Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196 * Logistics and Supply Chain Management
197 * Smart Metering
198 * Smart Agriculture
199 * Smart Cities
200 * Smart Factory
201
202
203
204
205 == 1.5 Hardware Variants ==
206
207
208 (% border="1" style="background-color:#f7faff; width:500px" %)
209 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
210 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
211 * 2 x Digital Input (Bi-direction)
212 * 2 x Digital Output
213 * 2 x Relay Output (5A@250VAC / 30VDC)
214 * 2 x 0~~20mA Analog Input (res:0.01mA)
215 * 2 x 0~~30V Analog Input (res:0.01v)
216 * 1 x Counting Port
217 )))
218
219
220
221
222 = 2. Power ON Device =
223
224
225 (((
226 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
227 )))
228
229 (((
230 PWR will on when device is properly powered.
231
232
233 )))
234
235 [[image:1653297104069-180.png]]
236
237
238
239 = 3. Operation Mode =
240
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254
255 == 3.2 Example to join LoRaWAN network ==
256
257
258 (((
259 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
260
261
262 )))
263
264 [[image:image-20220523172350-1.png||height="266" width="864"]]
265
266
267 (((
268 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
269
270
271 )))
272
273 (((
274 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
275 )))
276
277 (((
278 Each LT is shipped with a sticker with the default device EUI as below:
279 )))
280
281 [[image:1653297924498-393.png]]
282
283
284 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
285
286 **Add APP EUI in the application.**
287
288 [[image:1653297955910-247.png||height="321" width="716"]]
289
290
291 **Add APP KEY and DEV EUI**
292
293 [[image:1653298023685-319.png]]
294
295
296
297 (((
298 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
299
300
301 )))
302
303 [[image:1653298044601-602.png||height="405" width="709"]]
304
305
306
307 == 3.3 Uplink Payload ==
308
309
310 There are five working modes + one interrupt mode on LT for different type application:
311
312 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
313 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
314 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
315 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
316 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
317 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
318
319
320
321
322 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
323
324
325 (((
326 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
327 )))
328
329 [[image:image-20220523174024-3.png]]
330
331 (((
332
333
334 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
335 )))
336
337 [[image:image-20220523174254-4.png]]
338
339 * RO is for relay. ROx=1 : close,ROx=0 always open.
340 * DI is for digital input. DIx=1: high or float, DIx=0: low.
341 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
342
343 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
344
345 For example if payload is: [[image:image-20220523175847-2.png]]
346
347
348 **The value for the interface is:  **
349
350 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
351
352 AVI2 channel voltage is 0x04AC/1000=1.196V
353
354 ACI1 channel current is 0x1310/1000=4.880mA
355
356 ACI2 channel current is 0x1300/1000=4.864mA
357
358 The last byte 0xAA= 10101010(B) means
359
360 * [1] RO1 relay channel is close and the RO1 LED is ON.
361 * [0] RO2 relay channel is open and RO2 LED is OFF;
362
363 **LT22222-L:**
364
365 * [1] DI2 channel is high input and DI2 LED is ON;
366 * [0] DI1 channel is low input;
367
368 * [0] DO3 channel output state
369 ** DO3 is float in case no load between DO3 and V+.;
370 ** DO3 is high in case there is load between DO3 and V+.
371 ** DO3 LED is off in both case
372 * [1] DO2 channel output is low and DO2 LED is ON.
373 * [0] DO1 channel output state
374 ** DO1 is float in case no load between DO1 and V+.;
375 ** DO1 is high in case there is load between DO1 and V+.
376 ** DO1 LED is off in both case
377
378
379
380
381 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
382
383
384 (((
385 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
386 )))
387
388 (((
389 Total : 11 bytes payload
390 )))
391
392 [[image:image-20220523180452-3.png]]
393
394
395 (((
396 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
397 )))
398
399 [[image:image-20220523180506-4.png]]
400
401 * RO is for relay. ROx=1 : close,ROx=0 always open.
402 * FIRST: Indicate this is the first packet after join network.
403 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
404
405 (((
406 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
407 )))
408
409 (((
410
411
412 **To use counting mode, please run:**
413 )))
414
415 (% class="box infomessage" %)
416 (((
417 (((
418 (((
419 **AT+MOD=2**
420 )))
421
422 (((
423 **ATZ**
424 )))
425 )))
426 )))
427
428 (((
429
430
431 (% style="color:#4f81bd" %)**AT Commands for counting:**
432
433
434 )))
435
436 (((
437 **For LT22222-L:**
438
439
440 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
441
442 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
443
444 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
445
446 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
447
448 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
449
450 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
451 )))
452
453
454
455 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
456
457
458 **LT22222-L**: This mode the DI1 is used as a counting pin.
459
460 [[image:image-20220523181246-5.png]]
461
462 (((
463
464
465 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
466 )))
467
468 [[image:image-20220523181301-6.png]]
469
470 * RO is for relay. ROx=1 : close,ROx=0 always open.
471 * FIRST: Indicate this is the first packet after join network.
472 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
473
474 (((
475 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
476 )))
477
478
479 (((
480 **To use counting mode, please run:**
481 )))
482
483 (% class="box infomessage" %)
484 (((
485 (((
486 (((
487 **AT+MOD=3**
488 )))
489
490 (((
491 **ATZ**
492 )))
493 )))
494 )))
495
496 (((
497 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 )))
499
500
501
502 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
503
504
505 (((
506 **LT22222-L**: This mode the DI1 is used as a counting pin.
507 )))
508
509 (((
510 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
511 )))
512
513 [[image:image-20220523181903-8.png]]
514
515
516 (((
517 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
518 )))
519
520 [[image:image-20220523181727-7.png]]
521
522 * RO is for relay. ROx=1 : close,ROx=0 always open.
523 * FIRST: Indicate this is the first packet after join network.
524 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525
526 (((
527 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
528 )))
529
530 (((
531
532
533 **To use this mode, please run:**
534 )))
535
536 (% class="box infomessage" %)
537 (((
538 (((
539 (((
540 **AT+MOD=4**
541 )))
542
543 (((
544 **ATZ**
545 )))
546 )))
547 )))
548
549
550 (((
551 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
552 )))
553
554 (((
555
556
557 **Plus below command for AVI1 Counting:**
558
559
560 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
561
562 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
563
564 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
565
566 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
567 )))
568
569
570
571 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
572
573
574 **LT22222-L**: This mode the DI1 is used as a counting pin.
575
576 [[image:image-20220523182334-9.png]]
577
578 (((
579
580
581 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
582 )))
583
584 * RO is for relay. ROx=1 : close,ROx=0 always open.
585 * FIRST: Indicate this is the first packet after join network.
586 * (((
587 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
588 )))
589
590 (((
591 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
592 )))
593
594 (((
595
596
597 **To use this mode, please run:**
598 )))
599
600 (% class="box infomessage" %)
601 (((
602 (((
603 (((
604 **AT+MOD=5**
605 )))
606
607 (((
608 **ATZ**
609 )))
610 )))
611 )))
612
613 (((
614 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
615 )))
616
617
618
619 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
620
621
622 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
623
624 For example, if user has configured below commands:
625
626 * **AT+MOD=1 ** **~-~->**  The normal working mode
627 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
628
629 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
630
631 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
632 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
633
634 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
635
636
637 (% style="color:#4f81bd" %)**Trigger base on voltage**:
638
639 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
640
641
642 **Example:**
643
644 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
645
646 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
647
648
649
650 (% style="color:#4f81bd" %)**Trigger base on current**:
651
652 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
653
654
655 **Example:**
656
657 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
658
659
660
661 (% style="color:#4f81bd" %)**Trigger base on DI status**:
662
663 DI status trigger Flag.
664
665 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
666
667
668 **Example:**
669
670 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
671
672
673
674 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
675
676 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
677
678 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
679
680 AA: Code for this downlink Command:
681
682 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
683
684 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
685
686 yy2 yy2: AC1 or AV1 high limit.
687
688 yy3 yy3: AC2 or AV2 low limit.
689
690 Yy4 yy4: AC2 or AV2 high limit.
691
692
693 **Example1**: AA 00 13 88 00 00 00 00 00 00
694
695 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
696
697
698 **Example2**: AA 02 01 00
699
700 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
701
702
703
704 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
705
706 MOD6 Payload : total 11 bytes payload
707
708 [[image:image-20220524085923-1.png]]
709
710
711 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
712
713 [[image:image-20220524090106-2.png]]
714
715 * Each bits shows if the corresponding trigger has been configured.
716
717 **Example:**
718
719 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
720
721
722
723 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
724
725 [[image:image-20220524090249-3.png]]
726
727 * Each bits shows which status has been trigger on this uplink.
728
729 **Example:**
730
731 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732
733
734
735 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
736
737 [[image:image-20220524090456-4.png]]
738
739 * Each bits shows which status has been trigger on this uplink.
740
741 **Example:**
742
743 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
744
745 00000101: Means both DI1 and DI2 trigger are enabled.
746
747
748
749 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
750
751 Downlink command to poll MOD6 status:
752
753 **AB 06**
754
755 When device got this command, it will send the MOD6 payload.
756
757
758
759 === 3.3.7 Payload Decoder ===
760
761 (((
762
763
764 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
765 )))
766
767
768
769 == 3.4 ​Configure LT via AT or Downlink ==
770
771
772 (((
773 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
774 )))
775
776 (((
777 (((
778 There are two kinds of Commands:
779 )))
780 )))
781
782 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
783
784 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
785
786
787
788 === 3.4.1 Common Commands ===
789
790
791 (((
792 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
793 )))
794
795
796
797 === 3.4.2 Sensor related commands ===
798
799
800 ==== 3.4.2.1 Set Transmit Interval ====
801
802
803 Set device uplink interval.
804
805 * (% style="color:#037691" %)**AT Command:**
806
807 **(% style="color:blue" %)AT+TDC=N **
808
809
810 **Example: **AT+TDC=30000. Means set interval to 30 seconds
811
812
813 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
814
815 **(% style="color:blue" %)0x01 aa bb cc  (%%)   ~/~/ Same as AT+TDC=0x(aa bb cc)**
816
817
818
819
820 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
821
822
823 Set work mode.
824
825 * (% style="color:#037691" %)**AT Command:**
826
827 **(% style="color:blue" %)AT+MOD=N  **
828
829
830 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
831
832
833 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
834
835 **(% style="color:blue" %)0x0A aa  (%%)  ** ~/~/ Same as AT+MOD=aa
836
837
838
839
840 ==== 3.4.2.3 Poll an uplink ====
841
842
843 * (% style="color:#037691" %)**AT Command:**
844
845 There is no AT Command to poll uplink
846
847
848 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
849
850 **(% style="color:blue" %)0x08 FF  (%%)   **~/~/ Poll an uplink
851
852
853 **Example**: 0x08FF, ask device to send an Uplink
854
855
856
857
858 ==== 3.4.2.4 Enable Trigger Mode ====
859
860
861 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
862
863 * (% style="color:#037691" %)**AT Command:**
864
865 **(% style="color:blue" %)AT+ADDMOD6=1 or 0**
866
867 **(% style="color:red" %)1:** Enable Trigger Mode
868
869 **(% style="color:red" %)0: **Disable Trigger Mode
870
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
873
874 **(% style="color:blue" %)0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
875
876
877
878
879 ==== 3.4.2.5 Poll trigger settings ====
880
881
882 Poll trigger settings,
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 There is no AT Command for this feature.
887
888
889 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
890
891 **(% style="color:blue" %)0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
892
893
894
895
896 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
897
898
899 Enable Disable DI1/DI2/DI2 as trigger,
900
901 * (% style="color:#037691" %)**AT Command:**
902
903 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
904
905
906 **Example:**
907
908 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
911
912 **(% style="color:blue" %)0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
913
914
915
916
917 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
918
919
920 Set DI1 or DI3(for LT-33222-L) trigger.
921
922 * (% style="color:#037691" %)**AT Command:**
923
924 **(% style="color:blue" %)AT+TRIG1=a,b**
925
926 **(% style="color:red" %)a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
927
928 **(% style="color:red" %)b :** (%%)delay timing.
929
930
931 **Example:**
932
933 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
934
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
937 * **(% style="color:blue" %)0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
938
939
940
941
942 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
943
944
945 Set DI2 trigger.
946
947 * (% style="color:#037691" %)**AT Command:**
948
949 **(% style="color:blue" %)AT+TRIG2=a,b**
950
951
952 **(% style="color:red" %)a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
953
954 **(% style="color:red" %)b :** (%%)delay timing.
955
956
957 **Example:**
958
959 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
960
961
962 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
963
964 **(% style="color:blue" %)0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
965
966
967
968
969 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
970
971
972 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
973
974 * (% style="color:#037691" %)**AT Command**
975
976 **(% style="color:blue" %)AT+ACLIM**
977
978
979 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
980
981 **(% style="color:blue" %)0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982
983
984
985
986 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
987
988
989 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
990
991 * (% style="color:#037691" %)**AT Command**
992
993 **(% style="color:blue" %)AT+AVLIM  (%%) See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
994
995
996 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
997
998 **(% style="color:blue" %)0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
999
1000
1001
1002
1003 ==== 3.4.2.11 Trigger – Set minimum interval ====
1004
1005
1006 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1007
1008 * (% style="color:#037691" %)**AT Command**
1009
1010 **(% style="color:blue" %)AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1011
1012
1013 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1014
1015 **(% style="color:blue" %)0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1016
1017 (((
1018
1019
1020 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1021 )))
1022
1023
1024
1025
1026 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1027
1028
1029 * (% style="color:#037691" %)**AT Command**
1030
1031 There is no AT Command to control Digital Output
1032
1033
1034 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1035 * **(% style="color:blue" %)0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1036
1037 (((
1038 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1039 )))
1040
1041 (((
1042 01: Low,  00: High ,  11: No action
1043 )))
1044
1045 [[image:image-20220524092754-5.png]]
1046
1047 (((
1048 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1049 )))
1050
1051 (((
1052 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1053 )))
1054
1055
1056
1057
1058 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1059
1060
1061 * (% style="color:#037691" %)**AT Command**
1062
1063 There is no AT Command to control Digital Output
1064
1065
1066 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1067
1068 **(% style="color:blue" %)0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1069
1070
1071 This is to control the digital output time of DO pin. Include four bytes:
1072
1073 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1074
1075 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1076
1077 01: DO pins will change back to original state after timeout.
1078
1079 00: DO pins will change to an inverter state after timeout 
1080
1081
1082 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1083
1084 [[image:image-20220524093238-6.png]]
1085
1086
1087 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1088
1089 [[image:image-20220524093328-7.png]]
1090
1091
1092 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1093
1094 [[image:image-20220524093351-8.png]]
1095
1096
1097 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1098
1099 Latching time. Unit: ms
1100
1101 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1102
1103
1104 **Example payload:**
1105
1106 **~1. A9 01 01 01 01 07 D0**
1107
1108 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1109
1110 **2. A9 01 00 01 11 07 D0**
1111
1112 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1113
1114 **3. A9 00 00 00 00 07 D0**
1115
1116 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1117
1118 **4. A9 00 11 01 00 07 D0**
1119
1120 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1121
1122
1123
1124
1125 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1126
1127
1128 * (% style="color:#037691" %)**AT Command:**
1129
1130 There is no AT Command to control Relay Output
1131
1132
1133 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1134
1135 **(% style="color:blue" %)0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1136
1137
1138 (((
1139 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1140 )))
1141
1142 (((
1143 01: Close ,  00: Open , 11: No action
1144 )))
1145
1146 (((
1147 [[image:image-20220524093724-9.png]]
1148 )))
1149
1150 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1151
1152
1153
1154
1155 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1156
1157
1158 * (% style="color:#037691" %)**AT Command:**
1159
1160 There is no AT Command to control Relay Output
1161
1162
1163 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1164
1165 **(% style="color:blue" %)0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1166
1167
1168 This is to control the relay output time of relay. Include four bytes:
1169
1170 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1171
1172 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1173
1174 01: Relays will change back to original state after timeout.
1175
1176 00: Relays will change to an inverter state after timeout
1177
1178
1179 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1180
1181 [[image:image-20221008095908-1.png||height="364" width="564"]]
1182
1183
1184 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1185
1186 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1187
1188
1189 **Example payload:**
1190
1191 **~1. 05 01 11 07 D**
1192
1193 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1194
1195 **2. 05 01 10 07 D0**
1196
1197 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1198
1199 **3. 05 00 01 07 D0**
1200
1201 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1202
1203 **4. 05 00 00 07 D0**
1204
1205 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1206
1207
1208
1209 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1210
1211
1212 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1213
1214 * (% style="color:#037691" %)**AT Command:**
1215
1216 **(% style="color:blue" %)AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1217
1218
1219 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1220
1221 **(% style="color:blue" %)0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1222
1223
1224
1225
1226 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1227
1228
1229 * (% style="color:#037691" %)**AT Command:**
1230
1231 **(% style="color:blue" %)AT+SETCNT=aa,(bb cc dd ee) **
1232
1233 **(% style="color:red" %)aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1234
1235 **(% style="color:red" %)bb cc dd ee: **(%%)number to be set
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1239
1240 **(% style="color:blue" %)0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1241
1242
1243
1244
1245 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1246
1247
1248 Clear counting for counting mode
1249
1250 * (% style="color:#037691" %)**AT Command:**
1251
1252 **(% style="color:blue" %)AT+CLRCOUNT **(%%) ~/~/ clear all counting
1253
1254
1255 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1256
1257 **(% style="color:blue" %)0x A6 01    ** (%%)~/~/ clear all counting
1258
1259
1260
1261
1262 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 **(% style="color:blue" %)AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1268
1269
1270 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1271
1272 **(% style="color:blue" %)0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1273
1274 (((
1275 range: aa bb cc:0 to 16777215,  (unit:second)
1276 )))
1277
1278
1279
1280
1281 ==== 3.4.2.20 Reset save DR DO state ====
1282
1283
1284 * (% style="color:#037691" %)**AT Command:**
1285
1286 **(% style="color:blue" %)AT+RODORET=1  **(%%)~/~/ RODO will close when the device joining the network. (default)
1287
1288 **(% style="color:blue" %)AT+RODORET=0  **(%%)~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1289
1290
1291 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1292
1293 **(% style="color:blue" %)0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1294
1295
1296
1297
1298 ==== 3.4.2.21 Encrypted payload ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 **(% style="color:blue" %)AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1304
1305 **(% style="color:blue" %)AT+DECRYPT=0  **(%%)~/~/Encrypt when uploading payload (default)
1306
1307
1308
1309
1310 ==== 3.4.2.22 Get sensor value ====
1311
1312
1313 * (% style="color:#037691" %)**AT Command:**
1314
1315 **(% style="color:blue" %)AT+GETSENSORVALUE=0  **(%%)~/~/ The serial port gets the reading of the current sensor
1316
1317 **(% style="color:blue" %)AT+GETSENSORVALUE=1  **(%%)~/~/The serial port gets the current sensor reading and uploads it.
1318
1319
1320
1321
1322 ==== 3.4.2.23 Resets the downlink packet count ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 **(% style="color:blue" %)AT+DISFCNTCHECK=0  **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1328
1329 **(% style="color:blue" %)AT+DISFCNTCHECK=1  **(%%)~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1330
1331
1332
1333
1334 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1335
1336
1337 * (% style="color:#037691" %)**AT Command:**
1338
1339 **(% style="color:blue" %)AT+DISMACANS=0**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1340
1341 **(% style="color:blue" %)AT+DISMACANS=1**  (%%)    ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1342
1343
1344 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1345
1346 **(% style="color:blue" %)0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1347
1348
1349
1350
1351 ==== 3.4.2.25 Copy downlink to uplink ====
1352
1353
1354 * (% style="color:#037691" %)**AT Command**(%%)**:**
1355
1356 **(% style="color:blue" %)AT+RPL=5**  (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1357
1358 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1359
1360
1361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1362
1363 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1364
1365
1366
1367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1368
1369 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1370
1371
1372
1373 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1374
1375
1376 * (((
1377 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1378
1379 **(% style="color:blue" %)26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1380
1381
1382 )))
1383
1384 **Example:**
1385
1386 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1387
1388
1389
1390 )))
1391
1392 == 3.5 Integrate with Mydevice ==
1393
1394
1395 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1396
1397 (((
1398 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1399 )))
1400
1401 (((
1402 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1403
1404
1405 )))
1406
1407 [[image:image-20220719105525-1.png||height="377" width="677"]]
1408
1409
1410
1411 [[image:image-20220719110247-2.png||height="388" width="683"]]
1412
1413
1414 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1415
1416 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1417
1418 Search under The things network
1419
1420 [[image:1653356838789-523.png||height="337" width="740"]]
1421
1422
1423
1424 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1425
1426 [[image:image-20220524094909-1.png||height="335" width="729"]]
1427
1428
1429 [[image:image-20220524094909-2.png||height="337" width="729"]]
1430
1431
1432 [[image:image-20220524094909-3.png||height="338" width="727"]]
1433
1434
1435 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1436
1437
1438 [[image:image-20220524094909-5.png||height="341" width="734"]]
1439
1440
1441
1442 == 3.6 Interface Detail ==
1443
1444
1445 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1446
1447
1448 Support NPN Type sensor
1449
1450 [[image:1653356991268-289.png]]
1451
1452
1453
1454 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1455
1456
1457 (((
1458 The DI port of LT-22222-L can support NPN or PNP output sensor.
1459 )))
1460
1461 (((
1462 (((
1463 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1464
1465
1466 )))
1467 )))
1468
1469 [[image:1653357170703-587.png]]
1470
1471 (((
1472 (((
1473 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1474 )))
1475 )))
1476
1477 (((
1478
1479 )))
1480
1481 (((
1482 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1483 )))
1484
1485 (((
1486 This type of sensor will output a low signal GND when active.
1487 )))
1488
1489 * (((
1490 Connect sensor's output to DI1-
1491 )))
1492 * (((
1493 Connect sensor's VCC to DI1+.
1494 )))
1495
1496 (((
1497 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1498 )))
1499
1500 (((
1501 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1502 )))
1503
1504 (((
1505 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1506 )))
1507
1508 (((
1509
1510
1511
1512 )))
1513
1514 (((
1515 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1516 )))
1517
1518 (((
1519 This type of sensor will output a high signal (example 24v) when active.
1520 )))
1521
1522 * (((
1523 Connect sensor's output to DI1+
1524 )))
1525 * (((
1526 Connect sensor's GND DI1-.
1527 )))
1528
1529 (((
1530 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1531 )))
1532
1533 (((
1534 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1535 )))
1536
1537 (((
1538 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1539 )))
1540
1541 (((
1542
1543
1544
1545 )))
1546
1547 (((
1548 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1549 )))
1550
1551 (((
1552 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1553 )))
1554
1555 * (((
1556 Connect sensor's output to DI1+ with a serial 50K resistor
1557 )))
1558 * (((
1559 Connect sensor's GND DI1-.
1560 )))
1561
1562 (((
1563 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1564 )))
1565
1566 (((
1567 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1568 )))
1569
1570 (((
1571 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1572 )))
1573
1574
1575
1576 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1577
1578
1579 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1580
1581 [[image:1653357531600-905.png]]
1582
1583
1584
1585 === 3.6.4 Analog Input Interface ===
1586
1587
1588 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1589
1590
1591 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1592
1593 [[image:1653357592296-182.png]]
1594
1595 Example to connect a 4~~20mA sensor
1596
1597 We take the wind speed sensor as an example for reference only.
1598
1599
1600 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1601
1602 **Red:  12~~24v**
1603
1604 **Yellow:  4~~20mA**
1605
1606 **Black:  GND**
1607
1608
1609 **Connection diagram:**
1610
1611 [[image:1653357640609-758.png]]
1612
1613 [[image:1653357648330-671.png||height="155" width="733"]]
1614
1615
1616
1617 === 3.6.5 Relay Output ===
1618
1619
1620 (((
1621 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 )))
1623
1624 [[image:image-20220524100215-9.png]]
1625
1626
1627 [[image:image-20220524100215-10.png||height="382" width="723"]]
1628
1629
1630
1631 == 3.7 LEDs Indicators ==
1632
1633
1634 [[image:image-20220524100748-11.png]]
1635
1636
1637
1638 = 4. Use AT Command =
1639
1640
1641 == 4.1 Access AT Command ==
1642
1643
1644 (((
1645 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1646 )))
1647
1648 (((
1649
1650 )))
1651
1652 [[image:1653358238933-385.png]]
1653
1654
1655 (((
1656 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1657 )))
1658
1659 [[image:1653358355238-883.png]]
1660
1661
1662 (((
1663 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1664 )))
1665
1666 (((
1667 AT+<CMD>?        : Help on <CMD>
1668 )))
1669
1670 (((
1671 AT+<CMD>         : Run <CMD>
1672 )))
1673
1674 (((
1675 AT+<CMD>=<value> : Set the value
1676 )))
1677
1678 (((
1679 AT+<CMD>=?       :  Get the value
1680 )))
1681
1682 (((
1683 ATZ: Trig a reset of the MCU
1684 )))
1685
1686 (((
1687 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1688 )))
1689
1690 (((
1691 AT+DEUI: Get or Set the Device EUI
1692 )))
1693
1694 (((
1695 AT+DADDR: Get or Set the Device Address
1696 )))
1697
1698 (((
1699 AT+APPKEY: Get or Set the Application Key
1700 )))
1701
1702 (((
1703 AT+NWKSKEY: Get or Set the Network Session Key
1704 )))
1705
1706 (((
1707 AT+APPSKEY:  Get or Set the Application Session Key
1708 )))
1709
1710 (((
1711 AT+APPEUI:  Get or Set the Application EUI
1712 )))
1713
1714 (((
1715 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1716 )))
1717
1718 (((
1719 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1720 )))
1721
1722 (((
1723 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1724 )))
1725
1726 (((
1727 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1728 )))
1729
1730 (((
1731 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1732 )))
1733
1734 (((
1735 AT+RX2FQ: Get or Set the Rx2 window frequency
1736 )))
1737
1738 (((
1739 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1740 )))
1741
1742 (((
1743 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1744 )))
1745
1746 (((
1747 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1748 )))
1749
1750 (((
1751 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1752 )))
1753
1754 (((
1755 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1756 )))
1757
1758 (((
1759 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1760 )))
1761
1762 (((
1763 AT+NWKID: Get or Set the Network ID
1764 )))
1765
1766 (((
1767 AT+FCU: Get or Set the Frame Counter Uplink
1768 )))
1769
1770 (((
1771 AT+FCD: Get or Set the Frame Counter Downlink
1772 )))
1773
1774 (((
1775 AT+CLASS: Get or Set the Device Class
1776 )))
1777
1778 (((
1779 AT+JOIN: Join network
1780 )))
1781
1782 (((
1783 AT+NJS: Get OTAA Join Status
1784 )))
1785
1786 (((
1787 AT+SENDB: Send hexadecimal data along with the application port
1788 )))
1789
1790 (((
1791 AT+SEND: Send text data along with the application port
1792 )))
1793
1794 (((
1795 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1796 )))
1797
1798 (((
1799 AT+RECV: Print last received data in raw format
1800 )))
1801
1802 (((
1803 AT+VER:  Get current image version and Frequency Band
1804 )))
1805
1806 (((
1807 AT+CFM: Get or Set the confirmation mode (0-1)
1808 )))
1809
1810 (((
1811 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1812 )))
1813
1814 (((
1815 AT+SNR: Get the SNR of the last received packet
1816 )))
1817
1818 (((
1819 AT+RSSI: Get the RSSI of the last received packet
1820 )))
1821
1822 (((
1823 AT+TDC: Get or set the application data transmission interval in ms
1824 )))
1825
1826 (((
1827 AT+PORT: Get or set the application port
1828 )))
1829
1830 (((
1831 AT+DISAT: Disable AT commands
1832 )))
1833
1834 (((
1835 AT+PWORD: Set password, max 9 digits
1836 )))
1837
1838 (((
1839 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1840 )))
1841
1842 (((
1843 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1844 )))
1845
1846 (((
1847 AT+CFG: Print all settings
1848 )))
1849
1850
1851
1852 == 4.2 Common AT Command Sequence ==
1853
1854
1855 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1856
1857 (((
1858
1859
1860 (((
1861 (% style="color:blue" %)**If device has not joined network yet:**
1862 )))
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**123456**
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)**AT+FDR**
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)**123456**
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**ATZ**
1883 )))
1884
1885
1886 (((
1887 (% style="color:blue" %)**If device already joined network:**
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)**ATZ**
1896 )))
1897
1898
1899
1900 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1901
1902 (((
1903
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1907 )))
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1936 )))
1937
1938 (((
1939 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1956
1957
1958 )))
1959
1960 (((
1961 (% style="color:red" %)**Note:**
1962 )))
1963
1964 (((
1965 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1966
1967 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1968
1969 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1970 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1971
1972 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1973
1974
1975 )))
1976
1977 (((
1978 [[image:1653359097980-169.png||height="188" width="729"]]
1979 )))
1980
1981 (((
1982
1983 )))
1984
1985
1986 === 4.2.3 Change to Class A ===
1987
1988
1989 (((
1990 (% style="color:blue" %)If sensor JOINED:
1991
1992 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1993 ATZ**
1994 )))
1995
1996
1997
1998 = 5. FAQ =
1999
2000
2001 == 5.1 How to upgrade the image? ==
2002
2003
2004 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2005
2006 * Support new features
2007 * For bug fix
2008 * Change LoRaWAN bands.
2009
2010 Below shows the hardware connection for how to upload an image to the LT:
2011
2012 [[image:1653359603330-121.png]]
2013
2014
2015 (((
2016 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2017 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2018 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2019
2020
2021 (((
2022 (% style="color:blue" %)**For LT-22222-L**(%%):
2023 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2024 )))
2025
2026
2027 )))
2028
2029 [[image:image-20220524103407-12.png]]
2030
2031 [[image:image-20220524103429-13.png]]
2032
2033 [[image:image-20220524104033-15.png]]
2034
2035
2036 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2037
2038
2039 [[image:1653360054704-518.png||height="186" width="745"]]
2040
2041
2042 (((
2043 (((
2044
2045
2046 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2047
2048
2049 )))
2050 )))
2051
2052 (((
2053 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2054 )))
2055
2056 (((
2057
2058
2059
2060 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2061
2062
2063 )))
2064
2065 (((
2066 (((
2067 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2068 )))
2069 )))
2070
2071 (((
2072 (((
2073 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2074
2075
2076
2077 )))
2078 )))
2079
2080 (((
2081 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2082
2083
2084 )))
2085
2086 (((
2087 [[image:1653360231087-571.png||height="401" width="727"]]
2088
2089
2090 )))
2091
2092 (((
2093 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2094 )))
2095
2096
2097
2098 (((
2099 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2100
2101
2102 )))
2103
2104 (((
2105 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2106 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2107 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2108 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2109 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2110 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2111 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2112 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2113 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2114 )))
2115
2116
2117 (((
2118 As shown in below:
2119 )))
2120
2121 [[image:1653360498588-932.png||height="485" width="726"]]
2122
2123
2124
2125 == 5.4 Can I see counting event in Serial? ==
2126
2127
2128 (((
2129 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2130
2131
2132
2133 == 5.5 Can i use point to point communication for LT-22222-L? ==
2134
2135
2136 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2137
2138
2139
2140 )))
2141
2142 (((
2143 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2144
2145
2146 If the device is not shut down, but directly powered off.
2147
2148 It will default that this is a power-off state.
2149
2150 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2151
2152 After restart, the status before power failure will be read from flash.
2153
2154
2155
2156 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2157
2158
2159 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2160
2161
2162 [[image:image-20221006170630-1.png||height="610" width="945"]]
2163
2164
2165
2166 = 6. Trouble Shooting =
2167
2168
2169 )))
2170
2171 (((
2172 (((
2173 == 6.1 Downlink doesn't work, how to solve it? ==
2174
2175
2176 )))
2177 )))
2178
2179 (((
2180 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2181 )))
2182
2183 (((
2184
2185
2186
2187 == 6.2 Have trouble to upload image. ==
2188
2189
2190 )))
2191
2192 (((
2193 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2194 )))
2195
2196 (((
2197
2198
2199
2200 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2201
2202
2203 )))
2204
2205 (((
2206 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2207 )))
2208
2209
2210
2211 = 7. Order Info =
2212
2213
2214 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2215
2216 (% style="color:#4f81bd" %)**XXX:**
2217
2218 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2219 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2220 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2221 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2222 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2223 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2224 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2225 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2226 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2227
2228 = 8. Packing Info =
2229
2230
2231 **Package Includes**:
2232
2233 * LT-22222-L I/O Controller x 1
2234 * Stick Antenna for LoRa RF part x 1
2235 * Bracket for controller x1
2236 * Program cable x 1
2237
2238 **Dimension and weight**:
2239
2240 * Device Size: 13.5 x 7 x 3 cm
2241 * Device Weight: 105g
2242 * Package Size / pcs : 14.5 x 8 x 5 cm
2243 * Weight / pcs : 170g
2244
2245 = 9. Support =
2246
2247
2248 * (((
2249 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2250 )))
2251 * (((
2252 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2253
2254
2255
2256
2257 )))
2258
2259 = 10. Reference​​​​​ =
2260
2261
2262 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2263 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2264 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0