Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199 == 1.5 Hardware Variants ==
200
201
202 (% border="1" style="background-color:#f7faff; width:500px" %)
203 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
204 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
205 * 2 x Digital Input (Bi-direction)
206 * 2 x Digital Output
207 * 2 x Relay Output (5A@250VAC / 30VDC)
208 * 2 x 0~~20mA Analog Input (res:0.01mA)
209 * 2 x 0~~30V Analog Input (res:0.01v)
210 * 1 x Counting Port
211 )))
212
213 = 2. Power ON Device =
214
215
216 (((
217 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
218 )))
219
220 (((
221 PWR will on when device is properly powered.
222
223
224 )))
225
226 [[image:1653297104069-180.png]]
227
228
229
230 = 3. Operation Mode =
231
232
233 == 3.1 How it works? ==
234
235
236 (((
237 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
238 )))
239
240 (((
241 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
242 )))
243
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 **Add APP EUI in the application.**
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 **Add APP KEY and DEV EUI**
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290
291
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300
301 There are five working modes + one interrupt mode on LT for different type application:
302
303 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
306 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
307 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
308 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
309
310
311 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
312
313
314 (((
315 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
316 )))
317
318 [[image:image-20220523174024-3.png]]
319
320 (((
321
322
323 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
324 )))
325
326 [[image:image-20220523174254-4.png]]
327
328 * RO is for relay. ROx=1 : close,ROx=0 always open.
329 * DI is for digital input. DIx=1: high or float, DIx=0: low.
330 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
331
332 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
333
334 For example if payload is: [[image:image-20220523175847-2.png]]
335
336
337 **The value for the interface is:  **
338
339 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
340
341 AVI2 channel voltage is 0x04AC/1000=1.196V
342
343 ACI1 channel current is 0x1310/1000=4.880mA
344
345 ACI2 channel current is 0x1300/1000=4.864mA
346
347 The last byte 0xAA= 10101010(B) means
348
349 * [1] RO1 relay channel is close and the RO1 LED is ON.
350 * [0] RO2 relay channel is open and RO2 LED is OFF;
351
352 **LT22222-L:**
353
354 * [1] DI2 channel is high input and DI2 LED is ON;
355 * [0] DI1 channel is low input;
356
357 * [0] DO3 channel output state
358 ** DO3 is float in case no load between DO3 and V+.;
359 ** DO3 is high in case there is load between DO3 and V+.
360 ** DO3 LED is off in both case
361 * [1] DO2 channel output is low and DO2 LED is ON.
362 * [0] DO1 channel output state
363 ** DO1 is float in case no load between DO1 and V+.;
364 ** DO1 is high in case there is load between DO1 and V+.
365 ** DO1 LED is off in both case
366
367
368 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
369
370
371 (((
372 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
373 )))
374
375 (((
376 Total : 11 bytes payload
377 )))
378
379 [[image:image-20220523180452-3.png]]
380
381
382 (((
383 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
384 )))
385
386 [[image:image-20220523180506-4.png]]
387
388 * RO is for relay. ROx=1 : close,ROx=0 always open.
389 * FIRST: Indicate this is the first packet after join network.
390 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
391
392 (((
393 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
394 )))
395
396 (((
397
398
399 **To use counting mode, please run:**
400 )))
401
402 (% class="box infomessage" %)
403 (((
404 (((
405 (((
406 **AT+MOD=2**
407 )))
408
409 (((
410 **ATZ**
411 )))
412 )))
413 )))
414
415 (((
416
417
418 (% style="color:#4f81bd" %)**AT Commands for counting:**
419
420
421 )))
422
423 (((
424 **For LT22222-L:**
425
426
427 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428
429 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430
431 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432
433 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434
435 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436
437 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 )))
439
440
441
442 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
443
444
445 **LT22222-L**: This mode the DI1 is used as a counting pin.
446
447 [[image:image-20220523181246-5.png]]
448
449 (((
450
451
452 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
453 )))
454
455 [[image:image-20220523181301-6.png]]
456
457 * RO is for relay. ROx=1 : close,ROx=0 always open.
458 * FIRST: Indicate this is the first packet after join network.
459 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
460
461 (((
462 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
463 )))
464
465
466 (((
467 **To use counting mode, please run:**
468 )))
469
470 (% class="box infomessage" %)
471 (((
472 (((
473 (((
474 **AT+MOD=3**
475 )))
476
477 (((
478 **ATZ**
479 )))
480 )))
481 )))
482
483 (((
484 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
485 )))
486
487
488
489 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
490
491
492 (((
493 **LT22222-L**: This mode the DI1 is used as a counting pin.
494 )))
495
496 (((
497 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
498 )))
499
500 [[image:image-20220523181903-8.png]]
501
502
503 (((
504 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
505 )))
506
507 [[image:image-20220523181727-7.png]]
508
509 * RO is for relay. ROx=1 : close,ROx=0 always open.
510 * FIRST: Indicate this is the first packet after join network.
511 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
512
513 (((
514 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
515 )))
516
517 (((
518
519
520 **To use this mode, please run:**
521 )))
522
523 (% class="box infomessage" %)
524 (((
525 (((
526 (((
527 **AT+MOD=4**
528 )))
529
530 (((
531 **ATZ**
532 )))
533 )))
534 )))
535
536
537 (((
538 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
539 )))
540
541 (((
542
543
544 **Plus below command for AVI1 Counting:**
545
546
547 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
548
549 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
550
551 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
552
553 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
554 )))
555
556
557
558 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
559
560
561 **LT22222-L**: This mode the DI1 is used as a counting pin.
562
563 [[image:image-20220523182334-9.png]]
564
565 (((
566
567
568 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
569 )))
570
571 * RO is for relay. ROx=1 : close,ROx=0 always open.
572 * FIRST: Indicate this is the first packet after join network.
573 * (((
574 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
575 )))
576
577 (((
578 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
579 )))
580
581 (((
582
583
584 **To use this mode, please run:**
585 )))
586
587 (% class="box infomessage" %)
588 (((
589 (((
590 (((
591 **AT+MOD=5**
592 )))
593
594 (((
595 **ATZ**
596 )))
597 )))
598 )))
599
600 (((
601 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
602 )))
603
604
605
606 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
607
608
609 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
610
611 For example, if user has configured below commands:
612
613 * **AT+MOD=1 ** **~-~->**  The normal working mode
614 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
615
616 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
617
618 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
619 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
620
621 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
622
623
624 (% style="color:#4f81bd" %)**Trigger base on voltage**:
625
626 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
627
628
629 **Example:**
630
631 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
632
633 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
634
635
636
637 (% style="color:#4f81bd" %)**Trigger base on current**:
638
639 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
640
641
642 **Example:**
643
644 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
645
646
647
648 (% style="color:#4f81bd" %)**Trigger base on DI status**:
649
650 DI status trigger Flag.
651
652 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
653
654
655 **Example:**
656
657 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
658
659
660
661 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
662
663 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
664
665 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
666
667 AA: Code for this downlink Command:
668
669 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
670
671 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
672
673 yy2 yy2: AC1 or AV1 high limit.
674
675 yy3 yy3: AC2 or AV2 low limit.
676
677 Yy4 yy4: AC2 or AV2 high limit.
678
679
680 **Example1**: AA 00 13 88 00 00 00 00 00 00
681
682 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
683
684
685 **Example2**: AA 02 01 00
686
687 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
688
689
690
691 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
692
693 MOD6 Payload : total 11 bytes payload
694
695 [[image:image-20220524085923-1.png]]
696
697
698 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
699
700 [[image:image-20220524090106-2.png]]
701
702 * Each bits shows if the corresponding trigger has been configured.
703
704 **Example:**
705
706 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
707
708
709
710 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
711
712 [[image:image-20220524090249-3.png]]
713
714 * Each bits shows which status has been trigger on this uplink.
715
716 **Example:**
717
718 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
719
720
721
722 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
723
724 [[image:image-20220524090456-4.png]]
725
726 * Each bits shows which status has been trigger on this uplink.
727
728 **Example:**
729
730 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
731
732 00000101: Means both DI1 and DI2 trigger are enabled.
733
734
735
736 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
737
738 Downlink command to poll MOD6 status:
739
740 **AB 06**
741
742 When device got this command, it will send the MOD6 payload.
743
744
745
746 === 3.3.7 Payload Decoder ===
747
748 (((
749
750
751 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
752 )))
753
754
755
756 == 3.4 ​Configure LT via AT or Downlink ==
757
758
759 (((
760 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
761 )))
762
763 (((
764 (((
765 There are two kinds of Commands:
766 )))
767 )))
768
769 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
770
771 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
772
773 === 3.4.1 Common Commands ===
774
775
776 (((
777 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
778 )))
779
780
781
782 === 3.4.2 Sensor related commands ===
783
784
785 ==== 3.4.2.1 Set Transmit Interval ====
786
787
788 Set device uplink interval.
789
790 * (% style="color:#037691" %)**AT Command:**
791
792 (% style="color:blue" %)**AT+TDC=N **
793
794
795 **Example: **AT+TDC=30000. Means set interval to 30 seconds
796
797
798 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
799
800 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
801
802
803
804 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
805
806
807 Set work mode.
808
809 * (% style="color:#037691" %)**AT Command:**
810
811 (% style="color:blue" %)**AT+MOD=N  **
812
813
814 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
815
816
817 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
818
819 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
820
821
822
823 ==== 3.4.2.3 Poll an uplink ====
824
825
826 * (% style="color:#037691" %)**AT Command:**
827
828 There is no AT Command to poll uplink
829
830
831 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
832
833 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
834
835
836 **Example**: 0x08FF, ask device to send an Uplink
837
838
839
840 ==== 3.4.2.4 Enable Trigger Mode ====
841
842
843 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
844
845 * (% style="color:#037691" %)**AT Command:**
846
847 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
848
849 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
850
851 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
852
853
854 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
855
856 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
857
858
859
860
861 ==== 3.4.2.5 Poll trigger settings ====
862
863
864 Poll trigger settings,
865
866 * (% style="color:#037691" %)**AT Command:**
867
868 There is no AT Command for this feature.
869
870
871 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
872
873 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
874
875
876
877 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
878
879
880 Enable Disable DI1/DI2/DI2 as trigger,
881
882 * (% style="color:#037691" %)**AT Command:**
883
884 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
885
886
887 **Example:**
888
889 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
890
891 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
892
893 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
894
895
896
897 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
898
899
900 Set DI1 or DI3(for LT-33222-L) trigger.
901
902 * (% style="color:#037691" %)**AT Command:**
903
904 (% style="color:blue" %)**AT+TRIG1=a,b**
905
906 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
907
908 (% style="color:red" %)**b :** (%%)delay timing.
909
910
911 **Example:**
912
913 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
914
915
916 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
917
918 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
919
920
921
922 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
923
924
925 Set DI2 trigger.
926
927 * (% style="color:#037691" %)**AT Command:**
928
929 (% style="color:blue" %)**AT+TRIG2=a,b**
930
931 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
932
933 (% style="color:red" %)**b :** (%%)delay timing.
934
935
936 **Example:**
937
938 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
939
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
942
943 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
944
945
946
947 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
948
949
950 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
951
952 * (% style="color:#037691" %)**AT Command**
953
954 (% style="color:blue" %)**AT+ACLIM**
955
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
958
959 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
960
961
962
963 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
964
965
966 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
967
968 * (% style="color:#037691" %)**AT Command**
969
970 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
971
972
973 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
974
975 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
976
977
978
979 ==== 3.4.2.11 Trigger – Set minimum interval ====
980
981
982 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
983
984 * (% style="color:#037691" %)**AT Command**
985
986 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
987
988
989 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
990
991 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
992
993 (((
994
995
996 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
997 )))
998
999
1000
1001 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1002
1003
1004 * (% style="color:#037691" %)**AT Command**
1005
1006 There is no AT Command to control Digital Output
1007
1008
1009 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1010 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1011
1012 (((
1013 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1014 )))
1015
1016 (((
1017 01: Low,  00: High ,  11: No action
1018 )))
1019
1020 [[image:image-20220524092754-5.png]]
1021
1022 (((
1023 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1024 )))
1025
1026 (((
1027 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1028 )))
1029
1030
1031
1032 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1033
1034
1035 * (% style="color:#037691" %)**AT Command**
1036
1037 There is no AT Command to control Digital Output
1038
1039
1040 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1041
1042 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1043
1044
1045 This is to control the digital output time of DO pin. Include four bytes:
1046
1047 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1048
1049 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1050
1051 01: DO pins will change back to original state after timeout.
1052
1053 00: DO pins will change to an inverter state after timeout 
1054
1055
1056 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1057
1058 [[image:image-20220524093238-6.png]]
1059
1060
1061 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1062
1063 [[image:image-20220524093328-7.png]]
1064
1065
1066 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1067
1068 [[image:image-20220524093351-8.png]]
1069
1070
1071 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1072
1073 Latching time. Unit: ms
1074
1075 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1076
1077
1078 **Example payload:**
1079
1080 **~1. A9 01 01 01 01 07 D0**
1081
1082 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1083
1084 **2. A9 01 00 01 11 07 D0**
1085
1086 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1087
1088 **3. A9 00 00 00 00 07 D0**
1089
1090 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1091
1092 **4. A9 00 11 01 00 07 D0**
1093
1094 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1095
1096
1097
1098 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1099
1100
1101 * (% style="color:#037691" %)**AT Command:**
1102
1103 There is no AT Command to control Relay Output
1104
1105
1106 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1107
1108 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1109
1110
1111 (((
1112 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1113 )))
1114
1115 (((
1116 01: Close ,  00: Open , 11: No action
1117 )))
1118
1119 (((
1120 [[image:image-20220524093724-9.png]]
1121 )))
1122
1123 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1124
1125
1126
1127
1128 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1129
1130
1131 * (% style="color:#037691" %)**AT Command:**
1132
1133 There is no AT Command to control Relay Output
1134
1135
1136 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1137
1138 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1139
1140
1141 This is to control the relay output time of relay. Include four bytes:
1142
1143 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1144
1145 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1146
1147 01: Relays will change back to original state after timeout.
1148
1149 00: Relays will change to an inverter state after timeout
1150
1151
1152 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1153
1154 [[image:image-20221008095908-1.png||height="364" width="564"]]
1155
1156
1157 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1158
1159 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1160
1161
1162 **Example payload:**
1163
1164 **~1. 05 01 11 07 D**
1165
1166 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1167
1168 **2. 05 01 10 07 D0**
1169
1170 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1171
1172 **3. 05 00 01 07 D0**
1173
1174 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1175
1176 **4. 05 00 00 07 D0**
1177
1178 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1179
1180
1181
1182 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1183
1184
1185 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1193
1194 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1195
1196
1197
1198 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1199
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1204
1205 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1206
1207 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1211
1212 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1213
1214
1215
1216 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1217
1218
1219 Clear counting for counting mode
1220
1221 * (% style="color:#037691" %)**AT Command:**
1222
1223 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1227
1228 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1229
1230
1231
1232 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233
1234
1235 * (% style="color:#037691" %)**AT Command:**
1236
1237 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1238
1239
1240 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1241
1242 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1243
1244 (((
1245 range: aa bb cc:0 to 16777215,  (unit:second)
1246 )))
1247
1248
1249
1250 ==== 3.4.2.20 Reset save DR DO state ====
1251
1252
1253 * (% style="color:#037691" %)**AT Command:**
1254
1255 (% style="color:blue" %)**AT+RODORET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1256
1257 (% style="color:blue" %)**AT+RODORET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1258
1259
1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1261
1262 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1263
1264
1265
1266 ==== 3.4.2.21 Encrypted payload ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1272
1273 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1274
1275
1276
1277 ==== 3.4.2.22 Get sensor value ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**
1281
1282 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1283
1284 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1285
1286
1287
1288 ==== 3.4.2.23 Resets the downlink packet count ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1294
1295 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1296
1297
1298
1299
1300 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1306
1307 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1308
1309
1310 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1311
1312 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1313
1314
1315
1316
1317 ==== 3.4.2.25 Copy downlink to uplink ====
1318
1319
1320 * (% style="color:#037691" %)**AT Command**(%%)**:**
1321
1322 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1323
1324 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1325
1326
1327 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1328
1329 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1330
1331
1332
1333 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1334
1335 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1336
1337
1338
1339 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1340
1341
1342 * (((
1343 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1344
1345 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1346
1347
1348 )))
1349
1350 **Example:**
1351
1352 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1353
1354
1355
1356 == 3.5 Integrate with Mydevice ==
1357
1358
1359 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1360
1361 (((
1362 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1363 )))
1364
1365 (((
1366 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1367
1368
1369 )))
1370
1371 [[image:image-20220719105525-1.png||height="377" width="677"]]
1372
1373
1374
1375 [[image:image-20220719110247-2.png||height="388" width="683"]]
1376
1377
1378 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1379
1380 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1381
1382 Search under The things network
1383
1384 [[image:1653356838789-523.png||height="337" width="740"]]
1385
1386
1387
1388 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1389
1390 [[image:image-20220524094909-1.png||height="335" width="729"]]
1391
1392
1393 [[image:image-20220524094909-2.png||height="337" width="729"]]
1394
1395
1396 [[image:image-20220524094909-3.png||height="338" width="727"]]
1397
1398
1399 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1400
1401
1402 [[image:image-20220524094909-5.png||height="341" width="734"]]
1403
1404
1405
1406 == 3.6 Interface Detail ==
1407
1408
1409 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1410
1411
1412 Support NPN Type sensor
1413
1414 [[image:1653356991268-289.png]]
1415
1416
1417
1418 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1419
1420
1421 (((
1422 The DI port of LT-22222-L can support NPN or PNP output sensor.
1423 )))
1424
1425 (((
1426 (((
1427 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1428
1429
1430 )))
1431 )))
1432
1433 [[image:1653357170703-587.png]]
1434
1435 (((
1436 (((
1437 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1438 )))
1439 )))
1440
1441 (((
1442
1443 )))
1444
1445 (((
1446 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1447 )))
1448
1449 (((
1450 This type of sensor will output a low signal GND when active.
1451 )))
1452
1453 * (((
1454 Connect sensor's output to DI1-
1455 )))
1456 * (((
1457 Connect sensor's VCC to DI1+.
1458 )))
1459
1460 (((
1461 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1462 )))
1463
1464 (((
1465 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1466 )))
1467
1468 (((
1469 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1470 )))
1471
1472 (((
1473
1474
1475
1476 )))
1477
1478 (((
1479 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1480 )))
1481
1482 (((
1483 This type of sensor will output a high signal (example 24v) when active.
1484 )))
1485
1486 * (((
1487 Connect sensor's output to DI1+
1488 )))
1489 * (((
1490 Connect sensor's GND DI1-.
1491 )))
1492
1493 (((
1494 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1495 )))
1496
1497 (((
1498 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1499 )))
1500
1501 (((
1502 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1503 )))
1504
1505 (((
1506
1507
1508
1509 )))
1510
1511 (((
1512 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1513 )))
1514
1515 (((
1516 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1517 )))
1518
1519 * (((
1520 Connect sensor's output to DI1+ with a serial 50K resistor
1521 )))
1522 * (((
1523 Connect sensor's GND DI1-.
1524 )))
1525
1526 (((
1527 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1528 )))
1529
1530 (((
1531 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1532 )))
1533
1534 (((
1535 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1536 )))
1537
1538
1539
1540 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1541
1542
1543 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1544
1545 [[image:1653357531600-905.png]]
1546
1547
1548
1549 === 3.6.4 Analog Input Interface ===
1550
1551
1552 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1553
1554
1555 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1556
1557 [[image:1653357592296-182.png]]
1558
1559 Example to connect a 4~~20mA sensor
1560
1561 We take the wind speed sensor as an example for reference only.
1562
1563
1564 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1565
1566 **Red:  12~~24v**
1567
1568 **Yellow:  4~~20mA**
1569
1570 **Black:  GND**
1571
1572
1573 **Connection diagram:**
1574
1575 [[image:1653357640609-758.png]]
1576
1577 [[image:1653357648330-671.png||height="155" width="733"]]
1578
1579
1580
1581 === 3.6.5 Relay Output ===
1582
1583
1584 (((
1585 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1586 )))
1587
1588 [[image:image-20220524100215-9.png]]
1589
1590
1591 [[image:image-20220524100215-10.png||height="382" width="723"]]
1592
1593
1594
1595 == 3.7 LEDs Indicators ==
1596
1597
1598 [[image:image-20220524100748-11.png]]
1599
1600
1601
1602 = 4. Use AT Command =
1603
1604
1605 == 4.1 Access AT Command ==
1606
1607
1608 (((
1609 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1610 )))
1611
1612 (((
1613
1614 )))
1615
1616 [[image:1653358238933-385.png]]
1617
1618
1619 (((
1620 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1621 )))
1622
1623 [[image:1653358355238-883.png]]
1624
1625
1626 (((
1627 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1628 )))
1629
1630 (((
1631 AT+<CMD>?        : Help on <CMD>
1632 )))
1633
1634 (((
1635 AT+<CMD>         : Run <CMD>
1636 )))
1637
1638 (((
1639 AT+<CMD>=<value> : Set the value
1640 )))
1641
1642 (((
1643 AT+<CMD>=?       :  Get the value
1644 )))
1645
1646 (((
1647 ATZ: Trig a reset of the MCU
1648 )))
1649
1650 (((
1651 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1652 )))
1653
1654 (((
1655 AT+DEUI: Get or Set the Device EUI
1656 )))
1657
1658 (((
1659 AT+DADDR: Get or Set the Device Address
1660 )))
1661
1662 (((
1663 AT+APPKEY: Get or Set the Application Key
1664 )))
1665
1666 (((
1667 AT+NWKSKEY: Get or Set the Network Session Key
1668 )))
1669
1670 (((
1671 AT+APPSKEY:  Get or Set the Application Session Key
1672 )))
1673
1674 (((
1675 AT+APPEUI:  Get or Set the Application EUI
1676 )))
1677
1678 (((
1679 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1680 )))
1681
1682 (((
1683 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1684 )))
1685
1686 (((
1687 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1688 )))
1689
1690 (((
1691 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1692 )))
1693
1694 (((
1695 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1696 )))
1697
1698 (((
1699 AT+RX2FQ: Get or Set the Rx2 window frequency
1700 )))
1701
1702 (((
1703 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1704 )))
1705
1706 (((
1707 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1708 )))
1709
1710 (((
1711 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1712 )))
1713
1714 (((
1715 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1716 )))
1717
1718 (((
1719 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1720 )))
1721
1722 (((
1723 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1724 )))
1725
1726 (((
1727 AT+NWKID: Get or Set the Network ID
1728 )))
1729
1730 (((
1731 AT+FCU: Get or Set the Frame Counter Uplink
1732 )))
1733
1734 (((
1735 AT+FCD: Get or Set the Frame Counter Downlink
1736 )))
1737
1738 (((
1739 AT+CLASS: Get or Set the Device Class
1740 )))
1741
1742 (((
1743 AT+JOIN: Join network
1744 )))
1745
1746 (((
1747 AT+NJS: Get OTAA Join Status
1748 )))
1749
1750 (((
1751 AT+SENDB: Send hexadecimal data along with the application port
1752 )))
1753
1754 (((
1755 AT+SEND: Send text data along with the application port
1756 )))
1757
1758 (((
1759 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1760 )))
1761
1762 (((
1763 AT+RECV: Print last received data in raw format
1764 )))
1765
1766 (((
1767 AT+VER:  Get current image version and Frequency Band
1768 )))
1769
1770 (((
1771 AT+CFM: Get or Set the confirmation mode (0-1)
1772 )))
1773
1774 (((
1775 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1776 )))
1777
1778 (((
1779 AT+SNR: Get the SNR of the last received packet
1780 )))
1781
1782 (((
1783 AT+RSSI: Get the RSSI of the last received packet
1784 )))
1785
1786 (((
1787 AT+TDC: Get or set the application data transmission interval in ms
1788 )))
1789
1790 (((
1791 AT+PORT: Get or set the application port
1792 )))
1793
1794 (((
1795 AT+DISAT: Disable AT commands
1796 )))
1797
1798 (((
1799 AT+PWORD: Set password, max 9 digits
1800 )))
1801
1802 (((
1803 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1804 )))
1805
1806 (((
1807 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1808 )))
1809
1810 (((
1811 AT+CFG: Print all settings
1812 )))
1813
1814
1815
1816 == 4.2 Common AT Command Sequence ==
1817
1818
1819 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1820
1821 (((
1822
1823
1824 (((
1825 (% style="color:blue" %)**If device has not joined network yet:**
1826 )))
1827 )))
1828
1829 (((
1830 (% style="background-color:#dcdcdc" %)**123456**
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)**AT+FDR**
1835 )))
1836
1837 (((
1838 (% style="background-color:#dcdcdc" %)**123456**
1839 )))
1840
1841 (((
1842 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1843 )))
1844
1845 (((
1846 (% style="background-color:#dcdcdc" %)**ATZ**
1847 )))
1848
1849
1850 (((
1851 (% style="color:blue" %)**If device already joined network:**
1852 )))
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1856 )))
1857
1858 (((
1859 (% style="background-color:#dcdcdc" %)**ATZ**
1860 )))
1861
1862
1863
1864 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1865
1866 (((
1867
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1871 )))
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1920
1921
1922 )))
1923
1924 (((
1925 (% style="color:red" %)**Note:**
1926 )))
1927
1928 (((
1929 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1930
1931 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1932
1933 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1934 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1935
1936 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1937
1938
1939 )))
1940
1941 (((
1942 [[image:1653359097980-169.png||height="188" width="729"]]
1943 )))
1944
1945 (((
1946
1947 )))
1948
1949
1950 === 4.2.3 Change to Class A ===
1951
1952
1953 (((
1954 (% style="color:blue" %)**If sensor JOINED:**
1955
1956 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1957 ATZ**
1958 )))
1959
1960
1961
1962 = 5. FAQ =
1963
1964
1965 == 5.1 How to upgrade the image? ==
1966
1967
1968 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1969
1970 * Support new features
1971 * For bug fix
1972 * Change LoRaWAN bands.
1973
1974 Below shows the hardware connection for how to upload an image to the LT:
1975
1976 [[image:1653359603330-121.png]]
1977
1978
1979 (((
1980 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1981 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1982 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1983
1984
1985 (((
1986 (% style="color:blue" %)**For LT-22222-L**(%%):
1987 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1988 )))
1989
1990
1991 )))
1992
1993 [[image:image-20220524103407-12.png]]
1994
1995 [[image:image-20220524103429-13.png]]
1996
1997 [[image:image-20220524104033-15.png]]
1998
1999
2000 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2001
2002
2003 [[image:1653360054704-518.png||height="186" width="745"]]
2004
2005
2006 (((
2007 (((
2008
2009
2010 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2011
2012
2013 )))
2014 )))
2015
2016 (((
2017 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2018 )))
2019
2020 (((
2021
2022
2023
2024 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2025
2026
2027 )))
2028
2029 (((
2030 (((
2031 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2032 )))
2033 )))
2034
2035 (((
2036 (((
2037 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2038
2039
2040 )))
2041 )))
2042
2043 (((
2044 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2045
2046
2047 )))
2048
2049 (((
2050 [[image:1653360231087-571.png||height="401" width="727"]]
2051
2052
2053 )))
2054
2055 (((
2056 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2057 )))
2058
2059
2060
2061 (((
2062 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2063
2064
2065 )))
2066
2067 (((
2068 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2069 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2070 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2071 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2072 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2073 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2074 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2075 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2076 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2077 )))
2078
2079
2080 (((
2081 As shown in below:
2082 )))
2083
2084 [[image:1653360498588-932.png||height="485" width="726"]]
2085
2086
2087
2088 == 5.4 Can I see counting event in Serial? ==
2089
2090
2091 (((
2092 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2093
2094
2095
2096 == 5.5 Can i use point to point communication for LT-22222-L? ==
2097
2098
2099 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2100
2101
2102
2103 )))
2104
2105 (((
2106 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2107
2108
2109 If the device is not shut down, but directly powered off.
2110
2111 It will default that this is a power-off state.
2112
2113 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2114
2115 After restart, the status before power failure will be read from flash.
2116
2117
2118
2119 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2120
2121
2122 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2123
2124
2125 [[image:image-20221006170630-1.png||height="610" width="945"]]
2126
2127
2128 == 5.8 Can LT22222 save RO state? ==
2129
2130 Firmware version needs to be no less than 1.6.0.
2131
2132
2133 = 6. Trouble Shooting =
2134
2135
2136 )))
2137
2138 (((
2139 (((
2140 == 6.1 Downlink doesn't work, how to solve it? ==
2141
2142
2143 )))
2144 )))
2145
2146 (((
2147 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2148 )))
2149
2150 (((
2151
2152
2153
2154 == 6.2 Have trouble to upload image. ==
2155
2156
2157 )))
2158
2159 (((
2160 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2161 )))
2162
2163 (((
2164
2165
2166
2167 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2168
2169
2170 )))
2171
2172 (((
2173 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2174 )))
2175
2176
2177
2178 = 7. Order Info =
2179
2180
2181 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2182
2183 (% style="color:#4f81bd" %)**XXX:**
2184
2185 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2186 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2187 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2188 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2189 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2190 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2191 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2192 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2193 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2194
2195 = 8. Packing Info =
2196
2197
2198 **Package Includes**:
2199
2200 * LT-22222-L I/O Controller x 1
2201 * Stick Antenna for LoRa RF part x 1
2202 * Bracket for controller x1
2203 * Program cable x 1
2204
2205 **Dimension and weight**:
2206
2207 * Device Size: 13.5 x 7 x 3 cm
2208 * Device Weight: 105g
2209 * Package Size / pcs : 14.5 x 8 x 5 cm
2210 * Weight / pcs : 170g
2211
2212
2213
2214 = 9. Support =
2215
2216
2217 * (((
2218 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2219 )))
2220 * (((
2221 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2222
2223
2224
2225
2226 )))
2227
2228 = 10. Reference​​​​​ =
2229
2230
2231 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2232 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2233 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0