Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190 == 1.4  Applications ==
191
192
193 * Smart Buildings & Home Automation
194 * Logistics and Supply Chain Management
195 * Smart Metering
196 * Smart Agriculture
197 * Smart Cities
198 * Smart Factory
199
200
201 == 1.5 Hardware Variants ==
202
203
204 (% border="1" style="background-color:#f7faff; width:500px" %)
205 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
206 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
207 * 2 x Digital Input (Bi-direction)
208 * 2 x Digital Output
209 * 2 x Relay Output (5A@250VAC / 30VDC)
210 * 2 x 0~~20mA Analog Input (res:0.01mA)
211 * 2 x 0~~30V Analog Input (res:0.01v)
212 * 1 x Counting Port
213 )))
214
215
216 = 2. Power ON Device =
217
218
219 (((
220 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
221 )))
222
223 (((
224 PWR will on when device is properly powered.
225
226
227 )))
228
229 [[image:1653297104069-180.png]]
230
231
232
233 = 3. Operation Mode =
234
235
236 == 3.1 How it works? ==
237
238
239 (((
240 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
241 )))
242
243 (((
244 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
245 )))
246
247
248
249 == 3.2 Example to join LoRaWAN network ==
250
251
252 (((
253 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
254
255
256 )))
257
258 [[image:image-20220523172350-1.png||height="266" width="864"]]
259
260
261 (((
262 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
263
264
265 )))
266
267 (((
268 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
269 )))
270
271 (((
272 Each LT is shipped with a sticker with the default device EUI as below:
273 )))
274
275 [[image:1653297924498-393.png]]
276
277
278 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
279
280 **Add APP EUI in the application.**
281
282 [[image:1653297955910-247.png||height="321" width="716"]]
283
284
285 **Add APP KEY and DEV EUI**
286
287 [[image:1653298023685-319.png]]
288
289
290
291 (((
292 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
293
294
295 )))
296
297 [[image:1653298044601-602.png||height="405" width="709"]]
298
299
300
301 == 3.3 Uplink Payload ==
302
303
304 There are five working modes + one interrupt mode on LT for different type application:
305
306 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
307 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
308 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
309 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
310 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
311 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
312
313
314 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
315
316
317 (((
318 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
319 )))
320
321 [[image:image-20220523174024-3.png]]
322
323 (((
324
325
326 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 )))
328
329 [[image:image-20220523174254-4.png]]
330
331 * RO is for relay. ROx=1 : close,ROx=0 always open.
332 * DI is for digital input. DIx=1: high or float, DIx=0: low.
333 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334
335 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
336
337 For example if payload is: [[image:image-20220523175847-2.png]]
338
339
340 **The value for the interface is:  **
341
342 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
343
344 AVI2 channel voltage is 0x04AC/1000=1.196V
345
346 ACI1 channel current is 0x1310/1000=4.880mA
347
348 ACI2 channel current is 0x1300/1000=4.864mA
349
350 The last byte 0xAA= 10101010(B) means
351
352 * [1] RO1 relay channel is close and the RO1 LED is ON.
353 * [0] RO2 relay channel is open and RO2 LED is OFF;
354
355 **LT22222-L:**
356
357 * [1] DI2 channel is high input and DI2 LED is ON;
358 * [0] DI1 channel is low input;
359
360 * [0] DO3 channel output state
361 ** DO3 is float in case no load between DO3 and V+.;
362 ** DO3 is high in case there is load between DO3 and V+.
363 ** DO3 LED is off in both case
364 * [1] DO2 channel output is low and DO2 LED is ON.
365 * [0] DO1 channel output state
366 ** DO1 is float in case no load between DO1 and V+.;
367 ** DO1 is high in case there is load between DO1 and V+.
368 ** DO1 LED is off in both case
369
370
371 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
372
373
374 (((
375 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
376 )))
377
378 (((
379 Total : 11 bytes payload
380 )))
381
382 [[image:image-20220523180452-3.png]]
383
384
385 (((
386 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
387 )))
388
389 [[image:image-20220523180506-4.png]]
390
391 * RO is for relay. ROx=1 : close,ROx=0 always open.
392 * FIRST: Indicate this is the first packet after join network.
393 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
394
395 (((
396 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
397 )))
398
399 (((
400
401
402 **To use counting mode, please run:**
403 )))
404
405 (% class="box infomessage" %)
406 (((
407 (((
408 (((
409 **AT+MOD=2**
410 )))
411
412 (((
413 **ATZ**
414 )))
415 )))
416 )))
417
418 (((
419
420
421 (% style="color:#4f81bd" %)**AT Commands for counting:**
422
423
424 )))
425
426 (((
427 **For LT22222-L:**
428
429
430 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
431
432 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
433
434 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
435
436 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
437
438 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
439
440 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
441 )))
442
443
444
445 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
446
447
448 **LT22222-L**: This mode the DI1 is used as a counting pin.
449
450 [[image:image-20220523181246-5.png]]
451
452 (((
453
454
455 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 )))
457
458 [[image:image-20220523181301-6.png]]
459
460 * RO is for relay. ROx=1 : close,ROx=0 always open.
461 * FIRST: Indicate this is the first packet after join network.
462 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463
464 (((
465 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
466 )))
467
468
469 (((
470 **To use counting mode, please run:**
471 )))
472
473 (% class="box infomessage" %)
474 (((
475 (((
476 (((
477 **AT+MOD=3**
478 )))
479
480 (((
481 **ATZ**
482 )))
483 )))
484 )))
485
486 (((
487 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
488 )))
489
490
491
492 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
493
494
495 (((
496 **LT22222-L**: This mode the DI1 is used as a counting pin.
497 )))
498
499 (((
500 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
501 )))
502
503 [[image:image-20220523181903-8.png]]
504
505
506 (((
507 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
508 )))
509
510 [[image:image-20220523181727-7.png]]
511
512 * RO is for relay. ROx=1 : close,ROx=0 always open.
513 * FIRST: Indicate this is the first packet after join network.
514 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
515
516 (((
517 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
518 )))
519
520 (((
521
522
523 **To use this mode, please run:**
524 )))
525
526 (% class="box infomessage" %)
527 (((
528 (((
529 (((
530 **AT+MOD=4**
531 )))
532
533 (((
534 **ATZ**
535 )))
536 )))
537 )))
538
539
540 (((
541 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
542 )))
543
544 (((
545
546
547 **Plus below command for AVI1 Counting:**
548
549
550 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
551
552 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
553
554 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
555
556 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
557 )))
558
559
560
561 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
562
563
564 **LT22222-L**: This mode the DI1 is used as a counting pin.
565
566 [[image:image-20220523182334-9.png]]
567
568 (((
569
570
571 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
572 )))
573
574 * RO is for relay. ROx=1 : close,ROx=0 always open.
575 * FIRST: Indicate this is the first packet after join network.
576 * (((
577 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
578 )))
579
580 (((
581 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
582 )))
583
584 (((
585
586
587 **To use this mode, please run:**
588 )))
589
590 (% class="box infomessage" %)
591 (((
592 (((
593 (((
594 **AT+MOD=5**
595 )))
596
597 (((
598 **ATZ**
599 )))
600 )))
601 )))
602
603 (((
604 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
605 )))
606
607
608
609 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
610
611
612 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613
614 For example, if user has configured below commands:
615
616 * **AT+MOD=1 ** **~-~->**  The normal working mode
617 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618
619 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620
621 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
622 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
623
624 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
625
626
627 (% style="color:#4f81bd" %)**Trigger base on voltage**:
628
629 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
630
631
632 **Example:**
633
634 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
635
636 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
637
638
639
640 (% style="color:#4f81bd" %)**Trigger base on current**:
641
642 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
643
644
645 **Example:**
646
647 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
648
649
650
651 (% style="color:#4f81bd" %)**Trigger base on DI status**:
652
653 DI status trigger Flag.
654
655 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
656
657
658 **Example:**
659
660 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
661
662
663
664 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
665
666 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
667
668 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
669
670 AA: Code for this downlink Command:
671
672 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
673
674 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
675
676 yy2 yy2: AC1 or AV1 high limit.
677
678 yy3 yy3: AC2 or AV2 low limit.
679
680 Yy4 yy4: AC2 or AV2 high limit.
681
682
683 **Example1**: AA 00 13 88 00 00 00 00 00 00
684
685 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
686
687
688 **Example2**: AA 02 01 00
689
690 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
691
692
693
694 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
695
696 MOD6 Payload : total 11 bytes payload
697
698 [[image:image-20220524085923-1.png]]
699
700
701 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
702
703 [[image:image-20220524090106-2.png]]
704
705 * Each bits shows if the corresponding trigger has been configured.
706
707 **Example:**
708
709 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
710
711
712
713 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
714
715 [[image:image-20220524090249-3.png]]
716
717 * Each bits shows which status has been trigger on this uplink.
718
719 **Example:**
720
721 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
722
723
724
725 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
726
727 [[image:image-20220524090456-4.png]]
728
729 * Each bits shows which status has been trigger on this uplink.
730
731 **Example:**
732
733 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
734
735 00000101: Means both DI1 and DI2 trigger are enabled.
736
737
738
739 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
740
741 Downlink command to poll MOD6 status:
742
743 **AB 06**
744
745 When device got this command, it will send the MOD6 payload.
746
747
748
749 === 3.3.7 Payload Decoder ===
750
751 (((
752
753
754 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
755 )))
756
757
758
759 == 3.4 ​Configure LT via AT or Downlink ==
760
761
762 (((
763 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
764 )))
765
766 (((
767 (((
768 There are two kinds of Commands:
769 )))
770 )))
771
772 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
773
774 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
775
776
777
778 === 3.4.1 Common Commands ===
779
780
781 (((
782 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
783 )))
784
785
786
787 === 3.4.2 Sensor related commands ===
788
789
790 ==== 3.4.2.1 Set Transmit Interval ====
791
792
793 Set device uplink interval.
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 **AT+TDC=N **
798
799
800 **Example: **AT+TDC=30000. Means set interval to 30 seconds
801
802
803 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
804
805 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
806
807
808
809
810 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
811
812
813 Set work mode.
814
815 * (% style="color:#037691" %)**AT Command:**
816
817 **AT+MOD=N  **
818
819
820 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
821
822
823 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824
825 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
826
827
828
829
830 ==== 3.4.2.3 Poll an uplink ====
831
832
833 * (% style="color:#037691" %)**AT Command:**
834
835 There is no AT Command to poll uplink
836
837
838 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
839
840 **0x08 FF     **~/~/ Poll an uplink
841
842
843 **Example**: 0x08FF, ask device to send an Uplink
844
845
846
847
848 ==== 3.4.2.4 Enable Trigger Mode ====
849
850
851 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
852
853 * (% style="color:#037691" %)**AT Command:**
854
855 **AT+ADDMOD6=1 or 0**
856
857 1: Enable Trigger Mode
858
859 0: Disable Trigger Mode
860
861
862 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
863
864 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
865
866
867
868
869 ==== 3.4.2.5 Poll trigger settings ====
870
871
872 Poll trigger settings,
873
874 * (% style="color:#037691" %)**AT Command:**
875
876 There is no AT Command for this feature.
877
878
879 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
880
881 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
882
883
884
885
886 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
887
888
889 Enable Disable DI1/DI2/DI2 as trigger,
890
891 * (% style="color:#037691" %)**AT Command:**
892
893 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
894
895
896 **Example:**
897
898 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
899
900 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
901
902 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
903
904
905
906
907 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
908
909
910 Set DI1 or DI3(for LT-33222-L) trigger.
911
912 * (% style="color:#037691" %)**AT Command:**
913
914 **AT+TRIG1=a,b**
915
916 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
917
918 b : delay timing.
919
920
921 **Example:**
922
923 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
927 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
928
929 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
930
931
932 Set DI2 trigger.
933
934 * (% style="color:#037691" %)**AT Command:**
935
936 **AT+TRIG2=a,b**
937
938
939 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
940
941 b : delay timing.
942
943
944 **Example:**
945
946 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
947
948
949 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
950
951 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
952
953
954
955
956 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
957
958
959 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
960
961 * (% style="color:#037691" %)**AT Command**
962
963 **AT+ACLIM**
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
967
968 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
969
970
971
972
973 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
974
975
976 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
977
978 * (% style="color:#037691" %)**AT Command**
979
980 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
981
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
984
985 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
986
987
988
989
990 ==== 3.4.2.11 Trigger – Set minimum interval ====
991
992
993 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
994
995 * (% style="color:#037691" %)**AT Command**
996
997 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
998
999
1000 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1001
1002 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1003
1004 (((
1005
1006
1007 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1008 )))
1009
1010
1011
1012
1013 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1014
1015
1016 * (% style="color:#037691" %)**AT Command**
1017
1018 There is no AT Command to control Digital Output
1019
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1022 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
1023
1024 (((
1025 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1026 )))
1027
1028 (((
1029 01: Low,  00: High ,  11: No action
1030 )))
1031
1032 [[image:image-20220524092754-5.png]]
1033
1034 (((
1035 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1036 )))
1037
1038 (((
1039 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1040 )))
1041
1042
1043
1044
1045 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1046
1047
1048 * (% style="color:#037691" %)**AT Command**
1049
1050 There is no AT Command to control Digital Output
1051
1052
1053 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1054
1055 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1056
1057
1058 This is to control the digital output time of DO pin. Include four bytes:
1059
1060 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1061
1062 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1063
1064 01: DO pins will change back to original state after timeout.
1065
1066 00: DO pins will change to an inverter state after timeout 
1067
1068
1069 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1070
1071 [[image:image-20220524093238-6.png]]
1072
1073
1074 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1075
1076 [[image:image-20220524093328-7.png]]
1077
1078
1079 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1080
1081 [[image:image-20220524093351-8.png]]
1082
1083
1084 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1085
1086 Latching time. Unit: ms
1087
1088 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1089
1090
1091 **Example payload:**
1092
1093 **~1. A9 01 01 01 01 07 D0**
1094
1095 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1096
1097 **2. A9 01 00 01 11 07 D0**
1098
1099 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1100
1101 **3. A9 00 00 00 00 07 D0**
1102
1103 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1104
1105 **4. A9 00 11 01 00 07 D0**
1106
1107 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1108
1109
1110
1111
1112 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1113
1114
1115 * (% style="color:#037691" %)**AT Command:**
1116
1117 There is no AT Command to control Relay Output
1118
1119
1120 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1121
1122 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1123
1124
1125 (((
1126 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1127 )))
1128
1129 (((
1130 01: Close ,  00: Open , 11: No action
1131 )))
1132
1133 (((
1134 [[image:image-20220524093724-9.png]]
1135 )))
1136
1137 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1138
1139
1140
1141
1142 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1143
1144
1145 * (% style="color:#037691" %)**AT Command:**
1146
1147 There is no AT Command to control Relay Output
1148
1149
1150 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1151
1152 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1153
1154
1155 This is to control the relay output time of relay. Include four bytes:
1156
1157 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1158
1159 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1160
1161 01: Relays will change back to original state after timeout.
1162
1163 00: Relays will change to an inverter state after timeout
1164
1165
1166 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1167
1168 [[image:image-20221008095908-1.png||height="364" width="564"]]
1169
1170
1171 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1172
1173 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1174
1175
1176 **Example payload:**
1177
1178 **~1. 05 01 11 07 D**
1179
1180 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1181
1182 **2. 05 01 10 07 D0**
1183
1184 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1185
1186 **3. 05 00 01 07 D0**
1187
1188 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1189
1190 **4. 05 00 00 07 D0**
1191
1192 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1193
1194
1195
1196 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1197
1198
1199 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1204
1205
1206 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1207
1208 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1209
1210
1211
1212
1213 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1214
1215
1216 * (% style="color:#037691" %)**AT Command:**
1217
1218 **AT+SETCNT=aa,(bb cc dd ee) **
1219
1220 aa: 1: Set count1,
1221
1222 2: Set count2,
1223
1224 3: Set AV1 count
1225
1226 Bb cc dd ee: number to be set
1227
1228
1229 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1230
1231 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1232
1233
1234
1235
1236 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1237
1238
1239 Clear counting for counting mode
1240
1241 * (% style="color:#037691" %)**AT Command:**
1242
1243 **AT+CLRCOUNT ** ~/~/ clear all counting
1244
1245
1246 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1247
1248 **0x A6 01    ** ~/~/ clear all counting
1249
1250
1251
1252
1253 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1259
1260
1261 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1262
1263 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1264
1265 (((
1266 range: aa bb cc:0 to 16777215,  (unit:second)
1267
1268
1269
1270
1271 )))
1272
1273 ==== 3.4.2.20 Reset save DR DO state ====
1274
1275
1276 * (% style="color:#037691" %)**AT Command:**
1277
1278 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1279
1280 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1281
1282
1283 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1284
1285 **0x AD aa      **~/~/ same as AT+RODORET =aa
1286
1287 (((
1288
1289
1290
1291
1292 ==== 3.4.2.21 Encrypted payload ====
1293
1294
1295 * (% style="color:#037691" %)**AT Command:**
1296
1297 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1298
1299 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1300
1301
1302
1303
1304 ==== 3.4.2.22 Get sensor value ====
1305
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1310
1311 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1312
1313
1314
1315
1316 ==== 3.4.2.23 Resets the downlink packet count ====
1317
1318
1319 * (% style="color:#037691" %)**AT Command:**
1320
1321 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1322
1323 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1324
1325
1326
1327
1328 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1329
1330
1331 * (% style="color:#037691" %)**AT Command:**
1332
1333 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1334
1335 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1336
1337
1338 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1339
1340 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1341
1342
1343
1344
1345 ==== 3.4.2.25 Copy downlink to uplink ====
1346
1347
1348 * (% style="color:#037691" %)**AT Command**(%%)**:**
1349
1350 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1351
1352 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1353
1354
1355 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1356
1357 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1358
1359
1360
1361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1362
1363 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1364
1365
1366
1367 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1368
1369
1370 * (((
1371 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1372
1373 **26 01  ** ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1374
1375
1376 )))
1377
1378 **Example:**
1379
1380 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1381
1382
1383
1384 )))
1385
1386 == 3.5 Integrate with Mydevice ==
1387
1388
1389 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1390
1391 (((
1392 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1393 )))
1394
1395 (((
1396 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1397
1398
1399 )))
1400
1401 [[image:image-20220719105525-1.png||height="377" width="677"]]
1402
1403
1404
1405 [[image:image-20220719110247-2.png||height="388" width="683"]]
1406
1407
1408 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1409
1410 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1411
1412 Search under The things network
1413
1414 [[image:1653356838789-523.png||height="337" width="740"]]
1415
1416
1417
1418 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1419
1420 [[image:image-20220524094909-1.png||height="335" width="729"]]
1421
1422
1423 [[image:image-20220524094909-2.png||height="337" width="729"]]
1424
1425
1426 [[image:image-20220524094909-3.png||height="338" width="727"]]
1427
1428
1429 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1430
1431
1432 [[image:image-20220524094909-5.png||height="341" width="734"]]
1433
1434
1435
1436 == 3.6 Interface Detail ==
1437
1438
1439 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1440
1441
1442 Support NPN Type sensor
1443
1444 [[image:1653356991268-289.png]]
1445
1446
1447
1448 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1449
1450
1451 (((
1452 The DI port of LT-22222-L can support NPN or PNP output sensor.
1453 )))
1454
1455 (((
1456 (((
1457 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1458
1459
1460 )))
1461 )))
1462
1463 [[image:1653357170703-587.png]]
1464
1465 (((
1466 (((
1467 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1468 )))
1469 )))
1470
1471 (((
1472
1473 )))
1474
1475 (((
1476 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1477 )))
1478
1479 (((
1480 This type of sensor will output a low signal GND when active.
1481 )))
1482
1483 * (((
1484 Connect sensor's output to DI1-
1485 )))
1486 * (((
1487 Connect sensor's VCC to DI1+.
1488 )))
1489
1490 (((
1491 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1492 )))
1493
1494 (((
1495 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1496 )))
1497
1498 (((
1499 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1500 )))
1501
1502 (((
1503
1504
1505
1506 )))
1507
1508 (((
1509 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1510 )))
1511
1512 (((
1513 This type of sensor will output a high signal (example 24v) when active.
1514 )))
1515
1516 * (((
1517 Connect sensor's output to DI1+
1518 )))
1519 * (((
1520 Connect sensor's GND DI1-.
1521 )))
1522
1523 (((
1524 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1525 )))
1526
1527 (((
1528 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1529 )))
1530
1531 (((
1532 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1533 )))
1534
1535 (((
1536
1537
1538
1539 )))
1540
1541 (((
1542 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1543 )))
1544
1545 (((
1546 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1547 )))
1548
1549 * (((
1550 Connect sensor's output to DI1+ with a serial 50K resistor
1551 )))
1552 * (((
1553 Connect sensor's GND DI1-.
1554 )))
1555
1556 (((
1557 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1558 )))
1559
1560 (((
1561 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1562 )))
1563
1564 (((
1565 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1566 )))
1567
1568
1569
1570 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1571
1572
1573 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1574
1575 [[image:1653357531600-905.png]]
1576
1577
1578
1579 === 3.6.4 Analog Input Interface ===
1580
1581
1582 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1583
1584
1585 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1586
1587 [[image:1653357592296-182.png]]
1588
1589 Example to connect a 4~~20mA sensor
1590
1591 We take the wind speed sensor as an example for reference only.
1592
1593
1594 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1595
1596 **Red:  12~~24v**
1597
1598 **Yellow:  4~~20mA**
1599
1600 **Black:  GND**
1601
1602
1603 **Connection diagram:**
1604
1605 [[image:1653357640609-758.png]]
1606
1607 [[image:1653357648330-671.png||height="155" width="733"]]
1608
1609
1610
1611 === 3.6.5 Relay Output ===
1612
1613
1614 (((
1615 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1616 )))
1617
1618 [[image:image-20220524100215-9.png]]
1619
1620
1621 [[image:image-20220524100215-10.png||height="382" width="723"]]
1622
1623
1624
1625 == 3.7 LEDs Indicators ==
1626
1627
1628 [[image:image-20220524100748-11.png]]
1629
1630
1631
1632 = 4. Use AT Command =
1633
1634
1635 == 4.1 Access AT Command ==
1636
1637
1638 (((
1639 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1640 )))
1641
1642 (((
1643
1644 )))
1645
1646 [[image:1653358238933-385.png]]
1647
1648
1649 (((
1650 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1651 )))
1652
1653 [[image:1653358355238-883.png]]
1654
1655
1656 (((
1657 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1658 )))
1659
1660 (((
1661 AT+<CMD>?        : Help on <CMD>
1662 )))
1663
1664 (((
1665 AT+<CMD>         : Run <CMD>
1666 )))
1667
1668 (((
1669 AT+<CMD>=<value> : Set the value
1670 )))
1671
1672 (((
1673 AT+<CMD>=?       :  Get the value
1674 )))
1675
1676 (((
1677 ATZ: Trig a reset of the MCU
1678 )))
1679
1680 (((
1681 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1682 )))
1683
1684 (((
1685 AT+DEUI: Get or Set the Device EUI
1686 )))
1687
1688 (((
1689 AT+DADDR: Get or Set the Device Address
1690 )))
1691
1692 (((
1693 AT+APPKEY: Get or Set the Application Key
1694 )))
1695
1696 (((
1697 AT+NWKSKEY: Get or Set the Network Session Key
1698 )))
1699
1700 (((
1701 AT+APPSKEY:  Get or Set the Application Session Key
1702 )))
1703
1704 (((
1705 AT+APPEUI:  Get or Set the Application EUI
1706 )))
1707
1708 (((
1709 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1710 )))
1711
1712 (((
1713 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1714 )))
1715
1716 (((
1717 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1718 )))
1719
1720 (((
1721 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1722 )))
1723
1724 (((
1725 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1726 )))
1727
1728 (((
1729 AT+RX2FQ: Get or Set the Rx2 window frequency
1730 )))
1731
1732 (((
1733 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1734 )))
1735
1736 (((
1737 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1738 )))
1739
1740 (((
1741 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1742 )))
1743
1744 (((
1745 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1746 )))
1747
1748 (((
1749 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1750 )))
1751
1752 (((
1753 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1754 )))
1755
1756 (((
1757 AT+NWKID: Get or Set the Network ID
1758 )))
1759
1760 (((
1761 AT+FCU: Get or Set the Frame Counter Uplink
1762 )))
1763
1764 (((
1765 AT+FCD: Get or Set the Frame Counter Downlink
1766 )))
1767
1768 (((
1769 AT+CLASS: Get or Set the Device Class
1770 )))
1771
1772 (((
1773 AT+JOIN: Join network
1774 )))
1775
1776 (((
1777 AT+NJS: Get OTAA Join Status
1778 )))
1779
1780 (((
1781 AT+SENDB: Send hexadecimal data along with the application port
1782 )))
1783
1784 (((
1785 AT+SEND: Send text data along with the application port
1786 )))
1787
1788 (((
1789 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1790 )))
1791
1792 (((
1793 AT+RECV: Print last received data in raw format
1794 )))
1795
1796 (((
1797 AT+VER:  Get current image version and Frequency Band
1798 )))
1799
1800 (((
1801 AT+CFM: Get or Set the confirmation mode (0-1)
1802 )))
1803
1804 (((
1805 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1806 )))
1807
1808 (((
1809 AT+SNR: Get the SNR of the last received packet
1810 )))
1811
1812 (((
1813 AT+RSSI: Get the RSSI of the last received packet
1814 )))
1815
1816 (((
1817 AT+TDC: Get or set the application data transmission interval in ms
1818 )))
1819
1820 (((
1821 AT+PORT: Get or set the application port
1822 )))
1823
1824 (((
1825 AT+DISAT: Disable AT commands
1826 )))
1827
1828 (((
1829 AT+PWORD: Set password, max 9 digits
1830 )))
1831
1832 (((
1833 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1834 )))
1835
1836 (((
1837 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1838 )))
1839
1840 (((
1841 AT+CFG: Print all settings
1842 )))
1843
1844
1845
1846 == 4.2 Common AT Command Sequence ==
1847
1848
1849 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1850
1851 (((
1852
1853
1854 (((
1855 (% style="color:blue" %)**If device has not joined network yet:**
1856 )))
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)**123456**
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)**AT+FDR**
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)**123456**
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1873 )))
1874
1875 (((
1876 (% style="background-color:#dcdcdc" %)**ATZ**
1877 )))
1878
1879
1880 (((
1881 (% style="color:blue" %)**If device already joined network:**
1882 )))
1883
1884 (((
1885 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1886 )))
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %)**ATZ**
1890 )))
1891
1892
1893
1894 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1895
1896 (((
1897
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1901 )))
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1914 )))
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1918 )))
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1922 )))
1923
1924 (((
1925 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1926 )))
1927
1928 (((
1929 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1930 )))
1931
1932 (((
1933 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1950
1951
1952 )))
1953
1954 (((
1955 (% style="color:red" %)**Note:**
1956 )))
1957
1958 (((
1959 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1960
1961 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1962
1963 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1964 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1965
1966 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1967
1968
1969 )))
1970
1971 (((
1972 [[image:1653359097980-169.png||height="188" width="729"]]
1973 )))
1974
1975 (((
1976
1977 )))
1978
1979
1980 === 4.2.3 Change to Class A ===
1981
1982
1983 (((
1984 (% style="color:blue" %)If sensor JOINED:
1985
1986 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1987 ATZ**
1988 )))
1989
1990
1991
1992 = 5. FAQ =
1993
1994
1995 == 5.1 How to upgrade the image? ==
1996
1997
1998 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1999
2000 * Support new features
2001 * For bug fix
2002 * Change LoRaWAN bands.
2003
2004 Below shows the hardware connection for how to upload an image to the LT:
2005
2006 [[image:1653359603330-121.png]]
2007
2008
2009 (((
2010 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2011 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2012 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2013
2014
2015 (((
2016 (% style="color:blue" %)**For LT-22222-L**(%%):
2017 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2018 )))
2019
2020
2021 )))
2022
2023 [[image:image-20220524103407-12.png]]
2024
2025 [[image:image-20220524103429-13.png]]
2026
2027 [[image:image-20220524104033-15.png]]
2028
2029
2030 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2031
2032
2033 [[image:1653360054704-518.png||height="186" width="745"]]
2034
2035
2036 (((
2037 (((
2038
2039
2040 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2041
2042
2043 )))
2044 )))
2045
2046 (((
2047 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2048 )))
2049
2050 (((
2051
2052
2053
2054 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2055
2056
2057 )))
2058
2059 (((
2060 (((
2061 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2062 )))
2063 )))
2064
2065 (((
2066 (((
2067 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2068
2069
2070
2071 )))
2072 )))
2073
2074 (((
2075 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2076
2077
2078 )))
2079
2080 (((
2081 [[image:1653360231087-571.png||height="401" width="727"]]
2082
2083
2084 )))
2085
2086 (((
2087 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2088 )))
2089
2090
2091
2092 (((
2093 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2094
2095
2096 )))
2097
2098 (((
2099 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2100 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2101 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2102 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2103 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2104 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2105 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2106 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2107 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2108 )))
2109
2110
2111 (((
2112 As shown in below:
2113 )))
2114
2115 [[image:1653360498588-932.png||height="485" width="726"]]
2116
2117
2118
2119 == 5.4 Can I see counting event in Serial? ==
2120
2121
2122 (((
2123 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2124
2125
2126
2127 == 5.5 Can i use point to point communication for LT-22222-L? ==
2128
2129
2130 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2131
2132
2133
2134 )))
2135
2136 (((
2137 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2138
2139
2140 If the device is not shut down, but directly powered off.
2141
2142 It will default that this is a power-off state.
2143
2144 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2145
2146 After restart, the status before power failure will be read from flash.
2147
2148
2149
2150 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2151
2152
2153 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2154
2155
2156 [[image:image-20221006170630-1.png||height="610" width="945"]]
2157
2158
2159
2160 = 6. Trouble Shooting =
2161
2162
2163 )))
2164
2165 (((
2166 (((
2167 == 6.1 Downlink doesn't work, how to solve it? ==
2168
2169
2170 )))
2171 )))
2172
2173 (((
2174 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2175 )))
2176
2177 (((
2178
2179
2180
2181 == 6.2 Have trouble to upload image. ==
2182
2183
2184 )))
2185
2186 (((
2187 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2188 )))
2189
2190 (((
2191
2192
2193
2194 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2195
2196
2197 )))
2198
2199 (((
2200 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2201 )))
2202
2203
2204
2205 = 7. Order Info =
2206
2207
2208 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2209
2210 (% style="color:#4f81bd" %)**XXX:**
2211
2212 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2213 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2214 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2215 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2216 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2217 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2218 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2219 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2220 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2221
2222
2223 = 8. Packing Info =
2224
2225
2226 **Package Includes**:
2227
2228 * LT-22222-L I/O Controller x 1
2229 * Stick Antenna for LoRa RF part x 1
2230 * Bracket for controller x1
2231 * Program cable x 1
2232
2233 **Dimension and weight**:
2234
2235 * Device Size: 13.5 x 7 x 3 cm
2236 * Device Weight: 105g
2237 * Package Size / pcs : 14.5 x 8 x 5 cm
2238 * Weight / pcs : 170g
2239
2240
2241 = 9. Support =
2242
2243
2244 * (((
2245 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2246 )))
2247 * (((
2248 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2249
2250
2251
2252
2253 )))
2254
2255 = 10. Reference​​​​​ =
2256
2257
2258 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2259 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2260 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0