 )))
1459
1460 (((
1461
1462 )))
1463
1464 (((
1465 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1466 )))
1467
1468 (((
1469 This type of sensor will output a high signal (example 24v) when active.
1470 )))
1471
1472 * (((
1473 Connect sensor's output to DI1+
1474 )))
1475 * (((
1476 Connect sensor's GND DI1-.
1477 )))
1478
1479 (((
1480 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1481 )))
1482
1483 (((
1484 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1485 )))
1486
1487 (((
1488 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1489 )))
1490
1491 (((
1492
1493 )))
1494
1495 (((
1496 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1497 )))
1498
1499 (((
1500 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1501 )))
1502
1503 * (((
1504 Connect sensor's output to DI1+ with a serial 50K resistor
1505 )))
1506 * (((
1507 Connect sensor's GND DI1-.
1508 )))
1509
1510 (((
1511 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1512 )))
1513
1514 (((
1515 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1516 )))
1517
1518 (((
1519 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1520 )))
1521
1522
1523 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1524
1525
1526 **(% style="color:blue" %)NPN output**: GND or Float. Max voltage can apply to output pin is 36v.
1527
1528 **(% style="color:red" %)Note: DO pins go to float when device is power off.**
1529
1530 [[image:1653357531600-905.png]]
1531
1532
1533 === 3.6.4 Analog Input Interface ===
1534
1535
1536 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1537
1538
1539 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1540
1541 [[image:1653357592296-182.png]]
1542
1543 Example to connect a 4~~20mA sensor
1544
1545 We take the wind speed sensor as an example for reference only.
1546
1547
1548 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1549
1550 **(% style="color:red" %)Red:  12~~24v**
1551
1552 **(% style="color:Yellow" %)Yellow:  4~~20mA**
1553
1554 **Black:  GND**
1555
1556
1557 **Connection diagram:**
1558
1559 [[image:1653357640609-758.png]]
1560
1561 [[image:1653357648330-671.png||height="155" width="733"]]
1562
1563
1564 === 3.6.5 Relay Output ===
1565
1566
1567 (((
1568 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1569
1570 **Note**: RO pins go to Open(NO) when device is power off.
1571 )))
1572
1573 [[image:image-20220524100215-9.png]]
1574
1575
1576 [[image:image-20220524100215-10.png||height="382" width="723"]]
1577
1578
1579 == 3.7 LEDs Indicators ==
1580
1581
1582 [[image:image-20220524100748-11.png]]
1583
1584
1585 = 4. Use AT Command =
1586
1587 == 4.1 Access AT Command ==
1588
1589
1590 (((
1591 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1592 )))
1593
1594 (((
1595
1596 )))
1597
1598 [[image:1653358238933-385.png]]
1599
1600
1601 (((
1602 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1603 )))
1604
1605 [[image:1653358355238-883.png]]
1606
1607
1608 (((
1609 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1610 )))
1611
1612 (((
1613 AT+<CMD>?        : Help on <CMD>
1614 )))
1615
1616 (((
1617 AT+<CMD>         : Run <CMD>
1618 )))
1619
1620 (((
1621 AT+<CMD>=<value> : Set the value
1622 )))
1623
1624 (((
1625 AT+<CMD>=?       :  Get the value
1626 )))
1627
1628 (((
1629 ATZ: Trig a reset of the MCU
1630 )))
1631
1632 (((
1633 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1634 )))
1635
1636 (((
1637 AT+DEUI: Get or Set the Device EUI
1638 )))
1639
1640 (((
1641 AT+DADDR: Get or Set the Device Address
1642 )))
1643
1644 (((
1645 AT+APPKEY: Get or Set the Application Key
1646 )))
1647
1648 (((
1649 AT+NWKSKEY: Get or Set the Network Session Key
1650 )))
1651
1652 (((
1653 AT+APPSKEY:  Get or Set the Application Session Key
1654 )))
1655
1656 (((
1657 AT+APPEUI:  Get or Set the Application EUI
1658 )))
1659
1660 (((
1661 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1662 )))
1663
1664 (((
1665 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1666 )))
1667
1668 (((
1669 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1670 )))
1671
1672 (((
1673 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1674 )))
1675
1676 (((
1677 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1678 )))
1679
1680 (((
1681 AT+RX2FQ: Get or Set the Rx2 window frequency
1682 )))
1683
1684 (((
1685 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1686 )))
1687
1688 (((
1689 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1690 )))
1691
1692 (((
1693 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1694 )))
1695
1696 (((
1697 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1698 )))
1699
1700 (((
1701 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1702 )))
1703
1704 (((
1705 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1706 )))
1707
1708 (((
1709 AT+NWKID: Get or Set the Network ID
1710 )))
1711
1712 (((
1713 AT+FCU: Get or Set the Frame Counter Uplink
1714 )))
1715
1716 (((
1717 AT+FCD: Get or Set the Frame Counter Downlink
1718 )))
1719
1720 (((
1721 AT+CLASS: Get or Set the Device Class
1722 )))
1723
1724 (((
1725 AT+JOIN: Join network
1726 )))
1727
1728 (((
1729 AT+NJS: Get OTAA Join Status
1730 )))
1731
1732 (((
1733 AT+SENDB: Send hexadecimal data along with the application port
1734 )))
1735
1736 (((
1737 AT+SEND: Send text data along with the application port
1738 )))
1739
1740 (((
1741 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1742 )))
1743
1744 (((
1745 AT+RECV: Print last received data in raw format
1746 )))
1747
1748 (((
1749 AT+VER:  Get current image version and Frequency Band
1750 )))
1751
1752 (((
1753 AT+CFM: Get or Set the confirmation mode (0-1)
1754 )))
1755
1756 (((
1757 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1758 )))
1759
1760 (((
1761 AT+SNR: Get the SNR of the last received packet
1762 )))
1763
1764 (((
1765 AT+RSSI: Get the RSSI of the last received packet
1766 )))
1767
1768 (((
1769 AT+TDC: Get or set the application data transmission interval in ms
1770 )))
1771
1772 (((
1773 AT+PORT: Get or set the application port
1774 )))
1775
1776 (((
1777 AT+DISAT: Disable AT commands
1778 )))
1779
1780 (((
1781 AT+PWORD: Set password, max 9 digits
1782 )))
1783
1784 (((
1785 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1786 )))
1787
1788 (((
1789 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1790 )))
1791
1792 (((
1793 AT+CFG: Print all settings
1794 )))
1795
1796
1797 == 4.2 Common AT Command Sequence ==
1798
1799 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1800
1801 (((
1802
1803
1804 (((
1805 (% style="color:blue" %)**If device has not joined network yet:**
1806 )))
1807 )))
1808
1809 (((
1810 (% style="background-color:#dcdcdc" %)**123456**
1811 )))
1812
1813 (((
1814 (% style="background-color:#dcdcdc" %)**AT+FDR**
1815 )))
1816
1817 (((
1818 (% style="background-color:#dcdcdc" %)**123456**
1819 )))
1820
1821 (((
1822 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1823 )))
1824
1825 (((
1826 (% style="background-color:#dcdcdc" %)**ATZ**
1827 )))
1828
1829
1830 (((
1831 (% style="color:blue" %)**If device already joined network:**
1832 )))
1833
1834 (((
1835 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)**ATZ**
1840 )))
1841
1842
1843 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1844
1845 (((
1846
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1850 )))
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1899
1900
1901 )))
1902
1903 (((
1904 (% style="color:red" %)**Note:**
1905 )))
1906
1907 (((
1908 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1909
1910 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1911
1912 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1913 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1914
1915 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1916
1917
1918 )))
1919
1920 (((
1921 [[image:1653359097980-169.png||height="188" width="729"]]
1922 )))
1923
1924 (((
1925
1926 )))
1927
1928 === 4.2.3 Change to Class A ===
1929
1930
1931 (((
1932 (% style="color:blue" %)**If sensor JOINED:**
1933
1934 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1935 ATZ**
1936 )))
1937
1938
1939 = 5. Case Study =
1940
1941 == 5.1 Counting how many objects pass in Flow Line ==
1942
1943
1944 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1945
1946
1947 = 6. FAQ =
1948
1949 == 6.1 How to upgrade the image? ==
1950
1951
1952 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1953
1954 * Support new features
1955 * For bug fix
1956 * Change LoRaWAN bands.
1957
1958 Below shows the hardware connection for how to upload an image to the LT:
1959
1960 [[image:1653359603330-121.png]]
1961
1962
1963 (((
1964 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1965 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1966 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1967
1968
1969 (((
1970 (% style="color:blue" %)**For LT-22222-L**(%%):
1971 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1972 )))
1973
1974
1975 )))
1976
1977 [[image:image-20220524103407-12.png]]
1978
1979
1980 [[image:image-20220524103429-13.png]]
1981
1982
1983 [[image:image-20220524104033-15.png]]
1984
1985
1986 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1987
1988
1989 [[image:1653360054704-518.png||height="186" width="745"]]
1990
1991
1992 (((
1993 (((
1994 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1995
1996
1997 )))
1998 )))
1999
2000 (((
2001 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2002 )))
2003
2004 (((
2005
2006
2007 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2008
2009
2010 )))
2011
2012 (((
2013 (((
2014 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2015 )))
2016 )))
2017
2018 (((
2019 (((
2020 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2021
2022
2023 )))
2024 )))
2025
2026 (((
2027 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2028
2029
2030 )))
2031
2032 (((
2033 [[image:1653360231087-571.png||height="401" width="727"]]
2034
2035
2036 )))
2037
2038 (((
2039 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2040 )))
2041
2042
2043
2044 (((
2045 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2046
2047
2048 )))
2049
2050 (((
2051 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2052 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2053 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2054 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2055 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2056 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2057 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2058 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2059 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2060 )))
2061
2062
2063 (((
2064 As shown in below:
2065 )))
2066
2067 [[image:1653360498588-932.png||height="485" width="726"]]
2068
2069
2070 == 6.4 Can I see counting event in Serial? ==
2071
2072
2073 (((
2074 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2075
2076
2077 == 6.5 Can i use point to point communication for LT-22222-L? ==
2078
2079
2080 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2081
2082
2083 )))
2084
2085 (((
2086 == 6.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2087
2088
2089 If the device is not shut down, but directly powered off.
2090
2091 It will default that this is a power-off state.
2092
2093 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2094
2095 After restart, the status before power failure will be read from flash.
2096
2097
2098 == 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2099
2100
2101 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2102
2103
2104 [[image:image-20221006170630-1.png||height="610" width="945"]]
2105
2106
2107 == 6.8 Can LT22222-L save RO state? ==
2108
2109
2110 Firmware version needs to be no less than 1.6.0.
2111
2112
2113 = 7. Trouble Shooting =
2114 )))
2115
2116 (((
2117 (((
2118 == 7.1 Downlink doesn't work, how to solve it? ==
2119
2120
2121 )))
2122 )))
2123
2124 (((
2125 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2126 )))
2127
2128 (((
2129
2130
2131 == 7.2 Have trouble to upload image. ==
2132
2133
2134 )))
2135
2136 (((
2137 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2138 )))
2139
2140 (((
2141
2142
2143 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2144
2145
2146 )))
2147
2148 (((
2149 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2150 )))
2151
2152
2153 = 8. Order Info =
2154
2155
2156 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2157
2158 (% style="color:#4f81bd" %)**XXX:**
2159
2160 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2161 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2162 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2163 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2164 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2165 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2166 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2167 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2168 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2169
2170
2171
2172 = 9. Packing Info =
2173
2174
2175 **Package Includes**:
2176
2177 * LT-22222-L I/O Controller x 1
2178 * Stick Antenna for LoRa RF part x 1
2179 * Bracket for controller x1
2180 * Program cable x 1
2181
2182
2183 **Dimension and weight**:
2184
2185 * Device Size: 13.5 x 7 x 3 cm
2186 * Device Weight: 105g
2187 * Package Size / pcs : 14.5 x 8 x 5 cm
2188 * Weight / pcs : 170g
2189
2190
2191
2192 = 10. Support =
2193
2194
2195 * (((
2196 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2197 )))
2198 * (((
2199 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2200
2201
2202
2203 )))
2204
2205 = 11. Reference​​​​​ =
2206
2207
2208 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2209 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2210 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2211
2212