Version 102.2 by Xiaoling on 2022/10/29 09:42

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196 * Logistics and Supply Chain Management
197 * Smart Metering
198 * Smart Agriculture
199 * Smart Cities
200 * Smart Factory
201
202
203
204
205 == 1.5 Hardware Variants ==
206
207
208 (% border="1" style="background-color:#f7faff; width:500px" %)
209 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
210 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
211 * 2 x Digital Input (Bi-direction)
212 * 2 x Digital Output
213 * 2 x Relay Output (5A@250VAC / 30VDC)
214 * 2 x 0~~20mA Analog Input (res:0.01mA)
215 * 2 x 0~~30V Analog Input (res:0.01v)
216 * 1 x Counting Port
217 )))
218
219
220
221
222 = 2. Power ON Device =
223
224
225 (((
226 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
227 )))
228
229 (((
230 PWR will on when device is properly powered.
231
232
233 )))
234
235 [[image:1653297104069-180.png]]
236
237
238
239 = 3. Operation Mode =
240
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254
255 == 3.2 Example to join LoRaWAN network ==
256
257
258 (((
259 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
260
261
262 )))
263
264 [[image:image-20220523172350-1.png||height="266" width="864"]]
265
266
267 (((
268 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
269
270
271 )))
272
273 (((
274 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
275 )))
276
277 (((
278 Each LT is shipped with a sticker with the default device EUI as below:
279 )))
280
281 [[image:1653297924498-393.png]]
282
283
284 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
285
286 **Add APP EUI in the application.**
287
288 [[image:1653297955910-247.png||height="321" width="716"]]
289
290
291 **Add APP KEY and DEV EUI**
292
293 [[image:1653298023685-319.png]]
294
295
296
297 (((
298 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
299
300
301 )))
302
303 [[image:1653298044601-602.png||height="405" width="709"]]
304
305
306
307 == 3.3 Uplink Payload ==
308
309
310 There are five working modes + one interrupt mode on LT for different type application:
311
312 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
313 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
314 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
315 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
316 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
317 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
318
319
320
321
322 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
323
324
325 (((
326 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
327 )))
328
329 [[image:image-20220523174024-3.png]]
330
331 (((
332
333
334 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
335 )))
336
337 [[image:image-20220523174254-4.png]]
338
339 * RO is for relay. ROx=1 : close,ROx=0 always open.
340 * DI is for digital input. DIx=1: high or float, DIx=0: low.
341 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
342
343 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
344
345 For example if payload is: [[image:image-20220523175847-2.png]]
346
347
348 **The value for the interface is:  **
349
350 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
351
352 AVI2 channel voltage is 0x04AC/1000=1.196V
353
354 ACI1 channel current is 0x1310/1000=4.880mA
355
356 ACI2 channel current is 0x1300/1000=4.864mA
357
358 The last byte 0xAA= 10101010(B) means
359
360 * [1] RO1 relay channel is close and the RO1 LED is ON.
361 * [0] RO2 relay channel is open and RO2 LED is OFF;
362
363 **LT22222-L:**
364
365 * [1] DI2 channel is high input and DI2 LED is ON;
366 * [0] DI1 channel is low input;
367
368 * [0] DO3 channel output state
369 ** DO3 is float in case no load between DO3 and V+.;
370 ** DO3 is high in case there is load between DO3 and V+.
371 ** DO3 LED is off in both case
372 * [1] DO2 channel output is low and DO2 LED is ON.
373 * [0] DO1 channel output state
374 ** DO1 is float in case no load between DO1 and V+.;
375 ** DO1 is high in case there is load between DO1 and V+.
376 ** DO1 LED is off in both case
377
378
379
380
381 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
382
383
384 (((
385 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
386 )))
387
388 (((
389 Total : 11 bytes payload
390 )))
391
392 [[image:image-20220523180452-3.png]]
393
394
395 (((
396 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
397 )))
398
399 [[image:image-20220523180506-4.png]]
400
401 * RO is for relay. ROx=1 : close,ROx=0 always open.
402 * FIRST: Indicate this is the first packet after join network.
403 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
404
405 (((
406 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
407 )))
408
409 (((
410
411
412 **To use counting mode, please run:**
413 )))
414
415 (% class="box infomessage" %)
416 (((
417 (((
418 (((
419 **AT+MOD=2**
420 )))
421
422 (((
423 **ATZ**
424 )))
425 )))
426 )))
427
428 (((
429
430
431 (% style="color:#4f81bd" %)**AT Commands for counting:**
432
433
434 )))
435
436 (((
437 **For LT22222-L:**
438
439
440 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
441
442 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
443
444 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
445
446 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
447
448 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
449
450 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
451 )))
452
453
454
455 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
456
457
458 **LT22222-L**: This mode the DI1 is used as a counting pin.
459
460 [[image:image-20220523181246-5.png]]
461
462 (((
463
464
465 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
466 )))
467
468 [[image:image-20220523181301-6.png]]
469
470 * RO is for relay. ROx=1 : close,ROx=0 always open.
471 * FIRST: Indicate this is the first packet after join network.
472 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
473
474 (((
475 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
476 )))
477
478
479 (((
480 **To use counting mode, please run:**
481 )))
482
483 (% class="box infomessage" %)
484 (((
485 (((
486 (((
487 **AT+MOD=3**
488 )))
489
490 (((
491 **ATZ**
492 )))
493 )))
494 )))
495
496 (((
497 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 )))
499
500
501
502 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
503
504
505 (((
506 **LT22222-L**: This mode the DI1 is used as a counting pin.
507 )))
508
509 (((
510 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
511 )))
512
513 [[image:image-20220523181903-8.png]]
514
515
516 (((
517 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
518 )))
519
520 [[image:image-20220523181727-7.png]]
521
522 * RO is for relay. ROx=1 : close,ROx=0 always open.
523 * FIRST: Indicate this is the first packet after join network.
524 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525
526 (((
527 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
528 )))
529
530 (((
531
532
533 **To use this mode, please run:**
534 )))
535
536 (% class="box infomessage" %)
537 (((
538 (((
539 (((
540 **AT+MOD=4**
541 )))
542
543 (((
544 **ATZ**
545 )))
546 )))
547 )))
548
549
550 (((
551 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
552 )))
553
554 (((
555
556
557 **Plus below command for AVI1 Counting:**
558
559
560 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
561
562 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
563
564 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
565
566 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
567 )))
568
569
570
571 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
572
573
574 **LT22222-L**: This mode the DI1 is used as a counting pin.
575
576 [[image:image-20220523182334-9.png]]
577
578 (((
579
580
581 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
582 )))
583
584 * RO is for relay. ROx=1 : close,ROx=0 always open.
585 * FIRST: Indicate this is the first packet after join network.
586 * (((
587 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
588 )))
589
590 (((
591 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
592 )))
593
594 (((
595
596
597 **To use this mode, please run:**
598 )))
599
600 (% class="box infomessage" %)
601 (((
602 (((
603 (((
604 **AT+MOD=5**
605 )))
606
607 (((
608 **ATZ**
609 )))
610 )))
611 )))
612
613 (((
614 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
615 )))
616
617
618
619 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
620
621
622 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
623
624 For example, if user has configured below commands:
625
626 * **AT+MOD=1 ** **~-~->**  The normal working mode
627 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
628
629 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
630
631 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
632 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
633
634 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
635
636
637 (% style="color:#4f81bd" %)**Trigger base on voltage**:
638
639 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
640
641
642 **Example:**
643
644 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
645
646 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
647
648
649
650 (% style="color:#4f81bd" %)**Trigger base on current**:
651
652 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
653
654
655 **Example:**
656
657 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
658
659
660
661 (% style="color:#4f81bd" %)**Trigger base on DI status**:
662
663 DI status trigger Flag.
664
665 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
666
667
668 **Example:**
669
670 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
671
672
673
674 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
675
676 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
677
678 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
679
680 AA: Code for this downlink Command:
681
682 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
683
684 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
685
686 yy2 yy2: AC1 or AV1 high limit.
687
688 yy3 yy3: AC2 or AV2 low limit.
689
690 Yy4 yy4: AC2 or AV2 high limit.
691
692
693 **Example1**: AA 00 13 88 00 00 00 00 00 00
694
695 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
696
697
698 **Example2**: AA 02 01 00
699
700 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
701
702
703
704 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
705
706 MOD6 Payload : total 11 bytes payload
707
708 [[image:image-20220524085923-1.png]]
709
710
711 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
712
713 [[image:image-20220524090106-2.png]]
714
715 * Each bits shows if the corresponding trigger has been configured.
716
717 **Example:**
718
719 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
720
721
722
723 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
724
725 [[image:image-20220524090249-3.png]]
726
727 * Each bits shows which status has been trigger on this uplink.
728
729 **Example:**
730
731 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732
733
734
735 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
736
737 [[image:image-20220524090456-4.png]]
738
739 * Each bits shows which status has been trigger on this uplink.
740
741 **Example:**
742
743 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
744
745 00000101: Means both DI1 and DI2 trigger are enabled.
746
747
748
749 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
750
751 Downlink command to poll MOD6 status:
752
753 **AB 06**
754
755 When device got this command, it will send the MOD6 payload.
756
757
758
759 === 3.3.7 Payload Decoder ===
760
761 (((
762
763
764 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
765 )))
766
767
768
769 == 3.4 ​Configure LT via AT or Downlink ==
770
771
772 (((
773 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
774 )))
775
776 (((
777 (((
778 There are two kinds of Commands:
779 )))
780 )))
781
782 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
783
784 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
785
786
787
788 === 3.4.1 Common Commands ===
789
790
791 (((
792 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
793 )))
794
795
796
797 === 3.4.2 Sensor related commands ===
798
799
800 ==== 3.4.2.1 Set Transmit Interval ====
801
802
803 Set device uplink interval.
804
805 * (% style="color:#037691" %)**AT Command:**
806
807 **(% style="color:blue" %)AT+TDC=N **
808
809
810 **Example: **AT+TDC=30000. Means set interval to 30 seconds
811
812
813 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
814
815 **(% style="color:blue" %)0x01 aa bb cc  (%%)   ~/~/ Same as AT+TDC=0x(aa bb cc)**
816
817
818
819
820 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
821
822
823 Set work mode.
824
825 * (% style="color:#037691" %)**AT Command:**
826
827 **(% style="color:blue" %)AT+MOD=N  **
828
829
830 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
831
832
833 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
834
835 **(% style="color:blue" %)0x0A aa  (%%)  ** ~/~/ Same as AT+MOD=aa
836
837
838
839
840 ==== 3.4.2.3 Poll an uplink ====
841
842
843 * (% style="color:#037691" %)**AT Command:**
844
845 There is no AT Command to poll uplink
846
847
848 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
849
850 **(% style="color:blue" %)0x08 FF  (%%)   **~/~/ Poll an uplink
851
852
853 **Example**: 0x08FF, ask device to send an Uplink
854
855
856
857
858 ==== 3.4.2.4 Enable Trigger Mode ====
859
860
861 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
862
863 * (% style="color:#037691" %)**AT Command:**
864
865 **(% style="color:blue" %)AT+ADDMOD6=1 or 0**
866
867 **(% style="color:red" %)1:** Enable Trigger Mode
868
869 **(% style="color:red" %)0: **Disable Trigger Mode
870
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
873
874 **(% style="color:blue" %)0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
875
876
877
878
879 ==== 3.4.2.5 Poll trigger settings ====
880
881
882 Poll trigger settings,
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 There is no AT Command for this feature.
887
888
889 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
890
891 **(% style="color:blue" %)0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
892
893
894
895
896 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
897
898
899 Enable Disable DI1/DI2/DI2 as trigger,
900
901 * (% style="color:#037691" %)**AT Command:**
902
903 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
904
905
906 **Example:**
907
908 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
911
912 **(% style="color:blue" %)0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
913
914
915
916
917 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
918
919
920 Set DI1 or DI3(for LT-33222-L) trigger.
921
922 * (% style="color:#037691" %)**AT Command:**
923
924 **(% style="color:blue" %)AT+TRIG1=a,b**
925
926 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
927
928 b : delay timing.
929
930
931 **Example:**
932
933 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
934
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
937 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
938
939 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
940
941
942 Set DI2 trigger.
943
944 * (% style="color:#037691" %)**AT Command:**
945
946 **AT+TRIG2=a,b**
947
948
949 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
950
951 b : delay timing.
952
953
954 **Example:**
955
956 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
957
958
959 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
960
961 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
962
963
964
965
966 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
967
968
969 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
970
971 * (% style="color:#037691" %)**AT Command**
972
973 **AT+ACLIM**
974
975
976 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
977
978 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
979
980
981
982
983 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
984
985
986 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
987
988 * (% style="color:#037691" %)**AT Command**
989
990 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
991
992
993 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
994
995 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
996
997
998
999
1000 ==== 3.4.2.11 Trigger – Set minimum interval ====
1001
1002
1003 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1004
1005 * (% style="color:#037691" %)**AT Command**
1006
1007 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
1008
1009
1010 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1011
1012 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1013
1014 (((
1015
1016
1017 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1018 )))
1019
1020
1021
1022
1023 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1024
1025
1026 * (% style="color:#037691" %)**AT Command**
1027
1028 There is no AT Command to control Digital Output
1029
1030
1031 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1032 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
1033
1034 (((
1035 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1036 )))
1037
1038 (((
1039 01: Low,  00: High ,  11: No action
1040 )))
1041
1042 [[image:image-20220524092754-5.png]]
1043
1044 (((
1045 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1046 )))
1047
1048 (((
1049 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1050 )))
1051
1052
1053
1054
1055 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1056
1057
1058 * (% style="color:#037691" %)**AT Command**
1059
1060 There is no AT Command to control Digital Output
1061
1062
1063 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1064
1065 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1066
1067
1068 This is to control the digital output time of DO pin. Include four bytes:
1069
1070 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1071
1072 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1073
1074 01: DO pins will change back to original state after timeout.
1075
1076 00: DO pins will change to an inverter state after timeout 
1077
1078
1079 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1080
1081 [[image:image-20220524093238-6.png]]
1082
1083
1084 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1085
1086 [[image:image-20220524093328-7.png]]
1087
1088
1089 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1090
1091 [[image:image-20220524093351-8.png]]
1092
1093
1094 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1095
1096 Latching time. Unit: ms
1097
1098 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1099
1100
1101 **Example payload:**
1102
1103 **~1. A9 01 01 01 01 07 D0**
1104
1105 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1106
1107 **2. A9 01 00 01 11 07 D0**
1108
1109 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1110
1111 **3. A9 00 00 00 00 07 D0**
1112
1113 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1114
1115 **4. A9 00 11 01 00 07 D0**
1116
1117 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1118
1119
1120
1121
1122 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1123
1124
1125 * (% style="color:#037691" %)**AT Command:**
1126
1127 There is no AT Command to control Relay Output
1128
1129
1130 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1131
1132 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1133
1134
1135 (((
1136 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1137 )))
1138
1139 (((
1140 01: Close ,  00: Open , 11: No action
1141 )))
1142
1143 (((
1144 [[image:image-20220524093724-9.png]]
1145 )))
1146
1147 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1148
1149
1150
1151
1152 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1153
1154
1155 * (% style="color:#037691" %)**AT Command:**
1156
1157 There is no AT Command to control Relay Output
1158
1159
1160 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1161
1162 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1163
1164
1165 This is to control the relay output time of relay. Include four bytes:
1166
1167 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1168
1169 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1170
1171 01: Relays will change back to original state after timeout.
1172
1173 00: Relays will change to an inverter state after timeout
1174
1175
1176 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1177
1178 [[image:image-20221008095908-1.png||height="364" width="564"]]
1179
1180
1181 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1182
1183 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1184
1185
1186 **Example payload:**
1187
1188 **~1. 05 01 11 07 D**
1189
1190 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1191
1192 **2. 05 01 10 07 D0**
1193
1194 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1195
1196 **3. 05 00 01 07 D0**
1197
1198 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1199
1200 **4. 05 00 00 07 D0**
1201
1202 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1203
1204
1205
1206 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1207
1208
1209 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1210
1211 * (% style="color:#037691" %)**AT Command:**
1212
1213 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1217
1218 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1219
1220
1221
1222
1223 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1224
1225
1226 * (% style="color:#037691" %)**AT Command:**
1227
1228 **AT+SETCNT=aa,(bb cc dd ee) **
1229
1230 aa: 1: Set count1,
1231
1232 2: Set count2,
1233
1234 3: Set AV1 count
1235
1236 Bb cc dd ee: number to be set
1237
1238
1239 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1240
1241 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1242
1243
1244
1245
1246 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1247
1248
1249 Clear counting for counting mode
1250
1251 * (% style="color:#037691" %)**AT Command:**
1252
1253 **AT+CLRCOUNT ** ~/~/ clear all counting
1254
1255
1256 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1257
1258 **0x A6 01    ** ~/~/ clear all counting
1259
1260
1261
1262
1263 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1264
1265
1266 * (% style="color:#037691" %)**AT Command:**
1267
1268 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1269
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1272
1273 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1274
1275 (((
1276 range: aa bb cc:0 to 16777215,  (unit:second)
1277
1278
1279
1280
1281 )))
1282
1283 ==== 3.4.2.20 Reset save DR DO state ====
1284
1285
1286 * (% style="color:#037691" %)**AT Command:**
1287
1288 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1289
1290 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1291
1292
1293 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1294
1295 **0x AD aa      **~/~/ same as AT+RODORET =aa
1296
1297 (((
1298
1299
1300
1301
1302 ==== 3.4.2.21 Encrypted payload ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1308
1309 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1310
1311
1312
1313
1314 ==== 3.4.2.22 Get sensor value ====
1315
1316
1317 * (% style="color:#037691" %)**AT Command:**
1318
1319 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1320
1321 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1322
1323
1324
1325
1326 ==== 3.4.2.23 Resets the downlink packet count ====
1327
1328
1329 * (% style="color:#037691" %)**AT Command:**
1330
1331 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1332
1333 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1334
1335
1336
1337
1338 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1339
1340
1341 * (% style="color:#037691" %)**AT Command:**
1342
1343 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1344
1345 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1346
1347
1348 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1349
1350 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1351
1352
1353
1354
1355 ==== 3.4.2.25 Copy downlink to uplink ====
1356
1357
1358 * (% style="color:#037691" %)**AT Command**(%%)**:**
1359
1360 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1361
1362 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1363
1364
1365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1366
1367 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1368
1369
1370
1371 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1372
1373 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1374
1375
1376
1377 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1378
1379
1380 * (((
1381 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1382
1383 **26 01  ** ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1384
1385
1386 )))
1387
1388 **Example:**
1389
1390 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1391
1392
1393
1394 )))
1395
1396 == 3.5 Integrate with Mydevice ==
1397
1398
1399 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1400
1401 (((
1402 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1403 )))
1404
1405 (((
1406 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1407
1408
1409 )))
1410
1411 [[image:image-20220719105525-1.png||height="377" width="677"]]
1412
1413
1414
1415 [[image:image-20220719110247-2.png||height="388" width="683"]]
1416
1417
1418 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1419
1420 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1421
1422 Search under The things network
1423
1424 [[image:1653356838789-523.png||height="337" width="740"]]
1425
1426
1427
1428 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1429
1430 [[image:image-20220524094909-1.png||height="335" width="729"]]
1431
1432
1433 [[image:image-20220524094909-2.png||height="337" width="729"]]
1434
1435
1436 [[image:image-20220524094909-3.png||height="338" width="727"]]
1437
1438
1439 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1440
1441
1442 [[image:image-20220524094909-5.png||height="341" width="734"]]
1443
1444
1445
1446 == 3.6 Interface Detail ==
1447
1448
1449 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1450
1451
1452 Support NPN Type sensor
1453
1454 [[image:1653356991268-289.png]]
1455
1456
1457
1458 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1459
1460
1461 (((
1462 The DI port of LT-22222-L can support NPN or PNP output sensor.
1463 )))
1464
1465 (((
1466 (((
1467 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1468
1469
1470 )))
1471 )))
1472
1473 [[image:1653357170703-587.png]]
1474
1475 (((
1476 (((
1477 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1478 )))
1479 )))
1480
1481 (((
1482
1483 )))
1484
1485 (((
1486 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1487 )))
1488
1489 (((
1490 This type of sensor will output a low signal GND when active.
1491 )))
1492
1493 * (((
1494 Connect sensor's output to DI1-
1495 )))
1496 * (((
1497 Connect sensor's VCC to DI1+.
1498 )))
1499
1500 (((
1501 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 )))
1503
1504 (((
1505 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1506 )))
1507
1508 (((
1509 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1510 )))
1511
1512 (((
1513
1514
1515
1516 )))
1517
1518 (((
1519 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1520 )))
1521
1522 (((
1523 This type of sensor will output a high signal (example 24v) when active.
1524 )))
1525
1526 * (((
1527 Connect sensor's output to DI1+
1528 )))
1529 * (((
1530 Connect sensor's GND DI1-.
1531 )))
1532
1533 (((
1534 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1535 )))
1536
1537 (((
1538 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1539 )))
1540
1541 (((
1542 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1543 )))
1544
1545 (((
1546
1547
1548
1549 )))
1550
1551 (((
1552 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1553 )))
1554
1555 (((
1556 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1557 )))
1558
1559 * (((
1560 Connect sensor's output to DI1+ with a serial 50K resistor
1561 )))
1562 * (((
1563 Connect sensor's GND DI1-.
1564 )))
1565
1566 (((
1567 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1568 )))
1569
1570 (((
1571 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1572 )))
1573
1574 (((
1575 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1576 )))
1577
1578
1579
1580 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1581
1582
1583 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1584
1585 [[image:1653357531600-905.png]]
1586
1587
1588
1589 === 3.6.4 Analog Input Interface ===
1590
1591
1592 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1593
1594
1595 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1596
1597 [[image:1653357592296-182.png]]
1598
1599 Example to connect a 4~~20mA sensor
1600
1601 We take the wind speed sensor as an example for reference only.
1602
1603
1604 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1605
1606 **Red:  12~~24v**
1607
1608 **Yellow:  4~~20mA**
1609
1610 **Black:  GND**
1611
1612
1613 **Connection diagram:**
1614
1615 [[image:1653357640609-758.png]]
1616
1617 [[image:1653357648330-671.png||height="155" width="733"]]
1618
1619
1620
1621 === 3.6.5 Relay Output ===
1622
1623
1624 (((
1625 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1626 )))
1627
1628 [[image:image-20220524100215-9.png]]
1629
1630
1631 [[image:image-20220524100215-10.png||height="382" width="723"]]
1632
1633
1634
1635 == 3.7 LEDs Indicators ==
1636
1637
1638 [[image:image-20220524100748-11.png]]
1639
1640
1641
1642 = 4. Use AT Command =
1643
1644
1645 == 4.1 Access AT Command ==
1646
1647
1648 (((
1649 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1650 )))
1651
1652 (((
1653
1654 )))
1655
1656 [[image:1653358238933-385.png]]
1657
1658
1659 (((
1660 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1661 )))
1662
1663 [[image:1653358355238-883.png]]
1664
1665
1666 (((
1667 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1668 )))
1669
1670 (((
1671 AT+<CMD>?        : Help on <CMD>
1672 )))
1673
1674 (((
1675 AT+<CMD>         : Run <CMD>
1676 )))
1677
1678 (((
1679 AT+<CMD>=<value> : Set the value
1680 )))
1681
1682 (((
1683 AT+<CMD>=?       :  Get the value
1684 )))
1685
1686 (((
1687 ATZ: Trig a reset of the MCU
1688 )))
1689
1690 (((
1691 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1692 )))
1693
1694 (((
1695 AT+DEUI: Get or Set the Device EUI
1696 )))
1697
1698 (((
1699 AT+DADDR: Get or Set the Device Address
1700 )))
1701
1702 (((
1703 AT+APPKEY: Get or Set the Application Key
1704 )))
1705
1706 (((
1707 AT+NWKSKEY: Get or Set the Network Session Key
1708 )))
1709
1710 (((
1711 AT+APPSKEY:  Get or Set the Application Session Key
1712 )))
1713
1714 (((
1715 AT+APPEUI:  Get or Set the Application EUI
1716 )))
1717
1718 (((
1719 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1720 )))
1721
1722 (((
1723 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1724 )))
1725
1726 (((
1727 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1728 )))
1729
1730 (((
1731 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1732 )))
1733
1734 (((
1735 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1736 )))
1737
1738 (((
1739 AT+RX2FQ: Get or Set the Rx2 window frequency
1740 )))
1741
1742 (((
1743 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1744 )))
1745
1746 (((
1747 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1748 )))
1749
1750 (((
1751 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1752 )))
1753
1754 (((
1755 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1756 )))
1757
1758 (((
1759 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1760 )))
1761
1762 (((
1763 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1764 )))
1765
1766 (((
1767 AT+NWKID: Get or Set the Network ID
1768 )))
1769
1770 (((
1771 AT+FCU: Get or Set the Frame Counter Uplink
1772 )))
1773
1774 (((
1775 AT+FCD: Get or Set the Frame Counter Downlink
1776 )))
1777
1778 (((
1779 AT+CLASS: Get or Set the Device Class
1780 )))
1781
1782 (((
1783 AT+JOIN: Join network
1784 )))
1785
1786 (((
1787 AT+NJS: Get OTAA Join Status
1788 )))
1789
1790 (((
1791 AT+SENDB: Send hexadecimal data along with the application port
1792 )))
1793
1794 (((
1795 AT+SEND: Send text data along with the application port
1796 )))
1797
1798 (((
1799 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1800 )))
1801
1802 (((
1803 AT+RECV: Print last received data in raw format
1804 )))
1805
1806 (((
1807 AT+VER:  Get current image version and Frequency Band
1808 )))
1809
1810 (((
1811 AT+CFM: Get or Set the confirmation mode (0-1)
1812 )))
1813
1814 (((
1815 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1816 )))
1817
1818 (((
1819 AT+SNR: Get the SNR of the last received packet
1820 )))
1821
1822 (((
1823 AT+RSSI: Get the RSSI of the last received packet
1824 )))
1825
1826 (((
1827 AT+TDC: Get or set the application data transmission interval in ms
1828 )))
1829
1830 (((
1831 AT+PORT: Get or set the application port
1832 )))
1833
1834 (((
1835 AT+DISAT: Disable AT commands
1836 )))
1837
1838 (((
1839 AT+PWORD: Set password, max 9 digits
1840 )))
1841
1842 (((
1843 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1844 )))
1845
1846 (((
1847 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1848 )))
1849
1850 (((
1851 AT+CFG: Print all settings
1852 )))
1853
1854
1855
1856 == 4.2 Common AT Command Sequence ==
1857
1858
1859 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1860
1861 (((
1862
1863
1864 (((
1865 (% style="color:blue" %)**If device has not joined network yet:**
1866 )))
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)**123456**
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)**AT+FDR**
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)**123456**
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)**ATZ**
1887 )))
1888
1889
1890 (((
1891 (% style="color:blue" %)**If device already joined network:**
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)**ATZ**
1900 )))
1901
1902
1903
1904 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1905
1906 (((
1907
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1911 )))
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1936 )))
1937
1938 (((
1939 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1956 )))
1957
1958 (((
1959 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1960
1961
1962 )))
1963
1964 (((
1965 (% style="color:red" %)**Note:**
1966 )))
1967
1968 (((
1969 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1970
1971 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1972
1973 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1974 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1975
1976 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1977
1978
1979 )))
1980
1981 (((
1982 [[image:1653359097980-169.png||height="188" width="729"]]
1983 )))
1984
1985 (((
1986
1987 )))
1988
1989
1990 === 4.2.3 Change to Class A ===
1991
1992
1993 (((
1994 (% style="color:blue" %)If sensor JOINED:
1995
1996 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1997 ATZ**
1998 )))
1999
2000
2001
2002 = 5. FAQ =
2003
2004
2005 == 5.1 How to upgrade the image? ==
2006
2007
2008 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2009
2010 * Support new features
2011 * For bug fix
2012 * Change LoRaWAN bands.
2013
2014 Below shows the hardware connection for how to upload an image to the LT:
2015
2016 [[image:1653359603330-121.png]]
2017
2018
2019 (((
2020 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2021 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2022 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2023
2024
2025 (((
2026 (% style="color:blue" %)**For LT-22222-L**(%%):
2027 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2028 )))
2029
2030
2031 )))
2032
2033 [[image:image-20220524103407-12.png]]
2034
2035 [[image:image-20220524103429-13.png]]
2036
2037 [[image:image-20220524104033-15.png]]
2038
2039
2040 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2041
2042
2043 [[image:1653360054704-518.png||height="186" width="745"]]
2044
2045
2046 (((
2047 (((
2048
2049
2050 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2051
2052
2053 )))
2054 )))
2055
2056 (((
2057 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2058 )))
2059
2060 (((
2061
2062
2063
2064 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2065
2066
2067 )))
2068
2069 (((
2070 (((
2071 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2072 )))
2073 )))
2074
2075 (((
2076 (((
2077 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2078
2079
2080
2081 )))
2082 )))
2083
2084 (((
2085 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2086
2087
2088 )))
2089
2090 (((
2091 [[image:1653360231087-571.png||height="401" width="727"]]
2092
2093
2094 )))
2095
2096 (((
2097 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2098 )))
2099
2100
2101
2102 (((
2103 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2104
2105
2106 )))
2107
2108 (((
2109 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2110 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2111 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2112 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2113 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2114 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2115 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2116 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2117 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2118 )))
2119
2120
2121 (((
2122 As shown in below:
2123 )))
2124
2125 [[image:1653360498588-932.png||height="485" width="726"]]
2126
2127
2128
2129 == 5.4 Can I see counting event in Serial? ==
2130
2131
2132 (((
2133 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2134
2135
2136
2137 == 5.5 Can i use point to point communication for LT-22222-L? ==
2138
2139
2140 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2141
2142
2143
2144 )))
2145
2146 (((
2147 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2148
2149
2150 If the device is not shut down, but directly powered off.
2151
2152 It will default that this is a power-off state.
2153
2154 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2155
2156 After restart, the status before power failure will be read from flash.
2157
2158
2159
2160 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2161
2162
2163 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2164
2165
2166 [[image:image-20221006170630-1.png||height="610" width="945"]]
2167
2168
2169
2170 = 6. Trouble Shooting =
2171
2172
2173 )))
2174
2175 (((
2176 (((
2177 == 6.1 Downlink doesn't work, how to solve it? ==
2178
2179
2180 )))
2181 )))
2182
2183 (((
2184 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2185 )))
2186
2187 (((
2188
2189
2190
2191 == 6.2 Have trouble to upload image. ==
2192
2193
2194 )))
2195
2196 (((
2197 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2198 )))
2199
2200 (((
2201
2202
2203
2204 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2205
2206
2207 )))
2208
2209 (((
2210 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2211 )))
2212
2213
2214
2215 = 7. Order Info =
2216
2217
2218 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2219
2220 (% style="color:#4f81bd" %)**XXX:**
2221
2222 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2223 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2224 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2225 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2226 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2227 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2228 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2229 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2230 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2231
2232 = 8. Packing Info =
2233
2234
2235 **Package Includes**:
2236
2237 * LT-22222-L I/O Controller x 1
2238 * Stick Antenna for LoRa RF part x 1
2239 * Bracket for controller x1
2240 * Program cable x 1
2241
2242 **Dimension and weight**:
2243
2244 * Device Size: 13.5 x 7 x 3 cm
2245 * Device Weight: 105g
2246 * Package Size / pcs : 14.5 x 8 x 5 cm
2247 * Weight / pcs : 170g
2248
2249 = 9. Support =
2250
2251
2252 * (((
2253 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2254 )))
2255 * (((
2256 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2257
2258
2259
2260
2261 )))
2262
2263 = 10. Reference​​​​​ =
2264
2265
2266 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2267 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2268 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0