Version 102.5 by Xiaoling on 2022/10/29 10:07

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191 == 1.4  Applications ==
192
193
194 * Smart Buildings & Home Automation
195 * Logistics and Supply Chain Management
196 * Smart Metering
197 * Smart Agriculture
198 * Smart Cities
199 * Smart Factory
200
201
202
203 == 1.5 Hardware Variants ==
204
205
206 (% border="1" style="background-color:#f7faff; width:500px" %)
207 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
208 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
209 * 2 x Digital Input (Bi-direction)
210 * 2 x Digital Output
211 * 2 x Relay Output (5A@250VAC / 30VDC)
212 * 2 x 0~~20mA Analog Input (res:0.01mA)
213 * 2 x 0~~30V Analog Input (res:0.01v)
214 * 1 x Counting Port
215 )))
216
217
218
219 = 2. Power ON Device =
220
221
222 (((
223 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
224 )))
225
226 (((
227 PWR will on when device is properly powered.
228
229
230 )))
231
232 [[image:1653297104069-180.png]]
233
234
235
236 = 3. Operation Mode =
237
238
239 == 3.1 How it works? ==
240
241
242 (((
243 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
244 )))
245
246 (((
247 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
248 )))
249
250
251
252 == 3.2 Example to join LoRaWAN network ==
253
254
255 (((
256 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
257
258
259 )))
260
261 [[image:image-20220523172350-1.png||height="266" width="864"]]
262
263
264 (((
265 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
266
267
268 )))
269
270 (((
271 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
272 )))
273
274 (((
275 Each LT is shipped with a sticker with the default device EUI as below:
276 )))
277
278 [[image:1653297924498-393.png]]
279
280
281 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
282
283 **Add APP EUI in the application.**
284
285 [[image:1653297955910-247.png||height="321" width="716"]]
286
287
288 **Add APP KEY and DEV EUI**
289
290 [[image:1653298023685-319.png]]
291
292
293
294 (((
295 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
296
297
298 )))
299
300 [[image:1653298044601-602.png||height="405" width="709"]]
301
302
303
304 == 3.3 Uplink Payload ==
305
306
307 There are five working modes + one interrupt mode on LT for different type application:
308
309 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
310 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
311 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
312 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
313 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
314 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
315
316
317
318
319 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
320
321
322 (((
323 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
324 )))
325
326 [[image:image-20220523174024-3.png]]
327
328 (((
329
330
331 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
332 )))
333
334 [[image:image-20220523174254-4.png]]
335
336 * RO is for relay. ROx=1 : close,ROx=0 always open.
337 * DI is for digital input. DIx=1: high or float, DIx=0: low.
338 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
339
340 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
341
342 For example if payload is: [[image:image-20220523175847-2.png]]
343
344
345 **The value for the interface is:  **
346
347 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
348
349 AVI2 channel voltage is 0x04AC/1000=1.196V
350
351 ACI1 channel current is 0x1310/1000=4.880mA
352
353 ACI2 channel current is 0x1300/1000=4.864mA
354
355 The last byte 0xAA= 10101010(B) means
356
357 * [1] RO1 relay channel is close and the RO1 LED is ON.
358 * [0] RO2 relay channel is open and RO2 LED is OFF;
359
360 **LT22222-L:**
361
362 * [1] DI2 channel is high input and DI2 LED is ON;
363 * [0] DI1 channel is low input;
364
365 * [0] DO3 channel output state
366 ** DO3 is float in case no load between DO3 and V+.;
367 ** DO3 is high in case there is load between DO3 and V+.
368 ** DO3 LED is off in both case
369 * [1] DO2 channel output is low and DO2 LED is ON.
370 * [0] DO1 channel output state
371 ** DO1 is float in case no load between DO1 and V+.;
372 ** DO1 is high in case there is load between DO1 and V+.
373 ** DO1 LED is off in both case
374
375
376
377
378 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
379
380
381 (((
382 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
383 )))
384
385 (((
386 Total : 11 bytes payload
387 )))
388
389 [[image:image-20220523180452-3.png]]
390
391
392 (((
393 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
394 )))
395
396 [[image:image-20220523180506-4.png]]
397
398 * RO is for relay. ROx=1 : close,ROx=0 always open.
399 * FIRST: Indicate this is the first packet after join network.
400 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
401
402 (((
403 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
404 )))
405
406 (((
407
408
409 **To use counting mode, please run:**
410 )))
411
412 (% class="box infomessage" %)
413 (((
414 (((
415 (((
416 **AT+MOD=2**
417 )))
418
419 (((
420 **ATZ**
421 )))
422 )))
423 )))
424
425 (((
426
427
428 (% style="color:#4f81bd" %)**AT Commands for counting:**
429
430
431 )))
432
433 (((
434 **For LT22222-L:**
435
436
437 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
438
439 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
440
441 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
442
443 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
444
445 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
446
447 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
448 )))
449
450
451
452 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
453
454
455 **LT22222-L**: This mode the DI1 is used as a counting pin.
456
457 [[image:image-20220523181246-5.png]]
458
459 (((
460
461
462 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 )))
464
465 [[image:image-20220523181301-6.png]]
466
467 * RO is for relay. ROx=1 : close,ROx=0 always open.
468 * FIRST: Indicate this is the first packet after join network.
469 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470
471 (((
472 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
473 )))
474
475
476 (((
477 **To use counting mode, please run:**
478 )))
479
480 (% class="box infomessage" %)
481 (((
482 (((
483 (((
484 **AT+MOD=3**
485 )))
486
487 (((
488 **ATZ**
489 )))
490 )))
491 )))
492
493 (((
494 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
495 )))
496
497
498
499 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
500
501
502 (((
503 **LT22222-L**: This mode the DI1 is used as a counting pin.
504 )))
505
506 (((
507 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
508 )))
509
510 [[image:image-20220523181903-8.png]]
511
512
513 (((
514 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
515 )))
516
517 [[image:image-20220523181727-7.png]]
518
519 * RO is for relay. ROx=1 : close,ROx=0 always open.
520 * FIRST: Indicate this is the first packet after join network.
521 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
522
523 (((
524 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
525 )))
526
527 (((
528
529
530 **To use this mode, please run:**
531 )))
532
533 (% class="box infomessage" %)
534 (((
535 (((
536 (((
537 **AT+MOD=4**
538 )))
539
540 (((
541 **ATZ**
542 )))
543 )))
544 )))
545
546
547 (((
548 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
549 )))
550
551 (((
552
553
554 **Plus below command for AVI1 Counting:**
555
556
557 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560
561 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
562
563 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
564 )))
565
566
567
568 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
569
570
571 **LT22222-L**: This mode the DI1 is used as a counting pin.
572
573 [[image:image-20220523182334-9.png]]
574
575 (((
576
577
578 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
579 )))
580
581 * RO is for relay. ROx=1 : close,ROx=0 always open.
582 * FIRST: Indicate this is the first packet after join network.
583 * (((
584 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 )))
586
587 (((
588 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 )))
590
591 (((
592
593
594 **To use this mode, please run:**
595 )))
596
597 (% class="box infomessage" %)
598 (((
599 (((
600 (((
601 **AT+MOD=5**
602 )))
603
604 (((
605 **ATZ**
606 )))
607 )))
608 )))
609
610 (((
611 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
612 )))
613
614
615
616 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
617
618
619 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
620
621 For example, if user has configured below commands:
622
623 * **AT+MOD=1 ** **~-~->**  The normal working mode
624 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
625
626 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
627
628 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
629 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
630
631 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
632
633
634 (% style="color:#4f81bd" %)**Trigger base on voltage**:
635
636 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
637
638
639 **Example:**
640
641 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
642
643 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
644
645
646
647 (% style="color:#4f81bd" %)**Trigger base on current**:
648
649 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
650
651
652 **Example:**
653
654 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
655
656
657
658 (% style="color:#4f81bd" %)**Trigger base on DI status**:
659
660 DI status trigger Flag.
661
662 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
663
664
665 **Example:**
666
667 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
668
669
670
671 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
672
673 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
674
675 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
676
677 AA: Code for this downlink Command:
678
679 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
680
681 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
682
683 yy2 yy2: AC1 or AV1 high limit.
684
685 yy3 yy3: AC2 or AV2 low limit.
686
687 Yy4 yy4: AC2 or AV2 high limit.
688
689
690 **Example1**: AA 00 13 88 00 00 00 00 00 00
691
692 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
693
694
695 **Example2**: AA 02 01 00
696
697 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
698
699
700
701 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
702
703 MOD6 Payload : total 11 bytes payload
704
705 [[image:image-20220524085923-1.png]]
706
707
708 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
709
710 [[image:image-20220524090106-2.png]]
711
712 * Each bits shows if the corresponding trigger has been configured.
713
714 **Example:**
715
716 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
717
718
719
720 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
721
722 [[image:image-20220524090249-3.png]]
723
724 * Each bits shows which status has been trigger on this uplink.
725
726 **Example:**
727
728 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
729
730
731
732 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
733
734 [[image:image-20220524090456-4.png]]
735
736 * Each bits shows which status has been trigger on this uplink.
737
738 **Example:**
739
740 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
741
742 00000101: Means both DI1 and DI2 trigger are enabled.
743
744
745
746 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
747
748 Downlink command to poll MOD6 status:
749
750 **AB 06**
751
752 When device got this command, it will send the MOD6 payload.
753
754
755
756 === 3.3.7 Payload Decoder ===
757
758 (((
759
760
761 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
762 )))
763
764
765
766 == 3.4 ​Configure LT via AT or Downlink ==
767
768
769 (((
770 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
771 )))
772
773 (((
774 (((
775 There are two kinds of Commands:
776 )))
777 )))
778
779 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
780
781 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
782
783
784
785 === 3.4.1 Common Commands ===
786
787
788 (((
789 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
790 )))
791
792
793
794 === 3.4.2 Sensor related commands ===
795
796
797 ==== 3.4.2.1 Set Transmit Interval ====
798
799
800 Set device uplink interval.
801
802 * (% style="color:#037691" %)**AT Command:**
803
804 (% style="color:blue" %)**AT+TDC=N **
805
806
807 **Example: **AT+TDC=30000. Means set interval to 30 seconds
808
809
810 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
811
812 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
813
814
815
816 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
817
818
819 Set work mode.
820
821 * (% style="color:#037691" %)**AT Command:**
822
823 (% style="color:blue" %)**AT+MOD=N  **
824
825
826 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
827
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
830
831 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
832
833
834
835 ==== 3.4.2.3 Poll an uplink ====
836
837
838 * (% style="color:#037691" %)**AT Command:**
839
840 There is no AT Command to poll uplink
841
842
843 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
844
845 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
846
847
848 **Example**: 0x08FF, ask device to send an Uplink
849
850
851
852 ==== 3.4.2.4 Enable Trigger Mode ====
853
854
855 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
856
857 * (% style="color:#037691" %)**AT Command:**
858
859 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
860
861 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
862
863 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
864
865
866 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
867
868 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
869
870
871
872
873 ==== 3.4.2.5 Poll trigger settings ====
874
875
876 Poll trigger settings,
877
878 * (% style="color:#037691" %)**AT Command:**
879
880 There is no AT Command for this feature.
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
884
885 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
886
887
888
889 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
890
891
892 Enable Disable DI1/DI2/DI2 as trigger,
893
894 * (% style="color:#037691" %)**AT Command:**
895
896 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
897
898
899 **Example:**
900
901 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
902
903 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
904
905 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
906
907
908
909 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
910
911
912 Set DI1 or DI3(for LT-33222-L) trigger.
913
914 * (% style="color:#037691" %)**AT Command:**
915
916 (% style="color:blue" %)**AT+TRIG1=a,b**
917
918 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
919
920 (% style="color:red" %)**b :** (%%)delay timing.
921
922
923 **Example:**
924
925 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
926
927
928 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
929
930 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
931
932
933
934 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
935
936
937 Set DI2 trigger.
938
939 * (% style="color:#037691" %)**AT Command:**
940
941 (% style="color:blue" %)**AT+TRIG2=a,b**
942
943 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
944
945 (% style="color:red" %)**b :** (%%)delay timing.
946
947
948 **Example:**
949
950 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
951
952
953 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
954
955 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
956
957
958
959 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
960
961
962 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
963
964 * (% style="color:#037691" %)**AT Command**
965
966 (% style="color:blue" %)**AT+ACLIM**
967
968
969 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
970
971 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
972
973
974
975 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
976
977
978 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
979
980 * (% style="color:#037691" %)**AT Command**
981
982 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
986
987 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
988
989
990
991 ==== 3.4.2.11 Trigger – Set minimum interval ====
992
993
994 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
995
996 * (% style="color:#037691" %)**AT Command**
997
998 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
999
1000
1001 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1002
1003 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1004
1005 (((
1006
1007
1008 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1009 )))
1010
1011
1012
1013 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1014
1015
1016 * (% style="color:#037691" %)**AT Command**
1017
1018 There is no AT Command to control Digital Output
1019
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1022 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1023
1024 (((
1025 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1026 )))
1027
1028 (((
1029 01: Low,  00: High ,  11: No action
1030 )))
1031
1032 [[image:image-20220524092754-5.png]]
1033
1034 (((
1035 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1036 )))
1037
1038 (((
1039 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1040 )))
1041
1042
1043
1044 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1045
1046
1047 * (% style="color:#037691" %)**AT Command**
1048
1049 There is no AT Command to control Digital Output
1050
1051
1052 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1053
1054 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1055
1056
1057 This is to control the digital output time of DO pin. Include four bytes:
1058
1059 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1060
1061 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1062
1063 01: DO pins will change back to original state after timeout.
1064
1065 00: DO pins will change to an inverter state after timeout 
1066
1067
1068 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1069
1070 [[image:image-20220524093238-6.png]]
1071
1072
1073 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1074
1075 [[image:image-20220524093328-7.png]]
1076
1077
1078 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1079
1080 [[image:image-20220524093351-8.png]]
1081
1082
1083 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1084
1085 Latching time. Unit: ms
1086
1087 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1088
1089
1090 **Example payload:**
1091
1092 **~1. A9 01 01 01 01 07 D0**
1093
1094 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1095
1096 **2. A9 01 00 01 11 07 D0**
1097
1098 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1099
1100 **3. A9 00 00 00 00 07 D0**
1101
1102 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1103
1104 **4. A9 00 11 01 00 07 D0**
1105
1106 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1107
1108
1109
1110 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1111
1112
1113 * (% style="color:#037691" %)**AT Command:**
1114
1115 There is no AT Command to control Relay Output
1116
1117
1118 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1119
1120 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1121
1122
1123 (((
1124 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1125 )))
1126
1127 (((
1128 01: Close ,  00: Open , 11: No action
1129 )))
1130
1131 (((
1132 [[image:image-20220524093724-9.png]]
1133 )))
1134
1135 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1136
1137
1138
1139
1140 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1141
1142
1143 * (% style="color:#037691" %)**AT Command:**
1144
1145 There is no AT Command to control Relay Output
1146
1147
1148 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1149
1150 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1151
1152
1153 This is to control the relay output time of relay. Include four bytes:
1154
1155 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1156
1157 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1158
1159 01: Relays will change back to original state after timeout.
1160
1161 00: Relays will change to an inverter state after timeout
1162
1163
1164 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1165
1166 [[image:image-20221008095908-1.png||height="364" width="564"]]
1167
1168
1169 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1170
1171 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1172
1173
1174 **Example payload:**
1175
1176 **~1. 05 01 11 07 D**
1177
1178 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1179
1180 **2. 05 01 10 07 D0**
1181
1182 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1183
1184 **3. 05 00 01 07 D0**
1185
1186 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1187
1188 **4. 05 00 00 07 D0**
1189
1190 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1191
1192
1193
1194 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1195
1196
1197 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1198
1199 * (% style="color:#037691" %)**AT Command:**
1200
1201 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1202
1203
1204 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1205
1206 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1207
1208
1209
1210 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1211
1212
1213 * (% style="color:#037691" %)**AT Command:**
1214
1215 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1216
1217 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1218
1219 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1220
1221
1222 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1223
1224 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1225
1226
1227
1228 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1229
1230
1231 Clear counting for counting mode
1232
1233 * (% style="color:#037691" %)**AT Command:**
1234
1235 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1239
1240 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1241
1242
1243
1244 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1245
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1250
1251
1252 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1253
1254 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1255
1256 (((
1257 range: aa bb cc:0 to 16777215,  (unit:second)
1258 )))
1259
1260
1261
1262 ==== 3.4.2.20 Reset save DR DO state ====
1263
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 (% style="color:blue" %)**AT+RODORET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1268
1269 (% style="color:blue" %)**AT+RODORET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1270
1271
1272 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1273
1274 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1275
1276
1277
1278 ==== 3.4.2.21 Encrypted payload ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1284
1285 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1286
1287
1288
1289 ==== 3.4.2.22 Get sensor value ====
1290
1291
1292 * (% style="color:#037691" %)**AT Command:**
1293
1294 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1295
1296 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1297
1298
1299
1300 ==== 3.4.2.23 Resets the downlink packet count ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1306
1307 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1308
1309
1310
1311
1312 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1313
1314
1315 * (% style="color:#037691" %)**AT Command:**
1316
1317 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1318
1319 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1320
1321
1322 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1323
1324 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1325
1326
1327
1328
1329 ==== 3.4.2.25 Copy downlink to uplink ====
1330
1331
1332 * (% style="color:#037691" %)**AT Command**(%%)**:**
1333
1334 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1335
1336 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1337
1338
1339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1340
1341 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1342
1343
1344
1345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1346
1347 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1348
1349
1350
1351 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1352
1353
1354 * (((
1355 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1356
1357 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1358
1359
1360 )))
1361
1362 **Example:**
1363
1364 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1365
1366
1367
1368 == 3.5 Integrate with Mydevice ==
1369
1370
1371 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1372
1373 (((
1374 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1375 )))
1376
1377 (((
1378 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1379
1380
1381 )))
1382
1383 [[image:image-20220719105525-1.png||height="377" width="677"]]
1384
1385
1386
1387 [[image:image-20220719110247-2.png||height="388" width="683"]]
1388
1389
1390 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1391
1392 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1393
1394 Search under The things network
1395
1396 [[image:1653356838789-523.png||height="337" width="740"]]
1397
1398
1399
1400 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1401
1402 [[image:image-20220524094909-1.png||height="335" width="729"]]
1403
1404
1405 [[image:image-20220524094909-2.png||height="337" width="729"]]
1406
1407
1408 [[image:image-20220524094909-3.png||height="338" width="727"]]
1409
1410
1411 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1412
1413
1414 [[image:image-20220524094909-5.png||height="341" width="734"]]
1415
1416
1417
1418 == 3.6 Interface Detail ==
1419
1420
1421 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1422
1423
1424 Support NPN Type sensor
1425
1426 [[image:1653356991268-289.png]]
1427
1428
1429
1430 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1431
1432
1433 (((
1434 The DI port of LT-22222-L can support NPN or PNP output sensor.
1435 )))
1436
1437 (((
1438 (((
1439 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1440
1441
1442 )))
1443 )))
1444
1445 [[image:1653357170703-587.png]]
1446
1447 (((
1448 (((
1449 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1450 )))
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 (((
1458 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1459 )))
1460
1461 (((
1462 This type of sensor will output a low signal GND when active.
1463 )))
1464
1465 * (((
1466 Connect sensor's output to DI1-
1467 )))
1468 * (((
1469 Connect sensor's VCC to DI1+.
1470 )))
1471
1472 (((
1473 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1474 )))
1475
1476 (((
1477 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1478 )))
1479
1480 (((
1481 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1482 )))
1483
1484 (((
1485
1486
1487
1488 )))
1489
1490 (((
1491 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 )))
1493
1494 (((
1495 This type of sensor will output a high signal (example 24v) when active.
1496 )))
1497
1498 * (((
1499 Connect sensor's output to DI1+
1500 )))
1501 * (((
1502 Connect sensor's GND DI1-.
1503 )))
1504
1505 (((
1506 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 )))
1508
1509 (((
1510 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1511 )))
1512
1513 (((
1514 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 )))
1516
1517 (((
1518
1519
1520
1521 )))
1522
1523 (((
1524 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1525 )))
1526
1527 (((
1528 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1529 )))
1530
1531 * (((
1532 Connect sensor's output to DI1+ with a serial 50K resistor
1533 )))
1534 * (((
1535 Connect sensor's GND DI1-.
1536 )))
1537
1538 (((
1539 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1540 )))
1541
1542 (((
1543 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1544 )))
1545
1546 (((
1547 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1548 )))
1549
1550
1551
1552 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1553
1554
1555 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1556
1557 [[image:1653357531600-905.png]]
1558
1559
1560
1561 === 3.6.4 Analog Input Interface ===
1562
1563
1564 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1565
1566
1567 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1568
1569 [[image:1653357592296-182.png]]
1570
1571 Example to connect a 4~~20mA sensor
1572
1573 We take the wind speed sensor as an example for reference only.
1574
1575
1576 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1577
1578 **Red:  12~~24v**
1579
1580 **Yellow:  4~~20mA**
1581
1582 **Black:  GND**
1583
1584
1585 **Connection diagram:**
1586
1587 [[image:1653357640609-758.png]]
1588
1589 [[image:1653357648330-671.png||height="155" width="733"]]
1590
1591
1592
1593 === 3.6.5 Relay Output ===
1594
1595
1596 (((
1597 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1598 )))
1599
1600 [[image:image-20220524100215-9.png]]
1601
1602
1603 [[image:image-20220524100215-10.png||height="382" width="723"]]
1604
1605
1606
1607 == 3.7 LEDs Indicators ==
1608
1609
1610 [[image:image-20220524100748-11.png]]
1611
1612
1613
1614 = 4. Use AT Command =
1615
1616
1617 == 4.1 Access AT Command ==
1618
1619
1620 (((
1621 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1622 )))
1623
1624 (((
1625
1626 )))
1627
1628 [[image:1653358238933-385.png]]
1629
1630
1631 (((
1632 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1633 )))
1634
1635 [[image:1653358355238-883.png]]
1636
1637
1638 (((
1639 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1640 )))
1641
1642 (((
1643 AT+<CMD>?        : Help on <CMD>
1644 )))
1645
1646 (((
1647 AT+<CMD>         : Run <CMD>
1648 )))
1649
1650 (((
1651 AT+<CMD>=<value> : Set the value
1652 )))
1653
1654 (((
1655 AT+<CMD>=?       :  Get the value
1656 )))
1657
1658 (((
1659 ATZ: Trig a reset of the MCU
1660 )))
1661
1662 (((
1663 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1664 )))
1665
1666 (((
1667 AT+DEUI: Get or Set the Device EUI
1668 )))
1669
1670 (((
1671 AT+DADDR: Get or Set the Device Address
1672 )))
1673
1674 (((
1675 AT+APPKEY: Get or Set the Application Key
1676 )))
1677
1678 (((
1679 AT+NWKSKEY: Get or Set the Network Session Key
1680 )))
1681
1682 (((
1683 AT+APPSKEY:  Get or Set the Application Session Key
1684 )))
1685
1686 (((
1687 AT+APPEUI:  Get or Set the Application EUI
1688 )))
1689
1690 (((
1691 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1692 )))
1693
1694 (((
1695 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1696 )))
1697
1698 (((
1699 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1700 )))
1701
1702 (((
1703 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1704 )))
1705
1706 (((
1707 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1708 )))
1709
1710 (((
1711 AT+RX2FQ: Get or Set the Rx2 window frequency
1712 )))
1713
1714 (((
1715 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1716 )))
1717
1718 (((
1719 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1720 )))
1721
1722 (((
1723 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1724 )))
1725
1726 (((
1727 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1728 )))
1729
1730 (((
1731 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1732 )))
1733
1734 (((
1735 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1736 )))
1737
1738 (((
1739 AT+NWKID: Get or Set the Network ID
1740 )))
1741
1742 (((
1743 AT+FCU: Get or Set the Frame Counter Uplink
1744 )))
1745
1746 (((
1747 AT+FCD: Get or Set the Frame Counter Downlink
1748 )))
1749
1750 (((
1751 AT+CLASS: Get or Set the Device Class
1752 )))
1753
1754 (((
1755 AT+JOIN: Join network
1756 )))
1757
1758 (((
1759 AT+NJS: Get OTAA Join Status
1760 )))
1761
1762 (((
1763 AT+SENDB: Send hexadecimal data along with the application port
1764 )))
1765
1766 (((
1767 AT+SEND: Send text data along with the application port
1768 )))
1769
1770 (((
1771 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1772 )))
1773
1774 (((
1775 AT+RECV: Print last received data in raw format
1776 )))
1777
1778 (((
1779 AT+VER:  Get current image version and Frequency Band
1780 )))
1781
1782 (((
1783 AT+CFM: Get or Set the confirmation mode (0-1)
1784 )))
1785
1786 (((
1787 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1788 )))
1789
1790 (((
1791 AT+SNR: Get the SNR of the last received packet
1792 )))
1793
1794 (((
1795 AT+RSSI: Get the RSSI of the last received packet
1796 )))
1797
1798 (((
1799 AT+TDC: Get or set the application data transmission interval in ms
1800 )))
1801
1802 (((
1803 AT+PORT: Get or set the application port
1804 )))
1805
1806 (((
1807 AT+DISAT: Disable AT commands
1808 )))
1809
1810 (((
1811 AT+PWORD: Set password, max 9 digits
1812 )))
1813
1814 (((
1815 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1816 )))
1817
1818 (((
1819 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1820 )))
1821
1822 (((
1823 AT+CFG: Print all settings
1824 )))
1825
1826
1827
1828 == 4.2 Common AT Command Sequence ==
1829
1830
1831 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1832
1833 (((
1834
1835
1836 (((
1837 (% style="color:blue" %)**If device has not joined network yet:**
1838 )))
1839 )))
1840
1841 (((
1842 (% style="background-color:#dcdcdc" %)**123456**
1843 )))
1844
1845 (((
1846 (% style="background-color:#dcdcdc" %)**AT+FDR**
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %)**123456**
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)**ATZ**
1859 )))
1860
1861
1862 (((
1863 (% style="color:blue" %)**If device already joined network:**
1864 )))
1865
1866 (((
1867 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)**ATZ**
1872 )))
1873
1874
1875
1876 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1877
1878 (((
1879
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1883 )))
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1932
1933
1934 )))
1935
1936 (((
1937 (% style="color:red" %)**Note:**
1938 )))
1939
1940 (((
1941 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1942
1943 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1944
1945 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1946 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1947
1948 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1949
1950
1951 )))
1952
1953 (((
1954 [[image:1653359097980-169.png||height="188" width="729"]]
1955 )))
1956
1957 (((
1958
1959 )))
1960
1961
1962 === 4.2.3 Change to Class A ===
1963
1964
1965 (((
1966 (% style="color:blue" %)**If sensor JOINED:**
1967
1968 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1969 ATZ**
1970 )))
1971
1972
1973
1974 = 5. FAQ =
1975
1976
1977 == 5.1 How to upgrade the image? ==
1978
1979
1980 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1981
1982 * Support new features
1983 * For bug fix
1984 * Change LoRaWAN bands.
1985
1986 Below shows the hardware connection for how to upload an image to the LT:
1987
1988 [[image:1653359603330-121.png]]
1989
1990
1991 (((
1992 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1993 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1994 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1995
1996
1997 (((
1998 (% style="color:blue" %)**For LT-22222-L**(%%):
1999 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2000 )))
2001
2002
2003 )))
2004
2005 [[image:image-20220524103407-12.png]]
2006
2007 [[image:image-20220524103429-13.png]]
2008
2009 [[image:image-20220524104033-15.png]]
2010
2011
2012 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2013
2014
2015 [[image:1653360054704-518.png||height="186" width="745"]]
2016
2017
2018 (((
2019 (((
2020
2021
2022 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2023
2024
2025 )))
2026 )))
2027
2028 (((
2029 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2030 )))
2031
2032 (((
2033
2034
2035
2036 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2037
2038
2039 )))
2040
2041 (((
2042 (((
2043 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2044 )))
2045 )))
2046
2047 (((
2048 (((
2049 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2050
2051
2052 )))
2053 )))
2054
2055 (((
2056 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2057
2058
2059 )))
2060
2061 (((
2062 [[image:1653360231087-571.png||height="401" width="727"]]
2063
2064
2065 )))
2066
2067 (((
2068 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2069 )))
2070
2071
2072
2073 (((
2074 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2075
2076
2077 )))
2078
2079 (((
2080 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2081 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2082 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2083 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2084 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2085 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2086 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2087 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2088 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2089 )))
2090
2091
2092 (((
2093 As shown in below:
2094 )))
2095
2096 [[image:1653360498588-932.png||height="485" width="726"]]
2097
2098
2099
2100 == 5.4 Can I see counting event in Serial? ==
2101
2102
2103 (((
2104 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2105
2106
2107
2108 == 5.5 Can i use point to point communication for LT-22222-L? ==
2109
2110
2111 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2112
2113
2114
2115 )))
2116
2117 (((
2118 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2119
2120
2121 If the device is not shut down, but directly powered off.
2122
2123 It will default that this is a power-off state.
2124
2125 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2126
2127 After restart, the status before power failure will be read from flash.
2128
2129
2130
2131 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2132
2133
2134 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2135
2136
2137 [[image:image-20221006170630-1.png||height="610" width="945"]]
2138
2139
2140
2141 = 6. Trouble Shooting =
2142
2143
2144 )))
2145
2146 (((
2147 (((
2148 == 6.1 Downlink doesn't work, how to solve it? ==
2149
2150
2151 )))
2152 )))
2153
2154 (((
2155 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2156 )))
2157
2158 (((
2159
2160
2161
2162 == 6.2 Have trouble to upload image. ==
2163
2164
2165 )))
2166
2167 (((
2168 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2169 )))
2170
2171 (((
2172
2173
2174
2175 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2176
2177
2178 )))
2179
2180 (((
2181 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2182 )))
2183
2184
2185
2186 = 7. Order Info =
2187
2188
2189 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2190
2191 (% style="color:#4f81bd" %)**XXX:**
2192
2193 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2194 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2195 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2196 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2197 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2198 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2199 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2200 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2201 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2202
2203
2204
2205 = 8. Packing Info =
2206
2207
2208 **Package Includes**:
2209
2210 * LT-22222-L I/O Controller x 1
2211 * Stick Antenna for LoRa RF part x 1
2212 * Bracket for controller x1
2213 * Program cable x 1
2214
2215 **Dimension and weight**:
2216
2217 * Device Size: 13.5 x 7 x 3 cm
2218 * Device Weight: 105g
2219 * Package Size / pcs : 14.5 x 8 x 5 cm
2220 * Weight / pcs : 170g
2221
2222
2223
2224 = 9. Support =
2225
2226
2227 * (((
2228 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2229 )))
2230 * (((
2231 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2232
2233
2234
2235
2236 )))
2237
2238 = 10. Reference​​​​​ =
2239
2240
2241 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2242 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2243 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0