Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191 == 1.4  Applications ==
192
193
194 * Smart Buildings & Home Automation
195 * Logistics and Supply Chain Management
196 * Smart Metering
197 * Smart Agriculture
198 * Smart Cities
199 * Smart Factory
200
201
202
203 == 1.5 Hardware Variants ==
204
205
206 (% border="1" style="background-color:#f7faff; width:500px" %)
207 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
208 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
209 * 2 x Digital Input (Bi-direction)
210 * 2 x Digital Output
211 * 2 x Relay Output (5A@250VAC / 30VDC)
212 * 2 x 0~~20mA Analog Input (res:0.01mA)
213 * 2 x 0~~30V Analog Input (res:0.01v)
214 * 1 x Counting Port
215 )))
216
217
218
219 = 2. Power ON Device =
220
221
222 (((
223 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
224 )))
225
226 (((
227 PWR will on when device is properly powered.
228
229
230 )))
231
232 [[image:1653297104069-180.png]]
233
234
235
236 = 3. Operation Mode =
237
238
239 == 3.1 How it works? ==
240
241
242 (((
243 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
244 )))
245
246 (((
247 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
248 )))
249
250
251
252 == 3.2 Example to join LoRaWAN network ==
253
254
255 (((
256 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
257
258
259 )))
260
261 [[image:image-20220523172350-1.png||height="266" width="864"]]
262
263
264 (((
265 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
266
267
268 )))
269
270 (((
271 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
272 )))
273
274 (((
275 Each LT is shipped with a sticker with the default device EUI as below:
276 )))
277
278 [[image:1653297924498-393.png]]
279
280
281 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
282
283 **Add APP EUI in the application.**
284
285 [[image:1653297955910-247.png||height="321" width="716"]]
286
287
288 **Add APP KEY and DEV EUI**
289
290 [[image:1653298023685-319.png]]
291
292
293
294 (((
295 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
296
297
298 )))
299
300 [[image:1653298044601-602.png||height="405" width="709"]]
301
302
303
304 == 3.3 Uplink Payload ==
305
306
307 There are five working modes + one interrupt mode on LT for different type application:
308
309 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
310 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
311 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
312 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
313 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
314 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
315
316
317
318 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
319
320
321 (((
322 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
323 )))
324
325 [[image:image-20220523174024-3.png]]
326
327 (((
328
329
330 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
331 )))
332
333 [[image:image-20220523174254-4.png]]
334
335 * RO is for relay. ROx=1 : close,ROx=0 always open.
336 * DI is for digital input. DIx=1: high or float, DIx=0: low.
337 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338
339 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340
341 For example if payload is: [[image:image-20220523175847-2.png]]
342
343
344 **The value for the interface is:  **
345
346 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347
348 AVI2 channel voltage is 0x04AC/1000=1.196V
349
350 ACI1 channel current is 0x1310/1000=4.880mA
351
352 ACI2 channel current is 0x1300/1000=4.864mA
353
354 The last byte 0xAA= 10101010(B) means
355
356 * [1] RO1 relay channel is close and the RO1 LED is ON.
357 * [0] RO2 relay channel is open and RO2 LED is OFF;
358
359 **LT22222-L:**
360
361 * [1] DI2 channel is high input and DI2 LED is ON;
362 * [0] DI1 channel is low input;
363
364 * [0] DO3 channel output state
365 ** DO3 is float in case no load between DO3 and V+.;
366 ** DO3 is high in case there is load between DO3 and V+.
367 ** DO3 LED is off in both case
368 * [1] DO2 channel output is low and DO2 LED is ON.
369 * [0] DO1 channel output state
370 ** DO1 is float in case no load between DO1 and V+.;
371 ** DO1 is high in case there is load between DO1 and V+.
372 ** DO1 LED is off in both case
373
374
375
376 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377
378
379 (((
380 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
381 )))
382
383 (((
384 Total : 11 bytes payload
385 )))
386
387 [[image:image-20220523180452-3.png]]
388
389
390 (((
391 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
392 )))
393
394 [[image:image-20220523180506-4.png]]
395
396 * RO is for relay. ROx=1 : close,ROx=0 always open.
397 * FIRST: Indicate this is the first packet after join network.
398 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399
400 (((
401 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 )))
403
404 (((
405
406
407 **To use counting mode, please run:**
408 )))
409
410 (% class="box infomessage" %)
411 (((
412 (((
413 (((
414 **AT+MOD=2**
415 )))
416
417 (((
418 **ATZ**
419 )))
420 )))
421 )))
422
423 (((
424
425
426 (% style="color:#4f81bd" %)**AT Commands for counting:**
427
428
429 )))
430
431 (((
432 **For LT22222-L:**
433
434
435 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
438
439 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
440
441 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
442
443 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
444
445 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
446 )))
447
448
449
450 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
451
452
453 **LT22222-L**: This mode the DI1 is used as a counting pin.
454
455 [[image:image-20220523181246-5.png]]
456
457 (((
458
459
460 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
461 )))
462
463 [[image:image-20220523181301-6.png]]
464
465 * RO is for relay. ROx=1 : close,ROx=0 always open.
466 * FIRST: Indicate this is the first packet after join network.
467 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
468
469 (((
470 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
471 )))
472
473
474 (((
475 **To use counting mode, please run:**
476 )))
477
478 (% class="box infomessage" %)
479 (((
480 (((
481 (((
482 **AT+MOD=3**
483 )))
484
485 (((
486 **ATZ**
487 )))
488 )))
489 )))
490
491 (((
492 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
493 )))
494
495
496
497 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
498
499
500 (((
501 **LT22222-L**: This mode the DI1 is used as a counting pin.
502 )))
503
504 (((
505 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
506 )))
507
508 [[image:image-20220523181903-8.png]]
509
510
511 (((
512 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
513 )))
514
515 [[image:image-20220523181727-7.png]]
516
517 * RO is for relay. ROx=1 : close,ROx=0 always open.
518 * FIRST: Indicate this is the first packet after join network.
519 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
520
521 (((
522 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
523 )))
524
525 (((
526
527
528 **To use this mode, please run:**
529 )))
530
531 (% class="box infomessage" %)
532 (((
533 (((
534 (((
535 **AT+MOD=4**
536 )))
537
538 (((
539 **ATZ**
540 )))
541 )))
542 )))
543
544
545 (((
546 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
547 )))
548
549 (((
550
551
552 **Plus below command for AVI1 Counting:**
553
554
555 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
556
557 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
560
561 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
562 )))
563
564
565
566 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
567
568
569 **LT22222-L**: This mode the DI1 is used as a counting pin.
570
571 [[image:image-20220523182334-9.png]]
572
573 (((
574
575
576 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
577 )))
578
579 * RO is for relay. ROx=1 : close,ROx=0 always open.
580 * FIRST: Indicate this is the first packet after join network.
581 * (((
582 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
583 )))
584
585 (((
586 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
587 )))
588
589 (((
590
591
592 **To use this mode, please run:**
593 )))
594
595 (% class="box infomessage" %)
596 (((
597 (((
598 (((
599 **AT+MOD=5**
600 )))
601
602 (((
603 **ATZ**
604 )))
605 )))
606 )))
607
608 (((
609 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
610 )))
611
612
613
614 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
615
616
617 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
618
619 For example, if user has configured below commands:
620
621 * **AT+MOD=1 ** **~-~->**  The normal working mode
622 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
623
624 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
625
626 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
627 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
628
629 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
630
631
632 (% style="color:#4f81bd" %)**Trigger base on voltage**:
633
634 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
635
636
637 **Example:**
638
639 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
640
641 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
642
643
644
645 (% style="color:#4f81bd" %)**Trigger base on current**:
646
647 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
648
649
650 **Example:**
651
652 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
653
654
655
656 (% style="color:#4f81bd" %)**Trigger base on DI status**:
657
658 DI status trigger Flag.
659
660 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
661
662
663 **Example:**
664
665 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
666
667
668
669 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
670
671 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
672
673 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
674
675 AA: Code for this downlink Command:
676
677 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
678
679 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
680
681 yy2 yy2: AC1 or AV1 high limit.
682
683 yy3 yy3: AC2 or AV2 low limit.
684
685 Yy4 yy4: AC2 or AV2 high limit.
686
687
688 **Example1**: AA 00 13 88 00 00 00 00 00 00
689
690 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
691
692
693 **Example2**: AA 02 01 00
694
695 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
696
697
698
699 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
700
701 MOD6 Payload : total 11 bytes payload
702
703 [[image:image-20220524085923-1.png]]
704
705
706 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
707
708 [[image:image-20220524090106-2.png]]
709
710 * Each bits shows if the corresponding trigger has been configured.
711
712 **Example:**
713
714 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
715
716
717
718 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
719
720 [[image:image-20220524090249-3.png]]
721
722 * Each bits shows which status has been trigger on this uplink.
723
724 **Example:**
725
726 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
727
728
729
730 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
731
732 [[image:image-20220524090456-4.png]]
733
734 * Each bits shows which status has been trigger on this uplink.
735
736 **Example:**
737
738 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
739
740 00000101: Means both DI1 and DI2 trigger are enabled.
741
742
743
744 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
745
746 Downlink command to poll MOD6 status:
747
748 **AB 06**
749
750 When device got this command, it will send the MOD6 payload.
751
752
753
754 === 3.3.7 Payload Decoder ===
755
756 (((
757
758
759 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
760 )))
761
762
763
764 == 3.4 ​Configure LT via AT or Downlink ==
765
766
767 (((
768 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
769 )))
770
771 (((
772 (((
773 There are two kinds of Commands:
774 )))
775 )))
776
777 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
778
779 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
780
781
782
783 === 3.4.1 Common Commands ===
784
785
786 (((
787 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
788 )))
789
790
791
792 === 3.4.2 Sensor related commands ===
793
794
795 ==== 3.4.2.1 Set Transmit Interval ====
796
797
798 Set device uplink interval.
799
800 * (% style="color:#037691" %)**AT Command:**
801
802 (% style="color:blue" %)**AT+TDC=N **
803
804
805 **Example: **AT+TDC=30000. Means set interval to 30 seconds
806
807
808 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809
810 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
811
812
813
814 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815
816
817 Set work mode.
818
819 * (% style="color:#037691" %)**AT Command:**
820
821 (% style="color:blue" %)**AT+MOD=N  **
822
823
824 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
825
826
827 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
828
829 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
830
831
832
833 ==== 3.4.2.3 Poll an uplink ====
834
835
836 * (% style="color:#037691" %)**AT Command:**
837
838 There is no AT Command to poll uplink
839
840
841 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
842
843 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
844
845
846 **Example**: 0x08FF, ask device to send an Uplink
847
848
849
850 ==== 3.4.2.4 Enable Trigger Mode ====
851
852
853 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
854
855 * (% style="color:#037691" %)**AT Command:**
856
857 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
858
859 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
860
861 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
862
863
864 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
865
866 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
867
868
869
870
871 ==== 3.4.2.5 Poll trigger settings ====
872
873
874 Poll trigger settings,
875
876 * (% style="color:#037691" %)**AT Command:**
877
878 There is no AT Command for this feature.
879
880
881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
882
883 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
884
885
886
887 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
888
889
890 Enable Disable DI1/DI2/DI2 as trigger,
891
892 * (% style="color:#037691" %)**AT Command:**
893
894 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
895
896
897 **Example:**
898
899 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
900
901 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
902
903 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
904
905
906
907 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
908
909
910 Set DI1 or DI3(for LT-33222-L) trigger.
911
912 * (% style="color:#037691" %)**AT Command:**
913
914 (% style="color:blue" %)**AT+TRIG1=a,b**
915
916 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
917
918 (% style="color:red" %)**b :** (%%)delay timing.
919
920
921 **Example:**
922
923 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
927
928 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
929
930
931
932 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
933
934
935 Set DI2 trigger.
936
937 * (% style="color:#037691" %)**AT Command:**
938
939 (% style="color:blue" %)**AT+TRIG2=a,b**
940
941 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
942
943 (% style="color:red" %)**b :** (%%)delay timing.
944
945
946 **Example:**
947
948 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
949
950
951 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
952
953 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
954
955
956
957 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
958
959
960 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
961
962 * (% style="color:#037691" %)**AT Command**
963
964 (% style="color:blue" %)**AT+ACLIM**
965
966
967 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
968
969 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
970
971
972
973 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
974
975
976 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
977
978 * (% style="color:#037691" %)**AT Command**
979
980 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
981
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
984
985 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
986
987
988
989 ==== 3.4.2.11 Trigger – Set minimum interval ====
990
991
992 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993
994 * (% style="color:#037691" %)**AT Command**
995
996 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
997
998
999 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1000
1001 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1002
1003 (((
1004
1005
1006 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1007 )))
1008
1009
1010
1011 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1012
1013
1014 * (% style="color:#037691" %)**AT Command**
1015
1016 There is no AT Command to control Digital Output
1017
1018
1019 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1020 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1021
1022 (((
1023 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1024 )))
1025
1026 (((
1027 01: Low,  00: High ,  11: No action
1028 )))
1029
1030 [[image:image-20220524092754-5.png]]
1031
1032 (((
1033 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1034 )))
1035
1036 (((
1037 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1038 )))
1039
1040
1041
1042 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1043
1044
1045 * (% style="color:#037691" %)**AT Command**
1046
1047 There is no AT Command to control Digital Output
1048
1049
1050 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1051
1052 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1053
1054
1055 This is to control the digital output time of DO pin. Include four bytes:
1056
1057 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1058
1059 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1060
1061 01: DO pins will change back to original state after timeout.
1062
1063 00: DO pins will change to an inverter state after timeout 
1064
1065
1066 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1067
1068 [[image:image-20220524093238-6.png]]
1069
1070
1071 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1072
1073 [[image:image-20220524093328-7.png]]
1074
1075
1076 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1077
1078 [[image:image-20220524093351-8.png]]
1079
1080
1081 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1082
1083 Latching time. Unit: ms
1084
1085 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1086
1087
1088 **Example payload:**
1089
1090 **~1. A9 01 01 01 01 07 D0**
1091
1092 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1093
1094 **2. A9 01 00 01 11 07 D0**
1095
1096 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1097
1098 **3. A9 00 00 00 00 07 D0**
1099
1100 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1101
1102 **4. A9 00 11 01 00 07 D0**
1103
1104 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1105
1106
1107
1108 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1109
1110
1111 * (% style="color:#037691" %)**AT Command:**
1112
1113 There is no AT Command to control Relay Output
1114
1115
1116 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1117
1118 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1119
1120
1121 (((
1122 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1123 )))
1124
1125 (((
1126 01: Close ,  00: Open , 11: No action
1127 )))
1128
1129 (((
1130 [[image:image-20220524093724-9.png]]
1131 )))
1132
1133 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1134
1135
1136
1137
1138 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1139
1140
1141 * (% style="color:#037691" %)**AT Command:**
1142
1143 There is no AT Command to control Relay Output
1144
1145
1146 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1147
1148 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1149
1150
1151 This is to control the relay output time of relay. Include four bytes:
1152
1153 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1154
1155 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1156
1157 01: Relays will change back to original state after timeout.
1158
1159 00: Relays will change to an inverter state after timeout
1160
1161
1162 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1163
1164 [[image:image-20221008095908-1.png||height="364" width="564"]]
1165
1166
1167 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1168
1169 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1170
1171
1172 **Example payload:**
1173
1174 **~1. 05 01 11 07 D**
1175
1176 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1177
1178 **2. 05 01 10 07 D0**
1179
1180 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1181
1182 **3. 05 00 01 07 D0**
1183
1184 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1185
1186 **4. 05 00 00 07 D0**
1187
1188 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1189
1190
1191
1192 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1193
1194
1195 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1196
1197 * (% style="color:#037691" %)**AT Command:**
1198
1199 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1200
1201
1202 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1203
1204 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1205
1206
1207
1208 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1209
1210
1211 * (% style="color:#037691" %)**AT Command:**
1212
1213 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1214
1215 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1216
1217 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1221
1222 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1223
1224
1225
1226 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1227
1228
1229 Clear counting for counting mode
1230
1231 * (% style="color:#037691" %)**AT Command:**
1232
1233 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1234
1235
1236 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1237
1238 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1239
1240
1241
1242 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1243
1244
1245 * (% style="color:#037691" %)**AT Command:**
1246
1247 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1248
1249
1250 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1251
1252 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1253
1254 (((
1255 range: aa bb cc:0 to 16777215,  (unit:second)
1256 )))
1257
1258
1259
1260 ==== 3.4.2.20 Reset save DR DO state ====
1261
1262
1263 * (% style="color:#037691" %)**AT Command:**
1264
1265 (% style="color:blue" %)**AT+RODORET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1266
1267 (% style="color:blue" %)**AT+RODORET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1268
1269
1270 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1271
1272 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1273
1274
1275
1276 ==== 3.4.2.21 Encrypted payload ====
1277
1278
1279 * (% style="color:#037691" %)**AT Command:**
1280
1281 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1282
1283 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1284
1285
1286
1287 ==== 3.4.2.22 Get sensor value ====
1288
1289
1290 * (% style="color:#037691" %)**AT Command:**
1291
1292 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1293
1294 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1295
1296
1297
1298 ==== 3.4.2.23 Resets the downlink packet count ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1304
1305 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1306
1307
1308
1309
1310 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1311
1312
1313 * (% style="color:#037691" %)**AT Command:**
1314
1315 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1316
1317 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1318
1319
1320 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1321
1322 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1323
1324
1325
1326
1327 ==== 3.4.2.25 Copy downlink to uplink ====
1328
1329
1330 * (% style="color:#037691" %)**AT Command**(%%)**:**
1331
1332 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1333
1334 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1335
1336
1337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1338
1339 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1340
1341
1342
1343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1344
1345 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1346
1347
1348
1349 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1350
1351
1352 * (((
1353 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1354
1355 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1356
1357
1358 )))
1359
1360 **Example:**
1361
1362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1363
1364
1365
1366 == 3.5 Integrate with Mydevice ==
1367
1368
1369 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1370
1371 (((
1372 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1373 )))
1374
1375 (((
1376 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1377
1378
1379 )))
1380
1381 [[image:image-20220719105525-1.png||height="377" width="677"]]
1382
1383
1384
1385 [[image:image-20220719110247-2.png||height="388" width="683"]]
1386
1387
1388 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1389
1390 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1391
1392 Search under The things network
1393
1394 [[image:1653356838789-523.png||height="337" width="740"]]
1395
1396
1397
1398 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399
1400 [[image:image-20220524094909-1.png||height="335" width="729"]]
1401
1402
1403 [[image:image-20220524094909-2.png||height="337" width="729"]]
1404
1405
1406 [[image:image-20220524094909-3.png||height="338" width="727"]]
1407
1408
1409 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1410
1411
1412 [[image:image-20220524094909-5.png||height="341" width="734"]]
1413
1414
1415
1416 == 3.6 Interface Detail ==
1417
1418
1419 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1420
1421
1422 Support NPN Type sensor
1423
1424 [[image:1653356991268-289.png]]
1425
1426
1427
1428 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1429
1430
1431 (((
1432 The DI port of LT-22222-L can support NPN or PNP output sensor.
1433 )))
1434
1435 (((
1436 (((
1437 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1438
1439
1440 )))
1441 )))
1442
1443 [[image:1653357170703-587.png]]
1444
1445 (((
1446 (((
1447 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1448 )))
1449 )))
1450
1451 (((
1452
1453 )))
1454
1455 (((
1456 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1457 )))
1458
1459 (((
1460 This type of sensor will output a low signal GND when active.
1461 )))
1462
1463 * (((
1464 Connect sensor's output to DI1-
1465 )))
1466 * (((
1467 Connect sensor's VCC to DI1+.
1468 )))
1469
1470 (((
1471 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1472 )))
1473
1474 (((
1475 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1476 )))
1477
1478 (((
1479 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1480 )))
1481
1482 (((
1483
1484
1485
1486 )))
1487
1488 (((
1489 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1490 )))
1491
1492 (((
1493 This type of sensor will output a high signal (example 24v) when active.
1494 )))
1495
1496 * (((
1497 Connect sensor's output to DI1+
1498 )))
1499 * (((
1500 Connect sensor's GND DI1-.
1501 )))
1502
1503 (((
1504 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1505 )))
1506
1507 (((
1508 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1509 )))
1510
1511 (((
1512 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1513 )))
1514
1515 (((
1516
1517
1518
1519 )))
1520
1521 (((
1522 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 )))
1524
1525 (((
1526 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 )))
1528
1529 * (((
1530 Connect sensor's output to DI1+ with a serial 50K resistor
1531 )))
1532 * (((
1533 Connect sensor's GND DI1-.
1534 )))
1535
1536 (((
1537 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 )))
1539
1540 (((
1541 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1542 )))
1543
1544 (((
1545 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 )))
1547
1548
1549
1550 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1551
1552
1553 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1554
1555 [[image:1653357531600-905.png]]
1556
1557
1558
1559 === 3.6.4 Analog Input Interface ===
1560
1561
1562 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1563
1564
1565 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1566
1567 [[image:1653357592296-182.png]]
1568
1569 Example to connect a 4~~20mA sensor
1570
1571 We take the wind speed sensor as an example for reference only.
1572
1573
1574 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1575
1576 **Red:  12~~24v**
1577
1578 **Yellow:  4~~20mA**
1579
1580 **Black:  GND**
1581
1582
1583 **Connection diagram:**
1584
1585 [[image:1653357640609-758.png]]
1586
1587 [[image:1653357648330-671.png||height="155" width="733"]]
1588
1589
1590
1591 === 3.6.5 Relay Output ===
1592
1593
1594 (((
1595 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1596 )))
1597
1598 [[image:image-20220524100215-9.png]]
1599
1600
1601 [[image:image-20220524100215-10.png||height="382" width="723"]]
1602
1603
1604
1605 == 3.7 LEDs Indicators ==
1606
1607
1608 [[image:image-20220524100748-11.png]]
1609
1610
1611
1612 = 4. Use AT Command =
1613
1614
1615 == 4.1 Access AT Command ==
1616
1617
1618 (((
1619 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1620 )))
1621
1622 (((
1623
1624 )))
1625
1626 [[image:1653358238933-385.png]]
1627
1628
1629 (((
1630 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1631 )))
1632
1633 [[image:1653358355238-883.png]]
1634
1635
1636 (((
1637 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1638 )))
1639
1640 (((
1641 AT+<CMD>?        : Help on <CMD>
1642 )))
1643
1644 (((
1645 AT+<CMD>         : Run <CMD>
1646 )))
1647
1648 (((
1649 AT+<CMD>=<value> : Set the value
1650 )))
1651
1652 (((
1653 AT+<CMD>=?       :  Get the value
1654 )))
1655
1656 (((
1657 ATZ: Trig a reset of the MCU
1658 )))
1659
1660 (((
1661 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1662 )))
1663
1664 (((
1665 AT+DEUI: Get or Set the Device EUI
1666 )))
1667
1668 (((
1669 AT+DADDR: Get or Set the Device Address
1670 )))
1671
1672 (((
1673 AT+APPKEY: Get or Set the Application Key
1674 )))
1675
1676 (((
1677 AT+NWKSKEY: Get or Set the Network Session Key
1678 )))
1679
1680 (((
1681 AT+APPSKEY:  Get or Set the Application Session Key
1682 )))
1683
1684 (((
1685 AT+APPEUI:  Get or Set the Application EUI
1686 )))
1687
1688 (((
1689 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1690 )))
1691
1692 (((
1693 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1694 )))
1695
1696 (((
1697 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1698 )))
1699
1700 (((
1701 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1702 )))
1703
1704 (((
1705 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1706 )))
1707
1708 (((
1709 AT+RX2FQ: Get or Set the Rx2 window frequency
1710 )))
1711
1712 (((
1713 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1714 )))
1715
1716 (((
1717 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1718 )))
1719
1720 (((
1721 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1722 )))
1723
1724 (((
1725 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1726 )))
1727
1728 (((
1729 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1730 )))
1731
1732 (((
1733 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1734 )))
1735
1736 (((
1737 AT+NWKID: Get or Set the Network ID
1738 )))
1739
1740 (((
1741 AT+FCU: Get or Set the Frame Counter Uplink
1742 )))
1743
1744 (((
1745 AT+FCD: Get or Set the Frame Counter Downlink
1746 )))
1747
1748 (((
1749 AT+CLASS: Get or Set the Device Class
1750 )))
1751
1752 (((
1753 AT+JOIN: Join network
1754 )))
1755
1756 (((
1757 AT+NJS: Get OTAA Join Status
1758 )))
1759
1760 (((
1761 AT+SENDB: Send hexadecimal data along with the application port
1762 )))
1763
1764 (((
1765 AT+SEND: Send text data along with the application port
1766 )))
1767
1768 (((
1769 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1770 )))
1771
1772 (((
1773 AT+RECV: Print last received data in raw format
1774 )))
1775
1776 (((
1777 AT+VER:  Get current image version and Frequency Band
1778 )))
1779
1780 (((
1781 AT+CFM: Get or Set the confirmation mode (0-1)
1782 )))
1783
1784 (((
1785 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1786 )))
1787
1788 (((
1789 AT+SNR: Get the SNR of the last received packet
1790 )))
1791
1792 (((
1793 AT+RSSI: Get the RSSI of the last received packet
1794 )))
1795
1796 (((
1797 AT+TDC: Get or set the application data transmission interval in ms
1798 )))
1799
1800 (((
1801 AT+PORT: Get or set the application port
1802 )))
1803
1804 (((
1805 AT+DISAT: Disable AT commands
1806 )))
1807
1808 (((
1809 AT+PWORD: Set password, max 9 digits
1810 )))
1811
1812 (((
1813 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1814 )))
1815
1816 (((
1817 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1818 )))
1819
1820 (((
1821 AT+CFG: Print all settings
1822 )))
1823
1824
1825
1826 == 4.2 Common AT Command Sequence ==
1827
1828
1829 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1830
1831 (((
1832
1833
1834 (((
1835 (% style="color:blue" %)**If device has not joined network yet:**
1836 )))
1837 )))
1838
1839 (((
1840 (% style="background-color:#dcdcdc" %)**123456**
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %)**AT+FDR**
1845 )))
1846
1847 (((
1848 (% style="background-color:#dcdcdc" %)**123456**
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %)**ATZ**
1857 )))
1858
1859
1860 (((
1861 (% style="color:blue" %)**If device already joined network:**
1862 )))
1863
1864 (((
1865 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1866 )))
1867
1868 (((
1869 (% style="background-color:#dcdcdc" %)**ATZ**
1870 )))
1871
1872
1873
1874 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1875
1876 (((
1877
1878
1879 (((
1880 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1881 )))
1882 )))
1883
1884 (((
1885 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1886 )))
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1890 )))
1891
1892 (((
1893 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1894 )))
1895
1896 (((
1897 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1898 )))
1899
1900 (((
1901 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1914 )))
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1918 )))
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1922 )))
1923
1924 (((
1925 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1926 )))
1927
1928 (((
1929 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1930
1931
1932 )))
1933
1934 (((
1935 (% style="color:red" %)**Note:**
1936 )))
1937
1938 (((
1939 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1940
1941 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1942
1943 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1944 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1945
1946 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1947
1948
1949 )))
1950
1951 (((
1952 [[image:1653359097980-169.png||height="188" width="729"]]
1953 )))
1954
1955 (((
1956
1957 )))
1958
1959
1960 === 4.2.3 Change to Class A ===
1961
1962
1963 (((
1964 (% style="color:blue" %)**If sensor JOINED:**
1965
1966 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1967 ATZ**
1968 )))
1969
1970
1971
1972 = 5. FAQ =
1973
1974
1975 == 5.1 How to upgrade the image? ==
1976
1977
1978 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1979
1980 * Support new features
1981 * For bug fix
1982 * Change LoRaWAN bands.
1983
1984 Below shows the hardware connection for how to upload an image to the LT:
1985
1986 [[image:1653359603330-121.png]]
1987
1988
1989 (((
1990 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1991 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1992 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1993
1994
1995 (((
1996 (% style="color:blue" %)**For LT-22222-L**(%%):
1997 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1998 )))
1999
2000
2001 )))
2002
2003 [[image:image-20220524103407-12.png]]
2004
2005 [[image:image-20220524103429-13.png]]
2006
2007 [[image:image-20220524104033-15.png]]
2008
2009
2010 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2011
2012
2013 [[image:1653360054704-518.png||height="186" width="745"]]
2014
2015
2016 (((
2017 (((
2018
2019
2020 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2021
2022
2023 )))
2024 )))
2025
2026 (((
2027 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2028 )))
2029
2030 (((
2031
2032
2033
2034 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2035
2036
2037 )))
2038
2039 (((
2040 (((
2041 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2042 )))
2043 )))
2044
2045 (((
2046 (((
2047 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2048
2049
2050 )))
2051 )))
2052
2053 (((
2054 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2055
2056
2057 )))
2058
2059 (((
2060 [[image:1653360231087-571.png||height="401" width="727"]]
2061
2062
2063 )))
2064
2065 (((
2066 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2067 )))
2068
2069
2070
2071 (((
2072 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2073
2074
2075 )))
2076
2077 (((
2078 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2079 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2080 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2081 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2082 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2083 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2084 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2085 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2086 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2087 )))
2088
2089
2090 (((
2091 As shown in below:
2092 )))
2093
2094 [[image:1653360498588-932.png||height="485" width="726"]]
2095
2096
2097
2098 == 5.4 Can I see counting event in Serial? ==
2099
2100
2101 (((
2102 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2103
2104
2105
2106 == 5.5 Can i use point to point communication for LT-22222-L? ==
2107
2108
2109 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2110
2111
2112
2113 )))
2114
2115 (((
2116 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2117
2118
2119 If the device is not shut down, but directly powered off.
2120
2121 It will default that this is a power-off state.
2122
2123 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2124
2125 After restart, the status before power failure will be read from flash.
2126
2127
2128
2129 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2130
2131
2132 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2133
2134
2135 [[image:image-20221006170630-1.png||height="610" width="945"]]
2136
2137
2138 == 5.8 Can LT22222-L save RO state? ==
2139
2140
2141 Firmware version needs to be no less than 1.6.0.
2142
2143
2144
2145 = 6. Trouble Shooting =
2146
2147
2148 )))
2149
2150 (((
2151 (((
2152 == 6.1 Downlink doesn't work, how to solve it? ==
2153
2154
2155 )))
2156 )))
2157
2158 (((
2159 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2160 )))
2161
2162 (((
2163
2164
2165
2166 == 6.2 Have trouble to upload image. ==
2167
2168
2169 )))
2170
2171 (((
2172 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2173 )))
2174
2175 (((
2176
2177
2178
2179 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2180
2181
2182 )))
2183
2184 (((
2185 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2186 )))
2187
2188
2189
2190 = 7. Order Info =
2191
2192
2193 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2194
2195 (% style="color:#4f81bd" %)**XXX:**
2196
2197 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2198 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2199 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2200 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2201 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2202 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2203 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2204 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2205 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2206
2207
2208
2209 = 8. Packing Info =
2210
2211
2212 **Package Includes**:
2213
2214 * LT-22222-L I/O Controller x 1
2215 * Stick Antenna for LoRa RF part x 1
2216 * Bracket for controller x1
2217 * Program cable x 1
2218
2219 **Dimension and weight**:
2220
2221 * Device Size: 13.5 x 7 x 3 cm
2222 * Device Weight: 105g
2223 * Package Size / pcs : 14.5 x 8 x 5 cm
2224 * Weight / pcs : 170g
2225
2226
2227
2228 = 9. Support =
2229
2230
2231 * (((
2232 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2233 )))
2234 * (((
2235 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2236
2237
2238
2239 )))
2240
2241 = 10. Reference​​​​​ =
2242
2243
2244 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2245 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2246 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0