Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072xxxx MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199 == 1.5 Hardware Variants ==
200
201
202 (% border="1" style="background-color:#f7faff; width:500px" %)
203 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
204 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
205 * 2 x Digital Input (Bi-direction)
206 * 2 x Digital Output
207 * 2 x Relay Output (5A@250VAC / 30VDC)
208 * 2 x 0~~20mA Analog Input (res:0.01mA)
209 * 2 x 0~~30V Analog Input (res:0.01v)
210 * 1 x Counting Port
211 )))
212
213 = 2. Power ON Device =
214
215
216 (((
217 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
218 )))
219
220 (((
221 PWR will on when device is properly powered.
222
223
224 )))
225
226 [[image:1653297104069-180.png]]
227
228
229
230 = 3. Operation Mode =
231
232
233 == 3.1 How it works? ==
234
235
236 (((
237 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
238 )))
239
240 (((
241 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
242 )))
243
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 **Add APP EUI in the application.**
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 **Add APP KEY and DEV EUI**
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290
291
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300
301 There are five working modes + one interrupt mode on LT for different type application:
302
303 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
306 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
307 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
308 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
309
310 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
311
312
313 (((
314 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
315 )))
316
317 [[image:image-20220523174024-3.png]]
318
319 (((
320
321
322 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
323 )))
324
325 [[image:image-20220523174254-4.png]]
326
327 * RO is for relay. ROx=1 : close,ROx=0 always open.
328 * DI is for digital input. DIx=1: high or float, DIx=0: low.
329 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
330
331 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
332
333 For example if payload is: [[image:image-20220523175847-2.png]]
334
335
336 **The value for the interface is:  **
337
338 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
339
340 AVI2 channel voltage is 0x04AC/1000=1.196V
341
342 ACI1 channel current is 0x1310/1000=4.880mA
343
344 ACI2 channel current is 0x1300/1000=4.864mA
345
346 The last byte 0xAA= 10101010(B) means
347
348 * [1] RO1 relay channel is close and the RO1 LED is ON.
349 * [0] RO2 relay channel is open and RO2 LED is OFF;
350
351 **LT22222-L:**
352
353 * [1] DI2 channel is high input and DI2 LED is ON;
354 * [0] DI1 channel is low input;
355
356 * [0] DO3 channel output state
357 ** DO3 is float in case no load between DO3 and V+.;
358 ** DO3 is high in case there is load between DO3 and V+.
359 ** DO3 LED is off in both case
360 * [1] DO2 channel output is low and DO2 LED is ON.
361 * [0] DO1 channel output state
362 ** DO1 is float in case no load between DO1 and V+.;
363 ** DO1 is high in case there is load between DO1 and V+.
364 ** DO1 LED is off in both case
365
366 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
367
368
369 (((
370 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
371 )))
372
373 (((
374 Total : 11 bytes payload
375 )))
376
377 [[image:image-20220523180452-3.png]]
378
379
380 (((
381 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
382 )))
383
384 [[image:image-20220523180506-4.png]]
385
386 * RO is for relay. ROx=1 : close,ROx=0 always open.
387 * FIRST: Indicate this is the first packet after join network.
388 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
389
390 (((
391 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
392 )))
393
394 (((
395
396
397 **To use counting mode, please run:**
398 )))
399
400 (% class="box infomessage" %)
401 (((
402 (((
403 (((
404 **AT+MOD=2**
405 )))
406
407 (((
408 **ATZ**
409 )))
410 )))
411 )))
412
413 (((
414
415
416 (% style="color:#4f81bd" %)**AT Commands for counting:**
417
418
419 )))
420
421 (((
422 **For LT22222-L:**
423
424
425 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
426
427 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
428
429 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
430
431 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
432
433 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
434
435 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
436 )))
437
438
439
440 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
441
442
443 **LT22222-L**: This mode the DI1 is used as a counting pin.
444
445 [[image:image-20220523181246-5.png]]
446
447 (((
448
449
450 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
451 )))
452
453 [[image:image-20220523181301-6.png]]
454
455 * RO is for relay. ROx=1 : close,ROx=0 always open.
456 * FIRST: Indicate this is the first packet after join network.
457 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
458
459 (((
460 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
461 )))
462
463
464 (((
465 **To use counting mode, please run:**
466 )))
467
468 (% class="box infomessage" %)
469 (((
470 (((
471 (((
472 **AT+MOD=3**
473 )))
474
475 (((
476 **ATZ**
477 )))
478 )))
479 )))
480
481 (((
482 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
483 )))
484
485
486
487 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
488
489
490 (((
491 **LT22222-L**: This mode the DI1 is used as a counting pin.
492 )))
493
494 (((
495 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
496 )))
497
498 [[image:image-20220523181903-8.png]]
499
500
501 (((
502 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
503 )))
504
505 [[image:image-20220523181727-7.png]]
506
507 * RO is for relay. ROx=1 : close,ROx=0 always open.
508 * FIRST: Indicate this is the first packet after join network.
509 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
510
511 (((
512 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
513 )))
514
515 (((
516
517
518 **To use this mode, please run:**
519 )))
520
521 (% class="box infomessage" %)
522 (((
523 (((
524 (((
525 **AT+MOD=4**
526 )))
527
528 (((
529 **ATZ**
530 )))
531 )))
532 )))
533
534
535 (((
536 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
537 )))
538
539 (((
540
541
542 **Plus below command for AVI1 Counting:**
543
544
545 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
546
547 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
548
549 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
550
551 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
552 )))
553
554
555
556 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
557
558
559 **LT22222-L**: This mode the DI1 is used as a counting pin.
560
561 [[image:image-20220523182334-9.png]]
562
563 (((
564
565
566 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
567 )))
568
569 * RO is for relay. ROx=1 : close,ROx=0 always open.
570 * FIRST: Indicate this is the first packet after join network.
571 * (((
572 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
573 )))
574
575 (((
576 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
577 )))
578
579 (((
580
581
582 **To use this mode, please run:**
583 )))
584
585 (% class="box infomessage" %)
586 (((
587 (((
588 (((
589 **AT+MOD=5**
590 )))
591
592 (((
593 **ATZ**
594 )))
595 )))
596 )))
597
598 (((
599 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
600 )))
601
602
603
604 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
605
606
607 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
608
609 For example, if user has configured below commands:
610
611 * **AT+MOD=1 ** **~-~->**  The normal working mode
612 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
613
614 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
615
616 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
617 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
618
619 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
620
621
622 (% style="color:#4f81bd" %)**Trigger base on voltage**:
623
624 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
625
626
627 **Example:**
628
629 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
630
631 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
632
633
634
635 (% style="color:#4f81bd" %)**Trigger base on current**:
636
637 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
638
639
640 **Example:**
641
642 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
643
644
645
646 (% style="color:#4f81bd" %)**Trigger base on DI status**:
647
648 DI status trigger Flag.
649
650 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
651
652
653 **Example:**
654
655 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
656
657
658
659 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
660
661 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
662
663 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
664
665 AA: Code for this downlink Command:
666
667 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
668
669 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
670
671 yy2 yy2: AC1 or AV1 high limit.
672
673 yy3 yy3: AC2 or AV2 low limit.
674
675 Yy4 yy4: AC2 or AV2 high limit.
676
677
678 **Example1**: AA 00 13 88 00 00 00 00 00 00
679
680 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
681
682
683 **Example2**: AA 02 01 00
684
685 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
686
687
688
689 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
690
691 MOD6 Payload : total 11 bytes payload
692
693 [[image:image-20220524085923-1.png]]
694
695
696 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
697
698 [[image:image-20220524090106-2.png]]
699
700 * Each bits shows if the corresponding trigger has been configured.
701
702 **Example:**
703
704 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
705
706
707
708 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
709
710 [[image:image-20220524090249-3.png]]
711
712 * Each bits shows which status has been trigger on this uplink.
713
714 **Example:**
715
716 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
717
718
719
720 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
721
722 [[image:image-20220524090456-4.png]]
723
724 * Each bits shows which status has been trigger on this uplink.
725
726 **Example:**
727
728 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
729
730 00000101: Means both DI1 and DI2 trigger are enabled.
731
732
733
734 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
735
736 Downlink command to poll MOD6 status:
737
738 **AB 06**
739
740 When device got this command, it will send the MOD6 payload.
741
742
743
744 === 3.3.7 Payload Decoder ===
745
746 (((
747
748
749 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
750 )))
751
752
753
754 == 3.4 ​Configure LT via AT or Downlink ==
755
756
757 (((
758 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
759 )))
760
761 (((
762 (((
763 There are two kinds of Commands:
764 )))
765 )))
766
767 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
768
769 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
770
771 === 3.4.1 Common Commands ===
772
773
774 (((
775 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
776 )))
777
778
779
780 === 3.4.2 Sensor related commands ===
781
782
783 ==== 3.4.2.1 Set Transmit Interval ====
784
785
786 Set device uplink interval.
787
788 * (% style="color:#037691" %)**AT Command:**
789
790 (% style="color:blue" %)**AT+TDC=N **
791
792
793 **Example: **AT+TDC=30000. Means set interval to 30 seconds
794
795
796 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
797
798 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
799
800
801
802 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
803
804
805 Set work mode.
806
807 * (% style="color:#037691" %)**AT Command:**
808
809 (% style="color:blue" %)**AT+MOD=N  **
810
811
812 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
813
814
815 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
816
817 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
818
819
820
821 ==== 3.4.2.3 Poll an uplink ====
822
823
824 * (% style="color:#037691" %)**AT Command:**
825
826 There is no AT Command to poll uplink
827
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
830
831 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
832
833
834 **Example**: 0x08FF, ask device to send an Uplink
835
836
837
838 ==== 3.4.2.4 Enable Trigger Mode ====
839
840
841 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
842
843 * (% style="color:#037691" %)**AT Command:**
844
845 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
846
847 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
848
849 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
850
851
852 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
853
854 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
855
856
857
858
859 ==== 3.4.2.5 Poll trigger settings ====
860
861
862 Poll trigger settings,
863
864 * (% style="color:#037691" %)**AT Command:**
865
866 There is no AT Command for this feature.
867
868
869 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
870
871 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
872
873
874
875 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
876
877
878 Enable Disable DI1/DI2/DI2 as trigger,
879
880 * (% style="color:#037691" %)**AT Command:**
881
882 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
883
884
885 **Example:**
886
887 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888
889 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
890
891 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
892
893
894
895 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
896
897
898 Set DI1 or DI3(for LT-33222-L) trigger.
899
900 * (% style="color:#037691" %)**AT Command:**
901
902 (% style="color:blue" %)**AT+TRIG1=a,b**
903
904 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
905
906 (% style="color:red" %)**b :** (%%)delay timing.
907
908
909 **Example:**
910
911 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
912
913
914 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
915
916 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
917
918
919
920 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
921
922
923 Set DI2 trigger.
924
925 * (% style="color:#037691" %)**AT Command:**
926
927 (% style="color:blue" %)**AT+TRIG2=a,b**
928
929 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
930
931 (% style="color:red" %)**b :** (%%)delay timing.
932
933
934 **Example:**
935
936 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
937
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
940
941 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
942
943
944
945 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
946
947
948 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
949
950 * (% style="color:#037691" %)**AT Command**
951
952 (% style="color:blue" %)**AT+ACLIM**
953
954
955 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
956
957 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
958
959
960
961 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
962
963
964 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
965
966 * (% style="color:#037691" %)**AT Command**
967
968 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
969
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
972
973 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
974
975
976
977 ==== 3.4.2.11 Trigger – Set minimum interval ====
978
979
980 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
981
982 * (% style="color:#037691" %)**AT Command**
983
984 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
988
989 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
990
991 (((
992
993
994 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
995 )))
996
997
998
999 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1000
1001
1002 * (% style="color:#037691" %)**AT Command**
1003
1004 There is no AT Command to control Digital Output
1005
1006
1007 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1008 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1009
1010 (((
1011 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1012 )))
1013
1014 (((
1015 01: Low,  00: High ,  11: No action
1016 )))
1017
1018 [[image:image-20220524092754-5.png]]
1019
1020 (((
1021 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1022 )))
1023
1024 (((
1025 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1026 )))
1027
1028
1029
1030 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1031
1032
1033 * (% style="color:#037691" %)**AT Command**
1034
1035 There is no AT Command to control Digital Output
1036
1037
1038 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1039
1040 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1041
1042
1043 This is to control the digital output time of DO pin. Include four bytes:
1044
1045 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1046
1047 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1048
1049 01: DO pins will change back to original state after timeout.
1050
1051 00: DO pins will change to an inverter state after timeout 
1052
1053
1054 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1055
1056 [[image:image-20220524093238-6.png]]
1057
1058
1059 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1060
1061 [[image:image-20220524093328-7.png]]
1062
1063
1064 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1065
1066 [[image:image-20220524093351-8.png]]
1067
1068
1069 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1070
1071 Latching time. Unit: ms
1072
1073 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1074
1075
1076 **Example payload:**
1077
1078 **~1. A9 01 01 01 01 07 D0**
1079
1080 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1081
1082 **2. A9 01 00 01 11 07 D0**
1083
1084 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1085
1086 **3. A9 00 00 00 00 07 D0**
1087
1088 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1089
1090 **4. A9 00 11 01 00 07 D0**
1091
1092 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1093
1094
1095
1096 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1097
1098
1099 * (% style="color:#037691" %)**AT Command:**
1100
1101 There is no AT Command to control Relay Output
1102
1103
1104 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1105
1106 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1107
1108
1109 (((
1110 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1111 )))
1112
1113 (((
1114 01: Close ,  00: Open , 11: No action
1115 )))
1116
1117 (((
1118 [[image:image-20220524093724-9.png]]
1119 )))
1120
1121 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1122
1123
1124
1125
1126 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1127
1128
1129 * (% style="color:#037691" %)**AT Command:**
1130
1131 There is no AT Command to control Relay Output
1132
1133
1134 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1135
1136 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1137
1138
1139 This is to control the relay output time of relay. Include four bytes:
1140
1141 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1142
1143 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1144
1145 01: Relays will change back to original state after timeout.
1146
1147 00: Relays will change to an inverter state after timeout
1148
1149
1150 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1151
1152 [[image:image-20221008095908-1.png||height="364" width="564"]]
1153
1154
1155 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1156
1157 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1158
1159
1160 **Example payload:**
1161
1162 **~1. 05 01 11 07 D**
1163
1164 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1165
1166 **2. 05 01 10 07 D0**
1167
1168 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1169
1170 **3. 05 00 01 07 D0**
1171
1172 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1173
1174 **4. 05 00 00 07 D0**
1175
1176 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1177
1178
1179
1180 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1181
1182
1183 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1184
1185 * (% style="color:#037691" %)**AT Command:**
1186
1187 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1188
1189
1190 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1191
1192 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1193
1194
1195
1196 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1197
1198
1199 * (% style="color:#037691" %)**AT Command:**
1200
1201 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1202
1203 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1204
1205 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1206
1207
1208 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1209
1210 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1211
1212
1213
1214 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1215
1216
1217 Clear counting for counting mode
1218
1219 * (% style="color:#037691" %)**AT Command:**
1220
1221 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1222
1223
1224 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1225
1226 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1227
1228
1229
1230 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1231
1232
1233 * (% style="color:#037691" %)**AT Command:**
1234
1235 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1239
1240 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1241
1242 (((
1243 range: aa bb cc:0 to 16777215,  (unit:second)
1244 )))
1245
1246
1247
1248 ==== 3.4.2.20 Reset save RO DO state ====
1249
1250
1251 * (% style="color:#037691" %)**AT Command:**
1252
1253 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1254
1255 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1256
1257
1258 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1259
1260 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1261
1262
1263
1264 ==== 3.4.2.21 Encrypted payload ====
1265
1266
1267 * (% style="color:#037691" %)**AT Command:**
1268
1269 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1270
1271 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1272
1273
1274
1275 ==== 3.4.2.22 Get sensor value ====
1276
1277
1278 * (% style="color:#037691" %)**AT Command:**
1279
1280 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1281
1282 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1283
1284
1285
1286 ==== 3.4.2.23 Resets the downlink packet count ====
1287
1288
1289 * (% style="color:#037691" %)**AT Command:**
1290
1291 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1292
1293 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1294
1295
1296
1297
1298 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1304
1305 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1306
1307
1308 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1309
1310 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1311
1312
1313
1314
1315 ==== 3.4.2.25 Copy downlink to uplink ====
1316
1317
1318 * (% style="color:#037691" %)**AT Command**(%%)**:**
1319
1320 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1321
1322 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1323
1324
1325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1326
1327 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1328
1329
1330
1331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1332
1333 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1334
1335
1336
1337 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1338
1339
1340 * (((
1341 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1342
1343 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1344
1345
1346 )))
1347
1348 **Example:**
1349
1350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1351
1352
1353
1354 == 3.5 Integrate with Mydevice ==
1355
1356
1357 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1358
1359 (((
1360 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1361 )))
1362
1363 (((
1364 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1365
1366
1367 )))
1368
1369 [[image:image-20220719105525-1.png||height="377" width="677"]]
1370
1371
1372
1373 [[image:image-20220719110247-2.png||height="388" width="683"]]
1374
1375
1376 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1377
1378 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1379
1380 Search under The things network
1381
1382 [[image:1653356838789-523.png||height="337" width="740"]]
1383
1384
1385
1386 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1387
1388 [[image:image-20220524094909-1.png||height="335" width="729"]]
1389
1390
1391 [[image:image-20220524094909-2.png||height="337" width="729"]]
1392
1393
1394 [[image:image-20220524094909-3.png||height="338" width="727"]]
1395
1396
1397 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1398
1399
1400 [[image:image-20220524094909-5.png||height="341" width="734"]]
1401
1402
1403
1404 == 3.6 Interface Detail ==
1405
1406
1407 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1408
1409
1410 Support NPN Type sensor
1411
1412 [[image:1653356991268-289.png]]
1413
1414
1415
1416 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1417
1418
1419 (((
1420 The DI port of LT-22222-L can support NPN or PNP output sensor.
1421 )))
1422
1423 (((
1424 (((
1425 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1426
1427
1428 )))
1429 )))
1430
1431 [[image:1653357170703-587.png]]
1432
1433 (((
1434 (((
1435 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1436 )))
1437 )))
1438
1439 (((
1440
1441 )))
1442
1443 (((
1444 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1445 )))
1446
1447 (((
1448 This type of sensor will output a low signal GND when active.
1449 )))
1450
1451 * (((
1452 Connect sensor's output to DI1-
1453 )))
1454 * (((
1455 Connect sensor's VCC to DI1+.
1456 )))
1457
1458 (((
1459 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1460 )))
1461
1462 (((
1463 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1464 )))
1465
1466 (((
1467 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1468 )))
1469
1470 (((
1471
1472
1473
1474 )))
1475
1476 (((
1477 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1478 )))
1479
1480 (((
1481 This type of sensor will output a high signal (example 24v) when active.
1482 )))
1483
1484 * (((
1485 Connect sensor's output to DI1+
1486 )))
1487 * (((
1488 Connect sensor's GND DI1-.
1489 )))
1490
1491 (((
1492 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1493 )))
1494
1495 (((
1496 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1497 )))
1498
1499 (((
1500 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1501 )))
1502
1503 (((
1504
1505
1506
1507 )))
1508
1509 (((
1510 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1511 )))
1512
1513 (((
1514 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1515 )))
1516
1517 * (((
1518 Connect sensor's output to DI1+ with a serial 50K resistor
1519 )))
1520 * (((
1521 Connect sensor's GND DI1-.
1522 )))
1523
1524 (((
1525 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1526 )))
1527
1528 (((
1529 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1530 )))
1531
1532 (((
1533 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1534 )))
1535
1536
1537
1538 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1539
1540
1541 **NPN output**: GND or Float. Max voltage can apply to output pin is 36v.
1542
1543 Note: DO pins go to float when device is power off.
1544
1545 [[image:1653357531600-905.png]]
1546
1547
1548
1549 === 3.6.4 Analog Input Interface ===
1550
1551
1552 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1553
1554
1555 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1556
1557 [[image:1653357592296-182.png]]
1558
1559 Example to connect a 4~~20mA sensor
1560
1561 We take the wind speed sensor as an example for reference only.
1562
1563
1564 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1565
1566 **Red:  12~~24v**
1567
1568 **Yellow:  4~~20mA**
1569
1570 **Black:  GND**
1571
1572
1573 **Connection diagram:**
1574
1575 [[image:1653357640609-758.png]]
1576
1577 [[image:1653357648330-671.png||height="155" width="733"]]
1578
1579
1580
1581 === 3.6.5 Relay Output ===
1582
1583
1584 (((
1585 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1586
1587 **Note**: RO pins go to Open(NO) when device is power off.
1588 )))
1589
1590 [[image:image-20220524100215-9.png]]
1591
1592
1593 [[image:image-20220524100215-10.png||height="382" width="723"]]
1594
1595
1596
1597 == 3.7 LEDs Indicators ==
1598
1599
1600 [[image:image-20220524100748-11.png]]
1601
1602
1603
1604 = 4. Use AT Command =
1605
1606
1607 == 4.1 Access AT Command ==
1608
1609
1610 (((
1611 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1612 )))
1613
1614 (((
1615
1616 )))
1617
1618 [[image:1653358238933-385.png]]
1619
1620
1621 (((
1622 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1623 )))
1624
1625 [[image:1653358355238-883.png]]
1626
1627
1628 (((
1629 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1630 )))
1631
1632 (((
1633 AT+<CMD>?        : Help on <CMD>
1634 )))
1635
1636 (((
1637 AT+<CMD>         : Run <CMD>
1638 )))
1639
1640 (((
1641 AT+<CMD>=<value> : Set the value
1642 )))
1643
1644 (((
1645 AT+<CMD>=?       :  Get the value
1646 )))
1647
1648 (((
1649 ATZ: Trig a reset of the MCU
1650 )))
1651
1652 (((
1653 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1654 )))
1655
1656 (((
1657 AT+DEUI: Get or Set the Device EUI
1658 )))
1659
1660 (((
1661 AT+DADDR: Get or Set the Device Address
1662 )))
1663
1664 (((
1665 AT+APPKEY: Get or Set the Application Key
1666 )))
1667
1668 (((
1669 AT+NWKSKEY: Get or Set the Network Session Key
1670 )))
1671
1672 (((
1673 AT+APPSKEY:  Get or Set the Application Session Key
1674 )))
1675
1676 (((
1677 AT+APPEUI:  Get or Set the Application EUI
1678 )))
1679
1680 (((
1681 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1682 )))
1683
1684 (((
1685 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1686 )))
1687
1688 (((
1689 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1690 )))
1691
1692 (((
1693 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1694 )))
1695
1696 (((
1697 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1698 )))
1699
1700 (((
1701 AT+RX2FQ: Get or Set the Rx2 window frequency
1702 )))
1703
1704 (((
1705 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1706 )))
1707
1708 (((
1709 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1710 )))
1711
1712 (((
1713 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1714 )))
1715
1716 (((
1717 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1718 )))
1719
1720 (((
1721 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1722 )))
1723
1724 (((
1725 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1726 )))
1727
1728 (((
1729 AT+NWKID: Get or Set the Network ID
1730 )))
1731
1732 (((
1733 AT+FCU: Get or Set the Frame Counter Uplink
1734 )))
1735
1736 (((
1737 AT+FCD: Get or Set the Frame Counter Downlink
1738 )))
1739
1740 (((
1741 AT+CLASS: Get or Set the Device Class
1742 )))
1743
1744 (((
1745 AT+JOIN: Join network
1746 )))
1747
1748 (((
1749 AT+NJS: Get OTAA Join Status
1750 )))
1751
1752 (((
1753 AT+SENDB: Send hexadecimal data along with the application port
1754 )))
1755
1756 (((
1757 AT+SEND: Send text data along with the application port
1758 )))
1759
1760 (((
1761 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1762 )))
1763
1764 (((
1765 AT+RECV: Print last received data in raw format
1766 )))
1767
1768 (((
1769 AT+VER:  Get current image version and Frequency Band
1770 )))
1771
1772 (((
1773 AT+CFM: Get or Set the confirmation mode (0-1)
1774 )))
1775
1776 (((
1777 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1778 )))
1779
1780 (((
1781 AT+SNR: Get the SNR of the last received packet
1782 )))
1783
1784 (((
1785 AT+RSSI: Get the RSSI of the last received packet
1786 )))
1787
1788 (((
1789 AT+TDC: Get or set the application data transmission interval in ms
1790 )))
1791
1792 (((
1793 AT+PORT: Get or set the application port
1794 )))
1795
1796 (((
1797 AT+DISAT: Disable AT commands
1798 )))
1799
1800 (((
1801 AT+PWORD: Set password, max 9 digits
1802 )))
1803
1804 (((
1805 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1806 )))
1807
1808 (((
1809 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1810 )))
1811
1812 (((
1813 AT+CFG: Print all settings
1814 )))
1815
1816
1817
1818 == 4.2 Common AT Command Sequence ==
1819
1820
1821 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1822
1823 (((
1824
1825
1826 (((
1827 (% style="color:blue" %)**If device has not joined network yet:**
1828 )))
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %)**123456**
1833 )))
1834
1835 (((
1836 (% style="background-color:#dcdcdc" %)**AT+FDR**
1837 )))
1838
1839 (((
1840 (% style="background-color:#dcdcdc" %)**123456**
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1845 )))
1846
1847 (((
1848 (% style="background-color:#dcdcdc" %)**ATZ**
1849 )))
1850
1851
1852 (((
1853 (% style="color:blue" %)**If device already joined network:**
1854 )))
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1858 )))
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %)**ATZ**
1862 )))
1863
1864
1865
1866 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1867
1868 (((
1869
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1873 )))
1874 )))
1875
1876 (((
1877 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1878 )))
1879
1880 (((
1881 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1882 )))
1883
1884 (((
1885 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1886 )))
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1890 )))
1891
1892 (((
1893 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1894 )))
1895
1896 (((
1897 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1898 )))
1899
1900 (((
1901 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1914 )))
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1918 )))
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1922
1923
1924 )))
1925
1926 (((
1927 (% style="color:red" %)**Note:**
1928 )))
1929
1930 (((
1931 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1932
1933 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1934
1935 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1936 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1937
1938 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1939
1940
1941 )))
1942
1943 (((
1944 [[image:1653359097980-169.png||height="188" width="729"]]
1945 )))
1946
1947 (((
1948
1949 )))
1950
1951
1952 === 4.2.3 Change to Class A ===
1953
1954
1955 (((
1956 (% style="color:blue" %)**If sensor JOINED:**
1957
1958 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1959 ATZ**
1960 )))
1961
1962
1963
1964 = 5. FAQ =
1965
1966
1967 == 5.1 How to upgrade the image? ==
1968
1969
1970 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1971
1972 * Support new features
1973 * For bug fix
1974 * Change LoRaWAN bands.
1975
1976 Below shows the hardware connection for how to upload an image to the LT:
1977
1978 [[image:1653359603330-121.png]]
1979
1980
1981 (((
1982 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1983 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1984 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1985
1986
1987 (((
1988 (% style="color:blue" %)**For LT-22222-L**(%%):
1989 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1990 )))
1991
1992
1993 )))
1994
1995 [[image:image-20220524103407-12.png]]
1996
1997 [[image:image-20220524103429-13.png]]
1998
1999 [[image:image-20220524104033-15.png]]
2000
2001
2002 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2003
2004
2005 [[image:1653360054704-518.png||height="186" width="745"]]
2006
2007
2008 (((
2009 (((
2010
2011
2012 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2013
2014
2015 )))
2016 )))
2017
2018 (((
2019 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2020 )))
2021
2022 (((
2023
2024
2025
2026 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2027
2028
2029 )))
2030
2031 (((
2032 (((
2033 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2034 )))
2035 )))
2036
2037 (((
2038 (((
2039 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2040
2041
2042 )))
2043 )))
2044
2045 (((
2046 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2047
2048
2049 )))
2050
2051 (((
2052 [[image:1653360231087-571.png||height="401" width="727"]]
2053
2054
2055 )))
2056
2057 (((
2058 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2059 )))
2060
2061
2062
2063 (((
2064 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2065
2066
2067 )))
2068
2069 (((
2070 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2071 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2072 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2073 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2074 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2075 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2076 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2077 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2078 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2079 )))
2080
2081
2082 (((
2083 As shown in below:
2084 )))
2085
2086 [[image:1653360498588-932.png||height="485" width="726"]]
2087
2088
2089
2090 == 5.4 Can I see counting event in Serial? ==
2091
2092
2093 (((
2094 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2095
2096
2097
2098 == 5.5 Can i use point to point communication for LT-22222-L? ==
2099
2100
2101 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2102
2103
2104
2105 )))
2106
2107 (((
2108 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2109
2110
2111 If the device is not shut down, but directly powered off.
2112
2113 It will default that this is a power-off state.
2114
2115 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2116
2117 After restart, the status before power failure will be read from flash.
2118
2119
2120
2121 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2122
2123
2124 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2125
2126
2127 [[image:image-20221006170630-1.png||height="610" width="945"]]
2128
2129
2130 == 5.8 Can LT22222-L save RO state? ==
2131
2132
2133 Firmware version needs to be no less than 1.6.0.
2134
2135
2136
2137 = 6. Trouble Shooting =
2138
2139
2140 )))
2141
2142 (((
2143 (((
2144 == 6.1 Downlink doesn't work, how to solve it? ==
2145
2146
2147 )))
2148 )))
2149
2150 (((
2151 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2152 )))
2153
2154 (((
2155
2156
2157
2158 == 6.2 Have trouble to upload image. ==
2159
2160
2161 )))
2162
2163 (((
2164 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2165 )))
2166
2167 (((
2168
2169
2170
2171 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2172
2173
2174 )))
2175
2176 (((
2177 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2178 )))
2179
2180
2181
2182 = 7. Order Info =
2183
2184
2185 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2186
2187 (% style="color:#4f81bd" %)**XXX:**
2188
2189 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2190 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2191 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2192 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2193 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2194 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2195 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2196 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2197 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2198
2199 = 8. Packing Info =
2200
2201
2202 **Package Includes**:
2203
2204 * LT-22222-L I/O Controller x 1
2205 * Stick Antenna for LoRa RF part x 1
2206 * Bracket for controller x1
2207 * Program cable x 1
2208
2209 **Dimension and weight**:
2210
2211 * Device Size: 13.5 x 7 x 3 cm
2212 * Device Weight: 105g
2213 * Package Size / pcs : 14.5 x 8 x 5 cm
2214 * Weight / pcs : 170g
2215
2216 = 9. Support =
2217
2218
2219 * (((
2220 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2221 )))
2222 * (((
2223 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2224
2225
2226
2227 )))
2228
2229 = 10. Reference​​​​​ =
2230
2231
2232 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2233 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2234 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0