Version 102.4 by Xiaoling on 2022/10/29 10:05

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196 * Logistics and Supply Chain Management
197 * Smart Metering
198 * Smart Agriculture
199 * Smart Cities
200 * Smart Factory
201
202
203
204
205 == 1.5 Hardware Variants ==
206
207
208 (% border="1" style="background-color:#f7faff; width:500px" %)
209 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
210 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
211 * 2 x Digital Input (Bi-direction)
212 * 2 x Digital Output
213 * 2 x Relay Output (5A@250VAC / 30VDC)
214 * 2 x 0~~20mA Analog Input (res:0.01mA)
215 * 2 x 0~~30V Analog Input (res:0.01v)
216 * 1 x Counting Port
217 )))
218
219
220
221 = 2. Power ON Device =
222
223
224 (((
225 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
226 )))
227
228 (((
229 PWR will on when device is properly powered.
230
231
232 )))
233
234 [[image:1653297104069-180.png]]
235
236
237
238 = 3. Operation Mode =
239
240
241 == 3.1 How it works? ==
242
243
244 (((
245 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
246 )))
247
248 (((
249 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
250 )))
251
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:1653297924498-393.png]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305
306 == 3.3 Uplink Payload ==
307
308
309 There are five working modes + one interrupt mode on LT for different type application:
310
311 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
312 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
313 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
314 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
315 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
316 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
317
318 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
319
320
321 (((
322 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
323 )))
324
325 [[image:image-20220523174024-3.png]]
326
327 (((
328
329
330 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
331 )))
332
333 [[image:image-20220523174254-4.png]]
334
335 * RO is for relay. ROx=1 : close,ROx=0 always open.
336 * DI is for digital input. DIx=1: high or float, DIx=0: low.
337 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338
339 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340
341 For example if payload is: [[image:image-20220523175847-2.png]]
342
343
344 **The value for the interface is:  **
345
346 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347
348 AVI2 channel voltage is 0x04AC/1000=1.196V
349
350 ACI1 channel current is 0x1310/1000=4.880mA
351
352 ACI2 channel current is 0x1300/1000=4.864mA
353
354 The last byte 0xAA= 10101010(B) means
355
356 * [1] RO1 relay channel is close and the RO1 LED is ON.
357 * [0] RO2 relay channel is open and RO2 LED is OFF;
358
359 **LT22222-L:**
360
361 * [1] DI2 channel is high input and DI2 LED is ON;
362 * [0] DI1 channel is low input;
363
364 * [0] DO3 channel output state
365 ** DO3 is float in case no load between DO3 and V+.;
366 ** DO3 is high in case there is load between DO3 and V+.
367 ** DO3 LED is off in both case
368 * [1] DO2 channel output is low and DO2 LED is ON.
369 * [0] DO1 channel output state
370 ** DO1 is float in case no load between DO1 and V+.;
371 ** DO1 is high in case there is load between DO1 and V+.
372 ** DO1 LED is off in both case
373
374 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
375
376
377 (((
378 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
379 )))
380
381 (((
382 Total : 11 bytes payload
383 )))
384
385 [[image:image-20220523180452-3.png]]
386
387
388 (((
389 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
390 )))
391
392 [[image:image-20220523180506-4.png]]
393
394 * RO is for relay. ROx=1 : close,ROx=0 always open.
395 * FIRST: Indicate this is the first packet after join network.
396 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397
398 (((
399 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
400 )))
401
402 (((
403
404
405 **To use counting mode, please run:**
406 )))
407
408 (% class="box infomessage" %)
409 (((
410 (((
411 (((
412 **AT+MOD=2**
413 )))
414
415 (((
416 **ATZ**
417 )))
418 )))
419 )))
420
421 (((
422
423
424 (% style="color:#4f81bd" %)**AT Commands for counting:**
425
426
427 )))
428
429 (((
430 **For LT22222-L:**
431
432
433 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
434
435 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
436
437 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
438
439 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
440
441 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
442
443 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
444 )))
445
446
447
448 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
449
450
451 **LT22222-L**: This mode the DI1 is used as a counting pin.
452
453 [[image:image-20220523181246-5.png]]
454
455 (((
456
457
458 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
459 )))
460
461 [[image:image-20220523181301-6.png]]
462
463 * RO is for relay. ROx=1 : close,ROx=0 always open.
464 * FIRST: Indicate this is the first packet after join network.
465 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
466
467 (((
468 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
469 )))
470
471
472 (((
473 **To use counting mode, please run:**
474 )))
475
476 (% class="box infomessage" %)
477 (((
478 (((
479 (((
480 **AT+MOD=3**
481 )))
482
483 (((
484 **ATZ**
485 )))
486 )))
487 )))
488
489 (((
490 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
491 )))
492
493
494
495 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
496
497
498 (((
499 **LT22222-L**: This mode the DI1 is used as a counting pin.
500 )))
501
502 (((
503 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
504 )))
505
506 [[image:image-20220523181903-8.png]]
507
508
509 (((
510 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
511 )))
512
513 [[image:image-20220523181727-7.png]]
514
515 * RO is for relay. ROx=1 : close,ROx=0 always open.
516 * FIRST: Indicate this is the first packet after join network.
517 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
518
519 (((
520 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
521 )))
522
523 (((
524
525
526 **To use this mode, please run:**
527 )))
528
529 (% class="box infomessage" %)
530 (((
531 (((
532 (((
533 **AT+MOD=4**
534 )))
535
536 (((
537 **ATZ**
538 )))
539 )))
540 )))
541
542
543 (((
544 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
545 )))
546
547 (((
548
549
550 **Plus below command for AVI1 Counting:**
551
552
553 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
554
555 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
556
557 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
560 )))
561
562
563
564 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
565
566
567 **LT22222-L**: This mode the DI1 is used as a counting pin.
568
569 [[image:image-20220523182334-9.png]]
570
571 (((
572
573
574 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 )))
576
577 * RO is for relay. ROx=1 : close,ROx=0 always open.
578 * FIRST: Indicate this is the first packet after join network.
579 * (((
580 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
581 )))
582
583 (((
584 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
585 )))
586
587 (((
588
589
590 **To use this mode, please run:**
591 )))
592
593 (% class="box infomessage" %)
594 (((
595 (((
596 (((
597 **AT+MOD=5**
598 )))
599
600 (((
601 **ATZ**
602 )))
603 )))
604 )))
605
606 (((
607 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
608 )))
609
610
611
612 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
613
614
615 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
616
617 For example, if user has configured below commands:
618
619 * **AT+MOD=1 ** **~-~->**  The normal working mode
620 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
621
622 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
623
624 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
625 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
626
627 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
628
629
630 (% style="color:#4f81bd" %)**Trigger base on voltage**:
631
632 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
633
634
635 **Example:**
636
637 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
638
639 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
640
641
642
643 (% style="color:#4f81bd" %)**Trigger base on current**:
644
645 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
646
647
648 **Example:**
649
650 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
651
652
653
654 (% style="color:#4f81bd" %)**Trigger base on DI status**:
655
656 DI status trigger Flag.
657
658 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
659
660
661 **Example:**
662
663 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
664
665
666
667 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
668
669 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
670
671 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
672
673 AA: Code for this downlink Command:
674
675 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
676
677 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
678
679 yy2 yy2: AC1 or AV1 high limit.
680
681 yy3 yy3: AC2 or AV2 low limit.
682
683 Yy4 yy4: AC2 or AV2 high limit.
684
685
686 **Example1**: AA 00 13 88 00 00 00 00 00 00
687
688 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
689
690
691 **Example2**: AA 02 01 00
692
693 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
694
695
696
697 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
698
699 MOD6 Payload : total 11 bytes payload
700
701 [[image:image-20220524085923-1.png]]
702
703
704 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
705
706 [[image:image-20220524090106-2.png]]
707
708 * Each bits shows if the corresponding trigger has been configured.
709
710 **Example:**
711
712 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
713
714
715
716 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
717
718 [[image:image-20220524090249-3.png]]
719
720 * Each bits shows which status has been trigger on this uplink.
721
722 **Example:**
723
724 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
725
726
727
728 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
729
730 [[image:image-20220524090456-4.png]]
731
732 * Each bits shows which status has been trigger on this uplink.
733
734 **Example:**
735
736 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
737
738 00000101: Means both DI1 and DI2 trigger are enabled.
739
740
741
742 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
743
744 Downlink command to poll MOD6 status:
745
746 **AB 06**
747
748 When device got this command, it will send the MOD6 payload.
749
750
751
752 === 3.3.7 Payload Decoder ===
753
754 (((
755
756
757 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
758 )))
759
760
761
762 == 3.4 ​Configure LT via AT or Downlink ==
763
764
765 (((
766 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
767 )))
768
769 (((
770 (((
771 There are two kinds of Commands:
772 )))
773 )))
774
775 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
776
777 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
778
779
780
781
782 === 3.4.1 Common Commands ===
783
784
785 (((
786 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
787 )))
788
789
790
791 === 3.4.2 Sensor related commands ===
792
793
794 ==== 3.4.2.1 Set Transmit Interval ====
795
796
797 Set device uplink interval.
798
799 * (% style="color:#037691" %)**AT Command:**
800
801 (% style="color:blue" %)**AT+TDC=N **
802
803
804 **Example: **AT+TDC=30000. Means set interval to 30 seconds
805
806
807 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
808
809 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
810
811
812
813 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
814
815
816 Set work mode.
817
818 * (% style="color:#037691" %)**AT Command:**
819
820 (% style="color:blue" %)**AT+MOD=N  **
821
822
823 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
824
825
826 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
827
828 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
829
830
831
832 ==== 3.4.2.3 Poll an uplink ====
833
834
835 * (% style="color:#037691" %)**AT Command:**
836
837 There is no AT Command to poll uplink
838
839
840 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
841
842 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
843
844
845 **Example**: 0x08FF, ask device to send an Uplink
846
847
848
849 ==== 3.4.2.4 Enable Trigger Mode ====
850
851
852 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
853
854 * (% style="color:#037691" %)**AT Command:**
855
856 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
857
858 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
859
860 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
861
862
863 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
864
865 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
866
867
868
869
870 ==== 3.4.2.5 Poll trigger settings ====
871
872
873 Poll trigger settings,
874
875 * (% style="color:#037691" %)**AT Command:**
876
877 There is no AT Command for this feature.
878
879
880 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
881
882 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
883
884
885
886 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
887
888
889 Enable Disable DI1/DI2/DI2 as trigger,
890
891 * (% style="color:#037691" %)**AT Command:**
892
893 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
894
895
896 **Example:**
897
898 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
899
900 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
901
902 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
903
904
905
906 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
907
908
909 Set DI1 or DI3(for LT-33222-L) trigger.
910
911 * (% style="color:#037691" %)**AT Command:**
912
913 (% style="color:blue" %)**AT+TRIG1=a,b**
914
915 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
916
917 (% style="color:red" %)**b :** (%%)delay timing.
918
919
920 **Example:**
921
922 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
923
924
925 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
926
927 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
928
929
930
931 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
932
933
934 Set DI2 trigger.
935
936 * (% style="color:#037691" %)**AT Command:**
937
938 (% style="color:blue" %)**AT+TRIG2=a,b**
939
940 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
941
942 (% style="color:red" %)**b :** (%%)delay timing.
943
944
945 **Example:**
946
947 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
951
952 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
953
954
955
956 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
957
958
959 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
960
961 * (% style="color:#037691" %)**AT Command**
962
963 (% style="color:blue" %)**AT+ACLIM**
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
967
968 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
969
970
971
972 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
973
974
975 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
976
977 * (% style="color:#037691" %)**AT Command**
978
979 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
980
981
982 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
983
984 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
985
986
987
988 ==== 3.4.2.11 Trigger – Set minimum interval ====
989
990
991 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
992
993 * (% style="color:#037691" %)**AT Command**
994
995 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
999
1000 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1001
1002 (((
1003
1004
1005 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1006 )))
1007
1008
1009
1010 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1011
1012
1013 * (% style="color:#037691" %)**AT Command**
1014
1015 There is no AT Command to control Digital Output
1016
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1019 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1020
1021 (((
1022 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1023 )))
1024
1025 (((
1026 01: Low,  00: High ,  11: No action
1027 )))
1028
1029 [[image:image-20220524092754-5.png]]
1030
1031 (((
1032 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1033 )))
1034
1035 (((
1036 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1037 )))
1038
1039
1040
1041 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1042
1043
1044 * (% style="color:#037691" %)**AT Command**
1045
1046 There is no AT Command to control Digital Output
1047
1048
1049 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1050
1051 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1052
1053
1054 This is to control the digital output time of DO pin. Include four bytes:
1055
1056 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1057
1058 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1059
1060 01: DO pins will change back to original state after timeout.
1061
1062 00: DO pins will change to an inverter state after timeout 
1063
1064
1065 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1066
1067 [[image:image-20220524093238-6.png]]
1068
1069
1070 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1071
1072 [[image:image-20220524093328-7.png]]
1073
1074
1075 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1076
1077 [[image:image-20220524093351-8.png]]
1078
1079
1080 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1081
1082 Latching time. Unit: ms
1083
1084 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1085
1086
1087 **Example payload:**
1088
1089 **~1. A9 01 01 01 01 07 D0**
1090
1091 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1092
1093 **2. A9 01 00 01 11 07 D0**
1094
1095 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1096
1097 **3. A9 00 00 00 00 07 D0**
1098
1099 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1100
1101 **4. A9 00 11 01 00 07 D0**
1102
1103 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1104
1105
1106
1107 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1108
1109
1110 * (% style="color:#037691" %)**AT Command:**
1111
1112 There is no AT Command to control Relay Output
1113
1114
1115 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1116
1117 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1118
1119
1120 (((
1121 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1122 )))
1123
1124 (((
1125 01: Close ,  00: Open , 11: No action
1126 )))
1127
1128 (((
1129 [[image:image-20220524093724-9.png]]
1130 )))
1131
1132 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1133
1134
1135
1136
1137 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1138
1139
1140 * (% style="color:#037691" %)**AT Command:**
1141
1142 There is no AT Command to control Relay Output
1143
1144
1145 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1146
1147 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1148
1149
1150 This is to control the relay output time of relay. Include four bytes:
1151
1152 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1153
1154 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1155
1156 01: Relays will change back to original state after timeout.
1157
1158 00: Relays will change to an inverter state after timeout
1159
1160
1161 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1162
1163 [[image:image-20221008095908-1.png||height="364" width="564"]]
1164
1165
1166 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1167
1168 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1169
1170
1171 **Example payload:**
1172
1173 **~1. 05 01 11 07 D**
1174
1175 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1176
1177 **2. 05 01 10 07 D0**
1178
1179 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1180
1181 **3. 05 00 01 07 D0**
1182
1183 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1184
1185 **4. 05 00 00 07 D0**
1186
1187 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1188
1189
1190
1191 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1192
1193
1194 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1195
1196 * (% style="color:#037691" %)**AT Command:**
1197
1198 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199
1200
1201 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1202
1203 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1204
1205
1206
1207 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1208
1209
1210 * (% style="color:#037691" %)**AT Command:**
1211
1212 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1213
1214 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1215
1216 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1217
1218
1219 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1220
1221 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1222
1223
1224
1225 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1226
1227
1228 Clear counting for counting mode
1229
1230 * (% style="color:#037691" %)**AT Command:**
1231
1232 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1233
1234
1235 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1236
1237 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1238
1239
1240
1241 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1242
1243
1244 * (% style="color:#037691" %)**AT Command:**
1245
1246 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1247
1248
1249 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1250
1251 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1252
1253 (((
1254 range: aa bb cc:0 to 16777215,  (unit:second)
1255 )))
1256
1257
1258
1259 ==== 3.4.2.20 Reset save DR DO state ====
1260
1261
1262 * (% style="color:#037691" %)**AT Command:**
1263
1264 (% style="color:blue" %)**AT+RODORET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1265
1266 (% style="color:blue" %)**AT+RODORET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1267
1268
1269 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1270
1271 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1272
1273
1274
1275 ==== 3.4.2.21 Encrypted payload ====
1276
1277
1278 * (% style="color:#037691" %)**AT Command:**
1279
1280 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1281
1282 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1283
1284
1285
1286 ==== 3.4.2.22 Get sensor value ====
1287
1288
1289 * (% style="color:#037691" %)**AT Command:**
1290
1291 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1292
1293 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1294
1295
1296
1297 ==== 3.4.2.23 Resets the downlink packet count ====
1298
1299
1300 * (% style="color:#037691" %)**AT Command:**
1301
1302 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1303
1304 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1305
1306
1307
1308
1309 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1310
1311
1312 * (% style="color:#037691" %)**AT Command:**
1313
1314 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1315
1316 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1317
1318
1319 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1320
1321 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1322
1323
1324
1325
1326 ==== 3.4.2.25 Copy downlink to uplink ====
1327
1328
1329 * (% style="color:#037691" %)**AT Command**(%%)**:**
1330
1331 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1332
1333 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1334
1335
1336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1337
1338 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1339
1340
1341
1342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1343
1344 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1345
1346
1347
1348 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1349
1350
1351 * (((
1352 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1353
1354 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1355
1356
1357 )))
1358
1359 **Example:**
1360
1361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1362
1363
1364
1365 == 3.5 Integrate with Mydevice ==
1366
1367
1368 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1369
1370 (((
1371 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1372 )))
1373
1374 (((
1375 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1376
1377
1378 )))
1379
1380 [[image:image-20220719105525-1.png||height="377" width="677"]]
1381
1382
1383
1384 [[image:image-20220719110247-2.png||height="388" width="683"]]
1385
1386
1387 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1388
1389 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1390
1391 Search under The things network
1392
1393 [[image:1653356838789-523.png||height="337" width="740"]]
1394
1395
1396
1397 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398
1399 [[image:image-20220524094909-1.png||height="335" width="729"]]
1400
1401
1402 [[image:image-20220524094909-2.png||height="337" width="729"]]
1403
1404
1405 [[image:image-20220524094909-3.png||height="338" width="727"]]
1406
1407
1408 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1409
1410
1411 [[image:image-20220524094909-5.png||height="341" width="734"]]
1412
1413
1414
1415 == 3.6 Interface Detail ==
1416
1417
1418 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1419
1420
1421 Support NPN Type sensor
1422
1423 [[image:1653356991268-289.png]]
1424
1425
1426
1427 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428
1429
1430 (((
1431 The DI port of LT-22222-L can support NPN or PNP output sensor.
1432 )))
1433
1434 (((
1435 (((
1436 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1437
1438
1439 )))
1440 )))
1441
1442 [[image:1653357170703-587.png]]
1443
1444 (((
1445 (((
1446 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 )))
1448 )))
1449
1450 (((
1451
1452 )))
1453
1454 (((
1455 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 )))
1457
1458 (((
1459 This type of sensor will output a low signal GND when active.
1460 )))
1461
1462 * (((
1463 Connect sensor's output to DI1-
1464 )))
1465 * (((
1466 Connect sensor's VCC to DI1+.
1467 )))
1468
1469 (((
1470 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1471 )))
1472
1473 (((
1474 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1475 )))
1476
1477 (((
1478 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 )))
1480
1481 (((
1482
1483
1484
1485 )))
1486
1487 (((
1488 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1489 )))
1490
1491 (((
1492 This type of sensor will output a high signal (example 24v) when active.
1493 )))
1494
1495 * (((
1496 Connect sensor's output to DI1+
1497 )))
1498 * (((
1499 Connect sensor's GND DI1-.
1500 )))
1501
1502 (((
1503 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1504 )))
1505
1506 (((
1507 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1508 )))
1509
1510 (((
1511 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1512 )))
1513
1514 (((
1515
1516
1517
1518 )))
1519
1520 (((
1521 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 )))
1523
1524 (((
1525 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 )))
1527
1528 * (((
1529 Connect sensor's output to DI1+ with a serial 50K resistor
1530 )))
1531 * (((
1532 Connect sensor's GND DI1-.
1533 )))
1534
1535 (((
1536 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 )))
1538
1539 (((
1540 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1541 )))
1542
1543 (((
1544 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 )))
1546
1547
1548
1549 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1550
1551
1552 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1553
1554 [[image:1653357531600-905.png]]
1555
1556
1557
1558 === 3.6.4 Analog Input Interface ===
1559
1560
1561 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1562
1563
1564 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1565
1566 [[image:1653357592296-182.png]]
1567
1568 Example to connect a 4~~20mA sensor
1569
1570 We take the wind speed sensor as an example for reference only.
1571
1572
1573 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1574
1575 **Red:  12~~24v**
1576
1577 **Yellow:  4~~20mA**
1578
1579 **Black:  GND**
1580
1581
1582 **Connection diagram:**
1583
1584 [[image:1653357640609-758.png]]
1585
1586 [[image:1653357648330-671.png||height="155" width="733"]]
1587
1588
1589
1590 === 3.6.5 Relay Output ===
1591
1592
1593 (((
1594 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1595 )))
1596
1597 [[image:image-20220524100215-9.png]]
1598
1599
1600 [[image:image-20220524100215-10.png||height="382" width="723"]]
1601
1602
1603
1604 == 3.7 LEDs Indicators ==
1605
1606
1607 [[image:image-20220524100748-11.png]]
1608
1609
1610
1611 = 4. Use AT Command =
1612
1613
1614 == 4.1 Access AT Command ==
1615
1616
1617 (((
1618 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1619 )))
1620
1621 (((
1622
1623 )))
1624
1625 [[image:1653358238933-385.png]]
1626
1627
1628 (((
1629 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1630 )))
1631
1632 [[image:1653358355238-883.png]]
1633
1634
1635 (((
1636 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1637 )))
1638
1639 (((
1640 AT+<CMD>?        : Help on <CMD>
1641 )))
1642
1643 (((
1644 AT+<CMD>         : Run <CMD>
1645 )))
1646
1647 (((
1648 AT+<CMD>=<value> : Set the value
1649 )))
1650
1651 (((
1652 AT+<CMD>=?       :  Get the value
1653 )))
1654
1655 (((
1656 ATZ: Trig a reset of the MCU
1657 )))
1658
1659 (((
1660 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1661 )))
1662
1663 (((
1664 AT+DEUI: Get or Set the Device EUI
1665 )))
1666
1667 (((
1668 AT+DADDR: Get or Set the Device Address
1669 )))
1670
1671 (((
1672 AT+APPKEY: Get or Set the Application Key
1673 )))
1674
1675 (((
1676 AT+NWKSKEY: Get or Set the Network Session Key
1677 )))
1678
1679 (((
1680 AT+APPSKEY:  Get or Set the Application Session Key
1681 )))
1682
1683 (((
1684 AT+APPEUI:  Get or Set the Application EUI
1685 )))
1686
1687 (((
1688 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1689 )))
1690
1691 (((
1692 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1693 )))
1694
1695 (((
1696 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1697 )))
1698
1699 (((
1700 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1701 )))
1702
1703 (((
1704 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1705 )))
1706
1707 (((
1708 AT+RX2FQ: Get or Set the Rx2 window frequency
1709 )))
1710
1711 (((
1712 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1713 )))
1714
1715 (((
1716 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1717 )))
1718
1719 (((
1720 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1721 )))
1722
1723 (((
1724 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1725 )))
1726
1727 (((
1728 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1729 )))
1730
1731 (((
1732 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1733 )))
1734
1735 (((
1736 AT+NWKID: Get or Set the Network ID
1737 )))
1738
1739 (((
1740 AT+FCU: Get or Set the Frame Counter Uplink
1741 )))
1742
1743 (((
1744 AT+FCD: Get or Set the Frame Counter Downlink
1745 )))
1746
1747 (((
1748 AT+CLASS: Get or Set the Device Class
1749 )))
1750
1751 (((
1752 AT+JOIN: Join network
1753 )))
1754
1755 (((
1756 AT+NJS: Get OTAA Join Status
1757 )))
1758
1759 (((
1760 AT+SENDB: Send hexadecimal data along with the application port
1761 )))
1762
1763 (((
1764 AT+SEND: Send text data along with the application port
1765 )))
1766
1767 (((
1768 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1769 )))
1770
1771 (((
1772 AT+RECV: Print last received data in raw format
1773 )))
1774
1775 (((
1776 AT+VER:  Get current image version and Frequency Band
1777 )))
1778
1779 (((
1780 AT+CFM: Get or Set the confirmation mode (0-1)
1781 )))
1782
1783 (((
1784 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1785 )))
1786
1787 (((
1788 AT+SNR: Get the SNR of the last received packet
1789 )))
1790
1791 (((
1792 AT+RSSI: Get the RSSI of the last received packet
1793 )))
1794
1795 (((
1796 AT+TDC: Get or set the application data transmission interval in ms
1797 )))
1798
1799 (((
1800 AT+PORT: Get or set the application port
1801 )))
1802
1803 (((
1804 AT+DISAT: Disable AT commands
1805 )))
1806
1807 (((
1808 AT+PWORD: Set password, max 9 digits
1809 )))
1810
1811 (((
1812 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1813 )))
1814
1815 (((
1816 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1817 )))
1818
1819 (((
1820 AT+CFG: Print all settings
1821 )))
1822
1823
1824
1825 == 4.2 Common AT Command Sequence ==
1826
1827
1828 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1829
1830 (((
1831
1832
1833 (((
1834 (% style="color:blue" %)**If device has not joined network yet:**
1835 )))
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)**123456**
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)**AT+FDR**
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)**123456**
1848 )))
1849
1850 (((
1851 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1852 )))
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)**ATZ**
1856 )))
1857
1858
1859 (((
1860 (% style="color:blue" %)**If device already joined network:**
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)**ATZ**
1869 )))
1870
1871
1872
1873 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1874
1875 (((
1876
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1880 )))
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1905 )))
1906
1907 (((
1908 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1909 )))
1910
1911 (((
1912 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1913 )))
1914
1915 (((
1916 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1917 )))
1918
1919 (((
1920 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1929
1930
1931 )))
1932
1933 (((
1934 (% style="color:red" %)**Note:**
1935 )))
1936
1937 (((
1938 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1939
1940 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1941
1942 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1943 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1944
1945 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1946
1947
1948 )))
1949
1950 (((
1951 [[image:1653359097980-169.png||height="188" width="729"]]
1952 )))
1953
1954 (((
1955
1956 )))
1957
1958
1959 === 4.2.3 Change to Class A ===
1960
1961
1962 (((
1963 (% style="color:blue" %)**If sensor JOINED:**
1964
1965 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1966 ATZ**
1967 )))
1968
1969
1970
1971 = 5. FAQ =
1972
1973
1974 == 5.1 How to upgrade the image? ==
1975
1976
1977 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1978
1979 * Support new features
1980 * For bug fix
1981 * Change LoRaWAN bands.
1982
1983 Below shows the hardware connection for how to upload an image to the LT:
1984
1985 [[image:1653359603330-121.png]]
1986
1987
1988 (((
1989 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1990 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1991 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1992
1993
1994 (((
1995 (% style="color:blue" %)**For LT-22222-L**(%%):
1996 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1997 )))
1998
1999
2000 )))
2001
2002 [[image:image-20220524103407-12.png]]
2003
2004 [[image:image-20220524103429-13.png]]
2005
2006 [[image:image-20220524104033-15.png]]
2007
2008
2009 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2010
2011
2012 [[image:1653360054704-518.png||height="186" width="745"]]
2013
2014
2015 (((
2016 (((
2017
2018
2019 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2020
2021
2022 )))
2023 )))
2024
2025 (((
2026 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2027 )))
2028
2029 (((
2030
2031
2032
2033 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2034
2035
2036 )))
2037
2038 (((
2039 (((
2040 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2041 )))
2042 )))
2043
2044 (((
2045 (((
2046 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2047
2048
2049 )))
2050 )))
2051
2052 (((
2053 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2054
2055
2056 )))
2057
2058 (((
2059 [[image:1653360231087-571.png||height="401" width="727"]]
2060
2061
2062 )))
2063
2064 (((
2065 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2066 )))
2067
2068
2069
2070 (((
2071 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2072
2073
2074 )))
2075
2076 (((
2077 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2078 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2079 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2080 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2081 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2082 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2083 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2084 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2085 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2086 )))
2087
2088
2089 (((
2090 As shown in below:
2091 )))
2092
2093 [[image:1653360498588-932.png||height="485" width="726"]]
2094
2095
2096
2097 == 5.4 Can I see counting event in Serial? ==
2098
2099
2100 (((
2101 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2102
2103
2104
2105 == 5.5 Can i use point to point communication for LT-22222-L? ==
2106
2107
2108 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2109
2110
2111
2112 )))
2113
2114 (((
2115 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2116
2117
2118 If the device is not shut down, but directly powered off.
2119
2120 It will default that this is a power-off state.
2121
2122 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2123
2124 After restart, the status before power failure will be read from flash.
2125
2126
2127
2128 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2129
2130
2131 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2132
2133
2134 [[image:image-20221006170630-1.png||height="610" width="945"]]
2135
2136
2137
2138 = 6. Trouble Shooting =
2139
2140
2141 )))
2142
2143 (((
2144 (((
2145 == 6.1 Downlink doesn't work, how to solve it? ==
2146
2147
2148 )))
2149 )))
2150
2151 (((
2152 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2153 )))
2154
2155 (((
2156
2157
2158
2159 == 6.2 Have trouble to upload image. ==
2160
2161
2162 )))
2163
2164 (((
2165 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2166 )))
2167
2168 (((
2169
2170
2171
2172 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2173
2174
2175 )))
2176
2177 (((
2178 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2179 )))
2180
2181
2182
2183 = 7. Order Info =
2184
2185
2186 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2187
2188 (% style="color:#4f81bd" %)**XXX:**
2189
2190 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2191 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2192 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2193 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2194 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2195 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2196 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2197 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2198 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2199
2200
2201
2202
2203 = 8. Packing Info =
2204
2205
2206 **Package Includes**:
2207
2208 * LT-22222-L I/O Controller x 1
2209 * Stick Antenna for LoRa RF part x 1
2210 * Bracket for controller x1
2211 * Program cable x 1
2212
2213 **Dimension and weight**:
2214
2215 * Device Size: 13.5 x 7 x 3 cm
2216 * Device Weight: 105g
2217 * Package Size / pcs : 14.5 x 8 x 5 cm
2218 * Weight / pcs : 170g
2219
2220
2221
2222
2223 = 9. Support =
2224
2225
2226 * (((
2227 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2228 )))
2229 * (((
2230 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2231
2232
2233
2234
2235 )))
2236
2237 = 10. Reference​​​​​ =
2238
2239
2240 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2241 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2242 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]