Version 112.1 by Edwin Chen on 2023/03/30 16:18

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187 == 1.4  Applications ==
188
189
190 * Smart Buildings & Home Automation
191 * Logistics and Supply Chain Management
192 * Smart Metering
193 * Smart Agriculture
194 * Smart Cities
195 * Smart Factory
196
197
198 == 1.5 Hardware Variants ==
199
200
201 (% border="1" style="background-color:#f7faff; width:500px" %)
202 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
203 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
204 * 2 x Digital Input (Bi-direction)
205 * 2 x Digital Output
206 * 2 x Relay Output (5A@250VAC / 30VDC)
207 * 2 x 0~~20mA Analog Input (res:0.01mA)
208 * 2 x 0~~30V Analog Input (res:0.01v)
209 * 1 x Counting Port
210 )))
211
212
213 = 2. Power ON Device =
214
215
216 (((
217 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
218 )))
219
220 (((
221 PWR will on when device is properly powered.
222
223
224 )))
225
226 [[image:1653297104069-180.png]]
227
228
229 = 3. Operation Mode =
230
231 == 3.1 How it works? ==
232
233
234 (((
235 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
236 )))
237
238 (((
239 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
240 )))
241
242
243 == 3.2 Example to join LoRaWAN network ==
244
245
246 (((
247 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
248
249
250 )))
251
252 [[image:image-20220523172350-1.png||height="266" width="864"]]
253
254
255 (((
256 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
257
258
259 )))
260
261 (((
262 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
263 )))
264
265 (((
266 Each LT is shipped with a sticker with the default device EUI as below:
267 )))
268
269 [[image:1653297924498-393.png]]
270
271
272 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
273
274 **Add APP EUI in the application.**
275
276 [[image:1653297955910-247.png||height="321" width="716"]]
277
278
279 **Add APP KEY and DEV EUI**
280
281 [[image:1653298023685-319.png]]
282
283
284
285 (((
286 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
287
288
289 )))
290
291 [[image:1653298044601-602.png||height="405" width="709"]]
292
293
294 == 3.3 Uplink Payload ==
295
296
297 There are five working modes + one interrupt mode on LT for different type application:
298
299 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
300 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
301 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
302 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
303 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
304 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
305
306
307 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308
309
310 (((
311 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
312 )))
313
314 [[image:image-20220523174024-3.png]]
315
316 (((
317
318
319 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
320 )))
321
322 [[image:image-20220523174254-4.png]]
323
324 * RO is for relay. ROx=1 : close,ROx=0 always open.
325 * DI is for digital input. DIx=1: high or float, DIx=0: low.
326 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
327
328 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
329
330 For example if payload is: [[image:image-20220523175847-2.png]]
331
332
333 **The value for the interface is:  **
334
335 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
336
337 AVI2 channel voltage is 0x04AC/1000=1.196V
338
339 ACI1 channel current is 0x1310/1000=4.880mA
340
341 ACI2 channel current is 0x1300/1000=4.864mA
342
343 The last byte 0xAA= 10101010(B) means
344
345 * [1] RO1 relay channel is close and the RO1 LED is ON.
346 * [0] RO2 relay channel is open and RO2 LED is OFF;
347
348 **LT22222-L:**
349
350 * [1] DI2 channel is high input and DI2 LED is ON;
351 * [0] DI1 channel is low input;
352
353 * [0] DO3 channel output state
354 ** DO3 is float in case no load between DO3 and V+.;
355 ** DO3 is high in case there is load between DO3 and V+.
356 ** DO3 LED is off in both case
357 * [1] DO2 channel output is low and DO2 LED is ON.
358 * [0] DO1 channel output state
359 ** DO1 is float in case no load between DO1 and V+.;
360 ** DO1 is high in case there is load between DO1 and V+.
361 ** DO1 LED is off in both case
362
363
364 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
365
366
367 (((
368 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
369 )))
370
371 (((
372 Total : 11 bytes payload
373 )))
374
375 [[image:image-20220523180452-3.png]]
376
377
378 (((
379 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
380 )))
381
382 [[image:image-20220523180506-4.png]]
383
384 * RO is for relay. ROx=1 : close,ROx=0 always open.
385 * FIRST: Indicate this is the first packet after join network.
386 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
387
388 (((
389 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
390 )))
391
392 (((
393
394
395 **To use counting mode, please run:**
396 )))
397
398 (% class="box infomessage" %)
399 (((
400 (((
401 (((
402 **AT+MOD=2**
403 )))
404
405 (((
406 **ATZ**
407 )))
408 )))
409 )))
410
411 (((
412
413
414 (% style="color:#4f81bd" %)**AT Commands for counting:**
415
416
417 )))
418
419 (((
420 **For LT22222-L:**
421
422
423 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
424
425 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
426
427 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
428
429 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
430
431 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
432
433 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
434 )))
435
436
437 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
438
439
440 **LT22222-L**: This mode the DI1 is used as a counting pin.
441
442 [[image:image-20220523181246-5.png]]
443
444 (((
445
446
447 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
448 )))
449
450 [[image:image-20220523181301-6.png]]
451
452 * RO is for relay. ROx=1 : close,ROx=0 always open.
453 * FIRST: Indicate this is the first packet after join network.
454 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
455
456 (((
457 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
458 )))
459
460
461 (((
462 **To use counting mode, please run:**
463 )))
464
465 (% class="box infomessage" %)
466 (((
467 (((
468 (((
469 **AT+MOD=3**
470 )))
471
472 (((
473 **ATZ**
474 )))
475 )))
476 )))
477
478 (((
479 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
480 )))
481
482
483 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
484
485
486 (((
487 **LT22222-L**: This mode the DI1 is used as a counting pin.
488 )))
489
490 (((
491 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
492 )))
493
494 [[image:image-20220523181903-8.png]]
495
496
497 (((
498 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
499 )))
500
501 [[image:image-20220523181727-7.png]]
502
503 * RO is for relay. ROx=1 : close,ROx=0 always open.
504 * FIRST: Indicate this is the first packet after join network.
505 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
506
507 (((
508 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
509 )))
510
511 (((
512
513
514 **To use this mode, please run:**
515 )))
516
517 (% class="box infomessage" %)
518 (((
519 (((
520 (((
521 **AT+MOD=4**
522 )))
523
524 (((
525 **ATZ**
526 )))
527 )))
528 )))
529
530
531 (((
532 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
533 )))
534
535 (((
536
537
538 **Plus below command for AVI1 Counting:**
539
540
541 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
542
543 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
544
545 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
546
547 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
548 )))
549
550
551 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
552
553
554 **LT22222-L**: This mode the DI1 is used as a counting pin.
555
556 [[image:image-20220523182334-9.png]]
557
558 (((
559
560
561 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
562 )))
563
564 * RO is for relay. ROx=1 : close,ROx=0 always open.
565 * FIRST: Indicate this is the first packet after join network.
566 * (((
567 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
568 )))
569
570 (((
571 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
572 )))
573
574 (((
575
576
577 **To use this mode, please run:**
578 )))
579
580 (% class="box infomessage" %)
581 (((
582 (((
583 (((
584 **AT+MOD=5**
585 )))
586
587 (((
588 **ATZ**
589 )))
590 )))
591 )))
592
593 (((
594 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
595 )))
596
597
598 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
599
600
601 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
602
603 For example, if user has configured below commands:
604
605 * **AT+MOD=1 ** **~-~->**  The normal working mode
606 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
607
608 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
609
610 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
611 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
612
613 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
614
615
616 (% style="color:#4f81bd" %)**Trigger base on voltage**:
617
618 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
619
620
621 **Example:**
622
623 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
624
625 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
626
627
628
629 (% style="color:#4f81bd" %)**Trigger base on current**:
630
631 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
632
633
634 **Example:**
635
636 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
637
638
639
640 (% style="color:#4f81bd" %)**Trigger base on DI status**:
641
642 DI status trigger Flag.
643
644 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
645
646
647 **Example:**
648
649 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
650
651
652 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
653
654 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
655
656 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
657
658 AA: Code for this downlink Command:
659
660 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
661
662 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
663
664 yy2 yy2: AC1 or AV1 high limit.
665
666 yy3 yy3: AC2 or AV2 low limit.
667
668 Yy4 yy4: AC2 or AV2 high limit.
669
670
671 **Example1**: AA 00 13 88 00 00 00 00 00 00
672
673 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
674
675
676 **Example2**: AA 02 01 00
677
678 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
679
680
681
682 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
683
684 MOD6 Payload : total 11 bytes payload
685
686 [[image:image-20220524085923-1.png]]
687
688
689 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
690
691 [[image:image-20220524090106-2.png]]
692
693 * Each bits shows if the corresponding trigger has been configured.
694
695 **Example:**
696
697 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
698
699
700
701 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
702
703 [[image:image-20220524090249-3.png]]
704
705 * Each bits shows which status has been trigger on this uplink.
706
707 **Example:**
708
709 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
710
711
712 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
713
714 [[image:image-20220524090456-4.png]]
715
716 * Each bits shows which status has been trigger on this uplink.
717
718 **Example:**
719
720 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
721
722 00000101: Means both DI1 and DI2 trigger are enabled.
723
724
725 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
726
727 Downlink command to poll MOD6 status:
728
729 **AB 06**
730
731 When device got this command, it will send the MOD6 payload.
732
733
734 === 3.3.7 Payload Decoder ===
735
736 (((
737
738
739 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
740 )))
741
742
743 == 3.4 ​Configure LT via AT or Downlink ==
744
745
746 (((
747 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
748 )))
749
750 (((
751 (((
752 There are two kinds of Commands:
753 )))
754 )))
755
756 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
757
758 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
759
760
761 === 3.4.1 Common Commands ===
762
763
764 (((
765 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
766 )))
767
768
769 === 3.4.2 Sensor related commands ===
770
771 ==== 3.4.2.1 Set Transmit Interval ====
772
773
774 Set device uplink interval.
775
776 * (% style="color:#037691" %)**AT Command:**
777
778 (% style="color:blue" %)**AT+TDC=N **
779
780
781 **Example: **AT+TDC=30000. Means set interval to 30 seconds
782
783
784 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
785
786 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
787
788
789
790 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
791
792
793 Set work mode.
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 (% style="color:blue" %)**AT+MOD=N  **
798
799
800 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
801
802
803 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
804
805 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
806
807
808
809 ==== 3.4.2.3 Poll an uplink ====
810
811
812 * (% style="color:#037691" %)**AT Command:**
813
814 There is no AT Command to poll uplink
815
816
817 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
818
819 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
820
821
822 **Example**: 0x08FF, ask device to send an Uplink
823
824
825
826 ==== 3.4.2.4 Enable Trigger Mode ====
827
828
829 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
830
831 * (% style="color:#037691" %)**AT Command:**
832
833 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
834
835 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
836
837 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
838
839
840 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
841
842 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
843
844
845
846 ==== 3.4.2.5 Poll trigger settings ====
847
848
849 Poll trigger settings,
850
851 * (% style="color:#037691" %)**AT Command:**
852
853 There is no AT Command for this feature.
854
855
856 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
857
858 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
859
860
861
862 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
863
864
865 Enable Disable DI1/DI2/DI2 as trigger,
866
867 * (% style="color:#037691" %)**AT Command:**
868
869 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
870
871
872 **Example:**
873
874 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
875
876 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
877
878 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
879
880
881
882 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
883
884
885 Set DI1 or DI3(for LT-33222-L) trigger.
886
887 * (% style="color:#037691" %)**AT Command:**
888
889 (% style="color:blue" %)**AT+TRIG1=a,b**
890
891 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
892
893 (% style="color:red" %)**b :** (%%)delay timing.
894
895
896 **Example:**
897
898 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
899
900
901 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
902
903 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
904
905
906
907 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
908
909
910 Set DI2 trigger.
911
912 * (% style="color:#037691" %)**AT Command:**
913
914 (% style="color:blue" %)**AT+TRIG2=a,b**
915
916 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
917
918 (% style="color:red" %)**b :** (%%)delay timing.
919
920
921 **Example:**
922
923 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
927
928 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
929
930
931
932 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
933
934
935 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937 * (% style="color:#037691" %)**AT Command**
938
939 (% style="color:blue" %)**AT+ACLIM**
940
941
942 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
943
944 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
945
946
947
948 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
949
950
951 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
952
953 * (% style="color:#037691" %)**AT Command**
954
955 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
959
960 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
961
962
963
964 ==== 3.4.2.11 Trigger – Set minimum interval ====
965
966
967 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
968
969 * (% style="color:#037691" %)**AT Command**
970
971 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
972
973
974 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
975
976 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
977
978 (((
979
980
981 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
982 )))
983
984
985
986 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
987
988
989 * (% style="color:#037691" %)**AT Command**
990
991 There is no AT Command to control Digital Output
992
993
994 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
995 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
996
997 (((
998 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
999 )))
1000
1001 (((
1002 01: Low,  00: High ,  11: No action
1003 )))
1004
1005 [[image:image-20220524092754-5.png]]
1006
1007 (((
1008 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1009 )))
1010
1011 (((
1012 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1013 )))
1014
1015
1016
1017 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1018
1019
1020 * (% style="color:#037691" %)**AT Command**
1021
1022 There is no AT Command to control Digital Output
1023
1024
1025 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1026
1027 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1028
1029
1030 This is to control the digital output time of DO pin. Include four bytes:
1031
1032 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1033
1034 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1035
1036 01: DO pins will change back to original state after timeout.
1037
1038 00: DO pins will change to an inverter state after timeout 
1039
1040
1041 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1042
1043 [[image:image-20220524093238-6.png]]
1044
1045
1046 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1047
1048 [[image:image-20220524093328-7.png]]
1049
1050
1051 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1052
1053 [[image:image-20220524093351-8.png]]
1054
1055
1056 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1057
1058 Latching time. Unit: ms
1059
1060
1061 (% style="color:red" %)**Note: **
1062
1063 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1064
1065 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1066
1067
1068 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1069
1070
1071 **Example payload:**
1072
1073 **~1. A9 01 01 01 01 07 D0**
1074
1075 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1076
1077 **2. A9 01 00 01 11 07 D0**
1078
1079 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1080
1081 **3. A9 00 00 00 00 07 D0**
1082
1083 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1084
1085 **4. A9 00 11 01 00 07 D0**
1086
1087 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1088
1089
1090
1091 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1092
1093
1094 * (% style="color:#037691" %)**AT Command:**
1095
1096 There is no AT Command to control Relay Output
1097
1098
1099 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1100
1101 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1102
1103
1104 (((
1105 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1106 )))
1107
1108 (((
1109 01: Close ,  00: Open , 11: No action
1110 )))
1111
1112 (((
1113 [[image:image-20220524093724-9.png]]
1114 )))
1115
1116 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1117
1118
1119
1120 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1121
1122
1123 * (% style="color:#037691" %)**AT Command:**
1124
1125 There is no AT Command to control Relay Output
1126
1127
1128 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1129
1130 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1131
1132
1133 This is to control the relay output time of relay. Include four bytes:
1134
1135 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1136
1137 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1138
1139 01: Relays will change back to original state after timeout.
1140
1141 00: Relays will change to an inverter state after timeout
1142
1143
1144 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1145
1146 [[image:image-20221008095908-1.png||height="364" width="564"]]
1147
1148
1149 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1150
1151
1152 (% style="color:red" %)**Note:**
1153
1154 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1155
1156 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1157
1158
1159 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1160
1161
1162 **Example payload:**
1163
1164 **~1. 05 01 11 07 D0**
1165
1166 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1167
1168 **2. 05 01 10 07 D0**
1169
1170 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1171
1172 **3. 05 00 01 07 D0**
1173
1174 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1175
1176 **4. 05 00 00 07 D0**
1177
1178 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1179
1180
1181
1182 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1183
1184
1185 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1193
1194 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1195
1196
1197
1198 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1199
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1204
1205 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1206
1207 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1211
1212 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1213
1214
1215
1216 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1217
1218
1219 Clear counting for counting mode
1220
1221 * (% style="color:#037691" %)**AT Command:**
1222
1223 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1227
1228 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1229
1230
1231
1232 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233
1234
1235 * (% style="color:#037691" %)**AT Command:**
1236
1237 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1238
1239
1240 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1241
1242 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1243
1244 (((
1245 range: aa bb cc:0 to 16777215,  (unit:second)
1246 )))
1247
1248
1249
1250 ==== 3.4.2.20 Reset save RO DO state ====
1251
1252
1253 * (% style="color:#037691" %)**AT Command:**
1254
1255 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1256
1257 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1258
1259
1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1261
1262 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1263
1264
1265
1266 ==== 3.4.2.21 Encrypted payload ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1272
1273 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1274
1275
1276
1277 ==== 3.4.2.22 Get sensor value ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**
1281
1282 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1283
1284 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1285
1286
1287
1288 ==== 3.4.2.23 Resets the downlink packet count ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1294
1295 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1296
1297
1298
1299 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1300
1301
1302 * (% style="color:#037691" %)**AT Command:**
1303
1304 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1305
1306 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1307
1308
1309 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1310
1311 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1312
1313
1314
1315 ==== 3.4.2.25 Copy downlink to uplink ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command**(%%)**:**
1319
1320 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1321
1322 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1323
1324
1325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1326
1327 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1328
1329
1330
1331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1332
1333 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1334
1335
1336
1337 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1338
1339
1340 * (((
1341 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1342
1343 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1344
1345
1346 )))
1347
1348 **Example:**
1349
1350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1351
1352
1353 == 3.5 Integrate with Mydevice ==
1354
1355
1356 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1357
1358 (((
1359 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1360 )))
1361
1362 (((
1363 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1364
1365
1366 )))
1367
1368 [[image:image-20220719105525-1.png||height="377" width="677"]]
1369
1370
1371
1372 [[image:image-20220719110247-2.png||height="388" width="683"]]
1373
1374
1375 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1376
1377 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1378
1379 Search under The things network
1380
1381 [[image:1653356838789-523.png||height="337" width="740"]]
1382
1383
1384
1385 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1386
1387 [[image:image-20220524094909-1.png||height="335" width="729"]]
1388
1389
1390 [[image:image-20220524094909-2.png||height="337" width="729"]]
1391
1392
1393 [[image:image-20220524094909-3.png||height="338" width="727"]]
1394
1395
1396 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1397
1398
1399 [[image:image-20220524094909-5.png||height="341" width="734"]]
1400
1401
1402 == 3.6 Interface Detail ==
1403
1404 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1405
1406
1407 Support NPN Type sensor
1408
1409 [[image:1653356991268-289.png]]
1410
1411
1412 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1413
1414
1415 (((
1416 The DI port of LT-22222-L can support NPN or PNP output sensor.
1417 )))
1418
1419 (((
1420 (((
1421 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1422
1423
1424 )))
1425 )))
1426
1427 [[image:1653357170703-587.png]]
1428
1429 (((
1430 (((
1431 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1432 )))
1433 )))
1434
1435 (((
1436
1437 )))
1438
1439 (((
1440 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1441 )))
1442
1443 (((
1444 This type of sensor will output a low signal GND when active.
1445 )))
1446
1447 * (((
1448 Connect sensor's output to DI1-
1449 )))
1450 * (((
1451 Connect sensor's VCC to DI1+.
1452 )))
1453
1454 (((
1455 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1456 )))
1457
1458 (((
1459 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1460 )))
1461
1462 (((
1463 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1464 )))
1465
1466 (((
1467
1468 )))
1469
1470 (((
1471 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1472 )))
1473
1474 (((
1475 This type of sensor will output a high signal (example 24v) when active.
1476 )))
1477
1478 * (((
1479 Connect sensor's output to DI1+
1480 )))
1481 * (((
1482 Connect sensor's GND DI1-.
1483 )))
1484
1485 (((
1486 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1487 )))
1488
1489 (((
1490 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1491 )))
1492
1493 (((
1494 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1495 )))
1496
1497 (((
1498
1499 )))
1500
1501 (((
1502 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1503 )))
1504
1505 (((
1506 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1507 )))
1508
1509 * (((
1510 Connect sensor's output to DI1+ with a serial 50K resistor
1511 )))
1512 * (((
1513 Connect sensor's GND DI1-.
1514 )))
1515
1516 (((
1517 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1518 )))
1519
1520 (((
1521 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1522 )))
1523
1524 (((
1525 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1526 )))
1527
1528
1529 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1530
1531
1532 **NPN output**: GND or Float. Max voltage can apply to output pin is 36v.
1533
1534 Note: DO pins go to float when device is power off.
1535
1536 [[image:1653357531600-905.png]]
1537
1538
1539 === 3.6.4 Analog Input Interface ===
1540
1541
1542 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1543
1544
1545 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1546
1547 [[image:1653357592296-182.png]]
1548
1549 Example to connect a 4~~20mA sensor
1550
1551 We take the wind speed sensor as an example for reference only.
1552
1553
1554 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1555
1556 **Red:  12~~24v**
1557
1558 **Yellow:  4~~20mA**
1559
1560 **Black:  GND**
1561
1562
1563 **Connection diagram:**
1564
1565 [[image:1653357640609-758.png]]
1566
1567 [[image:1653357648330-671.png||height="155" width="733"]]
1568
1569
1570 === 3.6.5 Relay Output ===
1571
1572
1573 (((
1574 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1575
1576 **Note**: RO pins go to Open(NO) when device is power off.
1577 )))
1578
1579 [[image:image-20220524100215-9.png]]
1580
1581
1582 [[image:image-20220524100215-10.png||height="382" width="723"]]
1583
1584
1585 == 3.7 LEDs Indicators ==
1586
1587
1588 [[image:image-20220524100748-11.png]]
1589
1590
1591 = 4. Use AT Command =
1592
1593 == 4.1 Access AT Command ==
1594
1595
1596 (((
1597 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1598 )))
1599
1600 (((
1601
1602 )))
1603
1604 [[image:1653358238933-385.png]]
1605
1606
1607 (((
1608 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1609 )))
1610
1611 [[image:1653358355238-883.png]]
1612
1613
1614 (((
1615 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1616 )))
1617
1618 (((
1619 AT+<CMD>?        : Help on <CMD>
1620 )))
1621
1622 (((
1623 AT+<CMD>         : Run <CMD>
1624 )))
1625
1626 (((
1627 AT+<CMD>=<value> : Set the value
1628 )))
1629
1630 (((
1631 AT+<CMD>=?       :  Get the value
1632 )))
1633
1634 (((
1635 ATZ: Trig a reset of the MCU
1636 )))
1637
1638 (((
1639 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1640 )))
1641
1642 (((
1643 AT+DEUI: Get or Set the Device EUI
1644 )))
1645
1646 (((
1647 AT+DADDR: Get or Set the Device Address
1648 )))
1649
1650 (((
1651 AT+APPKEY: Get or Set the Application Key
1652 )))
1653
1654 (((
1655 AT+NWKSKEY: Get or Set the Network Session Key
1656 )))
1657
1658 (((
1659 AT+APPSKEY:  Get or Set the Application Session Key
1660 )))
1661
1662 (((
1663 AT+APPEUI:  Get or Set the Application EUI
1664 )))
1665
1666 (((
1667 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1668 )))
1669
1670 (((
1671 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1672 )))
1673
1674 (((
1675 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1676 )))
1677
1678 (((
1679 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1680 )))
1681
1682 (((
1683 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1684 )))
1685
1686 (((
1687 AT+RX2FQ: Get or Set the Rx2 window frequency
1688 )))
1689
1690 (((
1691 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1692 )))
1693
1694 (((
1695 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1696 )))
1697
1698 (((
1699 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1700 )))
1701
1702 (((
1703 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1704 )))
1705
1706 (((
1707 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1708 )))
1709
1710 (((
1711 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1712 )))
1713
1714 (((
1715 AT+NWKID: Get or Set the Network ID
1716 )))
1717
1718 (((
1719 AT+FCU: Get or Set the Frame Counter Uplink
1720 )))
1721
1722 (((
1723 AT+FCD: Get or Set the Frame Counter Downlink
1724 )))
1725
1726 (((
1727 AT+CLASS: Get or Set the Device Class
1728 )))
1729
1730 (((
1731 AT+JOIN: Join network
1732 )))
1733
1734 (((
1735 AT+NJS: Get OTAA Join Status
1736 )))
1737
1738 (((
1739 AT+SENDB: Send hexadecimal data along with the application port
1740 )))
1741
1742 (((
1743 AT+SEND: Send text data along with the application port
1744 )))
1745
1746 (((
1747 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1748 )))
1749
1750 (((
1751 AT+RECV: Print last received data in raw format
1752 )))
1753
1754 (((
1755 AT+VER:  Get current image version and Frequency Band
1756 )))
1757
1758 (((
1759 AT+CFM: Get or Set the confirmation mode (0-1)
1760 )))
1761
1762 (((
1763 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1764 )))
1765
1766 (((
1767 AT+SNR: Get the SNR of the last received packet
1768 )))
1769
1770 (((
1771 AT+RSSI: Get the RSSI of the last received packet
1772 )))
1773
1774 (((
1775 AT+TDC: Get or set the application data transmission interval in ms
1776 )))
1777
1778 (((
1779 AT+PORT: Get or set the application port
1780 )))
1781
1782 (((
1783 AT+DISAT: Disable AT commands
1784 )))
1785
1786 (((
1787 AT+PWORD: Set password, max 9 digits
1788 )))
1789
1790 (((
1791 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1792 )))
1793
1794 (((
1795 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1796 )))
1797
1798 (((
1799 AT+CFG: Print all settings
1800 )))
1801
1802
1803 == 4.2 Common AT Command Sequence ==
1804
1805 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1806
1807 (((
1808
1809
1810 (((
1811 (% style="color:blue" %)**If device has not joined network yet:**
1812 )))
1813 )))
1814
1815 (((
1816 (% style="background-color:#dcdcdc" %)**123456**
1817 )))
1818
1819 (((
1820 (% style="background-color:#dcdcdc" %)**AT+FDR**
1821 )))
1822
1823 (((
1824 (% style="background-color:#dcdcdc" %)**123456**
1825 )))
1826
1827 (((
1828 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %)**ATZ**
1833 )))
1834
1835
1836 (((
1837 (% style="color:blue" %)**If device already joined network:**
1838 )))
1839
1840 (((
1841 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %)**ATZ**
1846 )))
1847
1848
1849 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1850
1851 (((
1852
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1856 )))
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1873 )))
1874
1875 (((
1876 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1877 )))
1878
1879 (((
1880 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1905
1906
1907 )))
1908
1909 (((
1910 (% style="color:red" %)**Note:**
1911 )))
1912
1913 (((
1914 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1915
1916 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1917
1918 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1919 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1920
1921 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1922
1923
1924 )))
1925
1926 (((
1927 [[image:1653359097980-169.png||height="188" width="729"]]
1928 )))
1929
1930 (((
1931
1932 )))
1933
1934 === 4.2.3 Change to Class A ===
1935
1936
1937 (((
1938 (% style="color:blue" %)**If sensor JOINED:**
1939
1940 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1941 ATZ**
1942 )))
1943
1944
1945 = 5. Case Study =
1946
1947 == 5.1 Counting how many objects pass in Flow Line ==
1948
1949
1950 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1951
1952
1953 = 5. FAQ =
1954
1955 == 5.1 How to upgrade the image? ==
1956
1957
1958 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1959
1960 * Support new features
1961 * For bug fix
1962 * Change LoRaWAN bands.
1963
1964 Below shows the hardware connection for how to upload an image to the LT:
1965
1966 [[image:1653359603330-121.png]]
1967
1968
1969 (((
1970 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1971 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1972 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1973
1974
1975 (((
1976 (% style="color:blue" %)**For LT-22222-L**(%%):
1977 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1978 )))
1979
1980
1981 )))
1982
1983 [[image:image-20220524103407-12.png]]
1984
1985 [[image:image-20220524103429-13.png]]
1986
1987 [[image:image-20220524104033-15.png]]
1988
1989
1990 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1991
1992
1993 [[image:1653360054704-518.png||height="186" width="745"]]
1994
1995
1996 (((
1997 (((
1998 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1999
2000
2001 )))
2002 )))
2003
2004 (((
2005 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2006 )))
2007
2008 (((
2009
2010
2011 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2012
2013
2014 )))
2015
2016 (((
2017 (((
2018 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2019 )))
2020 )))
2021
2022 (((
2023 (((
2024 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2025
2026
2027 )))
2028 )))
2029
2030 (((
2031 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2032
2033
2034 )))
2035
2036 (((
2037 [[image:1653360231087-571.png||height="401" width="727"]]
2038
2039
2040 )))
2041
2042 (((
2043 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2044 )))
2045
2046
2047
2048 (((
2049 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2050
2051
2052 )))
2053
2054 (((
2055 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2056 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2057 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2058 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2059 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2060 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2061 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2062 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2063 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2064 )))
2065
2066
2067 (((
2068 As shown in below:
2069 )))
2070
2071 [[image:1653360498588-932.png||height="485" width="726"]]
2072
2073
2074 == 5.4 Can I see counting event in Serial? ==
2075
2076
2077 (((
2078 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2079
2080
2081 == 5.5 Can i use point to point communication for LT-22222-L? ==
2082
2083
2084 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2085
2086
2087 )))
2088
2089 (((
2090 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2091
2092
2093 If the device is not shut down, but directly powered off.
2094
2095 It will default that this is a power-off state.
2096
2097 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2098
2099 After restart, the status before power failure will be read from flash.
2100
2101
2102 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2103
2104
2105 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2106
2107
2108 [[image:image-20221006170630-1.png||height="610" width="945"]]
2109
2110
2111 == 5.8 Can LT22222-L save RO state? ==
2112
2113
2114 Firmware version needs to be no less than 1.6.0.
2115
2116
2117 = 6. Trouble Shooting =
2118 )))
2119
2120 (((
2121 (((
2122 == 6.1 Downlink doesn't work, how to solve it? ==
2123
2124
2125 )))
2126 )))
2127
2128 (((
2129 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2130 )))
2131
2132 (((
2133
2134
2135 == 6.2 Have trouble to upload image. ==
2136
2137
2138 )))
2139
2140 (((
2141 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2142 )))
2143
2144 (((
2145
2146
2147 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2148
2149
2150 )))
2151
2152 (((
2153 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2154 )))
2155
2156
2157 = 7. Order Info =
2158
2159
2160 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2161
2162 (% style="color:#4f81bd" %)**XXX:**
2163
2164 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2165 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2166 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2167 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2168 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2169 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2170 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2171 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2172 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2173
2174
2175 = 8. Packing Info =
2176
2177
2178 **Package Includes**:
2179
2180 * LT-22222-L I/O Controller x 1
2181 * Stick Antenna for LoRa RF part x 1
2182 * Bracket for controller x1
2183 * Program cable x 1
2184
2185 **Dimension and weight**:
2186
2187 * Device Size: 13.5 x 7 x 3 cm
2188 * Device Weight: 105g
2189 * Package Size / pcs : 14.5 x 8 x 5 cm
2190 * Weight / pcs : 170g
2191
2192
2193 = 9. Support =
2194
2195
2196 * (((
2197 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2198 )))
2199 * (((
2200 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2201
2202
2203
2204 )))
2205
2206 = 10. Reference​​​​​ =
2207
2208
2209 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2210 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2211 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2212
2213