Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072CZT6 MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189
190
191 == 1.4  Applications ==
192
193
194 * Smart Buildings & Home Automation
195 * Logistics and Supply Chain Management
196 * Smart Metering
197 * Smart Agriculture
198 * Smart Cities
199 * Smart Factory
200
201
202
203 == 1.5 Hardware Variants ==
204
205
206 (% border="1" style="background-color:#f7faff; width:500px" %)
207 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
208 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
209 * 2 x Digital Input (Bi-direction)
210 * 2 x Digital Output
211 * 2 x Relay Output (5A@250VAC / 30VDC)
212 * 2 x 0~~20mA Analog Input (res:0.01mA)
213 * 2 x 0~~30V Analog Input (res:0.01v)
214 * 1 x Counting Port
215 )))
216
217
218
219 = 2. Power ON Device =
220
221
222 (((
223 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
224 )))
225
226 (((
227 PWR will on when device is properly powered.
228
229
230 )))
231
232 [[image:1653297104069-180.png]]
233
234
235
236 = 3. Operation Mode =
237
238
239 == 3.1 How it works? ==
240
241
242 (((
243 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
244 )))
245
246 (((
247 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
248 )))
249
250
251
252 == 3.2 Example to join LoRaWAN network ==
253
254
255 (((
256 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
257
258
259 )))
260
261 [[image:image-20220523172350-1.png||height="266" width="864"]]
262
263
264 (((
265 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
266
267
268 )))
269
270 (((
271 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
272 )))
273
274 (((
275 Each LT is shipped with a sticker with the default device EUI as below:
276 )))
277
278 [[image:1653297924498-393.png]]
279
280
281 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
282
283 **Add APP EUI in the application.**
284
285 [[image:1653297955910-247.png||height="321" width="716"]]
286
287
288 **Add APP KEY and DEV EUI**
289
290 [[image:1653298023685-319.png]]
291
292
293
294 (((
295 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
296
297
298 )))
299
300 [[image:1653298044601-602.png||height="405" width="709"]]
301
302
303
304 == 3.3 Uplink Payload ==
305
306
307 There are five working modes + one interrupt mode on LT for different type application:
308
309 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
310 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
311 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
312 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
313 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
314 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
315
316
317
318 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
319
320
321 (((
322 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
323 )))
324
325 [[image:image-20220523174024-3.png]]
326
327 (((
328
329
330 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
331 )))
332
333 [[image:image-20220523174254-4.png]]
334
335 * RO is for relay. ROx=1 : close,ROx=0 always open.
336 * DI is for digital input. DIx=1: high or float, DIx=0: low.
337 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338
339 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340
341 For example if payload is: [[image:image-20220523175847-2.png]]
342
343
344 **The value for the interface is:  **
345
346 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347
348 AVI2 channel voltage is 0x04AC/1000=1.196V
349
350 ACI1 channel current is 0x1310/1000=4.880mA
351
352 ACI2 channel current is 0x1300/1000=4.864mA
353
354 The last byte 0xAA= 10101010(B) means
355
356 * [1] RO1 relay channel is close and the RO1 LED is ON.
357 * [0] RO2 relay channel is open and RO2 LED is OFF;
358
359 **LT22222-L:**
360
361 * [1] DI2 channel is high input and DI2 LED is ON;
362 * [0] DI1 channel is low input;
363
364 * [0] DO3 channel output state
365 ** DO3 is float in case no load between DO3 and V+.;
366 ** DO3 is high in case there is load between DO3 and V+.
367 ** DO3 LED is off in both case
368 * [1] DO2 channel output is low and DO2 LED is ON.
369 * [0] DO1 channel output state
370 ** DO1 is float in case no load between DO1 and V+.;
371 ** DO1 is high in case there is load between DO1 and V+.
372 ** DO1 LED is off in both case
373
374
375
376 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377
378
379 (((
380 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
381 )))
382
383 (((
384 Total : 11 bytes payload
385 )))
386
387 [[image:image-20220523180452-3.png]]
388
389
390 (((
391 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
392 )))
393
394 [[image:image-20220523180506-4.png]]
395
396 * RO is for relay. ROx=1 : close,ROx=0 always open.
397 * FIRST: Indicate this is the first packet after join network.
398 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399
400 (((
401 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 )))
403
404 (((
405
406
407 **To use counting mode, please run:**
408 )))
409
410 (% class="box infomessage" %)
411 (((
412 (((
413 (((
414 **AT+MOD=2**
415 )))
416
417 (((
418 **ATZ**
419 )))
420 )))
421 )))
422
423 (((
424
425
426 (% style="color:#4f81bd" %)**AT Commands for counting:**
427
428
429 )))
430
431 (((
432 **For LT22222-L:**
433
434
435 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
438
439 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
440
441 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
442
443 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
444
445 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
446 )))
447
448
449
450 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
451
452
453 **LT22222-L**: This mode the DI1 is used as a counting pin.
454
455 [[image:image-20220523181246-5.png]]
456
457 (((
458
459
460 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
461 )))
462
463 [[image:image-20220523181301-6.png]]
464
465 * RO is for relay. ROx=1 : close,ROx=0 always open.
466 * FIRST: Indicate this is the first packet after join network.
467 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
468
469 (((
470 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
471 )))
472
473
474 (((
475 **To use counting mode, please run:**
476 )))
477
478 (% class="box infomessage" %)
479 (((
480 (((
481 (((
482 **AT+MOD=3**
483 )))
484
485 (((
486 **ATZ**
487 )))
488 )))
489 )))
490
491 (((
492 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
493 )))
494
495
496
497 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
498
499
500 (((
501 **LT22222-L**: This mode the DI1 is used as a counting pin.
502 )))
503
504 (((
505 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
506 )))
507
508 [[image:image-20220523181903-8.png]]
509
510
511 (((
512 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
513 )))
514
515 [[image:image-20220523181727-7.png]]
516
517 * RO is for relay. ROx=1 : close,ROx=0 always open.
518 * FIRST: Indicate this is the first packet after join network.
519 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
520
521 (((
522 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
523 )))
524
525 (((
526
527
528 **To use this mode, please run:**
529 )))
530
531 (% class="box infomessage" %)
532 (((
533 (((
534 (((
535 **AT+MOD=4**
536 )))
537
538 (((
539 **ATZ**
540 )))
541 )))
542 )))
543
544
545 (((
546 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
547 )))
548
549 (((
550
551
552 **Plus below command for AVI1 Counting:**
553
554
555 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
556
557 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
560
561 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
562 )))
563
564
565
566 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
567
568
569 **LT22222-L**: This mode the DI1 is used as a counting pin.
570
571 [[image:image-20220523182334-9.png]]
572
573 (((
574
575
576 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
577 )))
578
579 * RO is for relay. ROx=1 : close,ROx=0 always open.
580 * FIRST: Indicate this is the first packet after join network.
581 * (((
582 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
583 )))
584
585 (((
586 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
587 )))
588
589 (((
590
591
592 **To use this mode, please run:**
593 )))
594
595 (% class="box infomessage" %)
596 (((
597 (((
598 (((
599 **AT+MOD=5**
600 )))
601
602 (((
603 **ATZ**
604 )))
605 )))
606 )))
607
608 (((
609 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
610 )))
611
612
613
614 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
615
616
617 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
618
619 For example, if user has configured below commands:
620
621 * **AT+MOD=1 ** **~-~->**  The normal working mode
622 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
623
624 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
625
626 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
627 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
628
629 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
630
631
632 (% style="color:#4f81bd" %)**Trigger base on voltage**:
633
634 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
635
636
637 **Example:**
638
639 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
640
641 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
642
643
644
645 (% style="color:#4f81bd" %)**Trigger base on current**:
646
647 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
648
649
650 **Example:**
651
652 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
653
654
655
656 (% style="color:#4f81bd" %)**Trigger base on DI status**:
657
658 DI status trigger Flag.
659
660 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
661
662
663 **Example:**
664
665 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
666
667
668
669 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
670
671 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
672
673 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
674
675 AA: Code for this downlink Command:
676
677 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
678
679 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
680
681 yy2 yy2: AC1 or AV1 high limit.
682
683 yy3 yy3: AC2 or AV2 low limit.
684
685 Yy4 yy4: AC2 or AV2 high limit.
686
687
688 **Example1**: AA 00 13 88 00 00 00 00 00 00
689
690 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
691
692
693 **Example2**: AA 02 01 00
694
695 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
696
697
698
699 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
700
701 MOD6 Payload : total 11 bytes payload
702
703 [[image:image-20220524085923-1.png]]
704
705
706 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
707
708 [[image:image-20220524090106-2.png]]
709
710 * Each bits shows if the corresponding trigger has been configured.
711
712 **Example:**
713
714 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
715
716
717
718 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
719
720 [[image:image-20220524090249-3.png]]
721
722 * Each bits shows which status has been trigger on this uplink.
723
724 **Example:**
725
726 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
727
728
729
730 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
731
732 [[image:image-20220524090456-4.png]]
733
734 * Each bits shows which status has been trigger on this uplink.
735
736 **Example:**
737
738 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
739
740 00000101: Means both DI1 and DI2 trigger are enabled.
741
742
743
744 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
745
746 Downlink command to poll MOD6 status:
747
748 **AB 06**
749
750 When device got this command, it will send the MOD6 payload.
751
752
753
754 === 3.3.7 Payload Decoder ===
755
756 (((
757
758
759 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
760 )))
761
762
763
764 == 3.4 ​Configure LT via AT or Downlink ==
765
766
767 (((
768 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
769 )))
770
771 (((
772 (((
773 There are two kinds of Commands:
774 )))
775 )))
776
777 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
778
779 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
780
781
782
783
784 === 3.4.1 Common Commands ===
785
786
787 (((
788 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
789 )))
790
791
792
793 === 3.4.2 Sensor related commands ===
794
795
796 ==== 3.4.2.1 Set Transmit Interval ====
797
798
799 Set device uplink interval.
800
801 * (% style="color:#037691" %)**AT Command:**
802
803 **AT+TDC=N **
804
805
806 **Example: **AT+TDC=30000. Means set interval to 30 seconds
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
810
811 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
812
813
814
815
816 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
817
818
819 Set work mode.
820
821 * (% style="color:#037691" %)**AT Command:**
822
823 **AT+MOD=N  **
824
825
826 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
827
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
830
831 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
832
833
834
835
836 ==== 3.4.2.3 Poll an uplink ====
837
838
839 * (% style="color:#037691" %)**AT Command:**
840
841 There is no AT Command to poll uplink
842
843
844 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
845
846 **0x08 FF     **~/~/ Poll an uplink
847
848
849 **Example**: 0x08FF, ask device to send an Uplink
850
851
852
853
854 ==== 3.4.2.4 Enable Trigger Mode ====
855
856
857 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
858
859 * (% style="color:#037691" %)**AT Command:**
860
861 **AT+ADDMOD6=1 or 0**
862
863 1: Enable Trigger Mode
864
865 0: Disable Trigger Mode
866
867
868 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
869
870 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
871
872
873
874
875 ==== 3.4.2.5 Poll trigger settings ====
876
877
878 Poll trigger settings,
879
880 * (% style="color:#037691" %)**AT Command:**
881
882 There is no AT Command for this feature.
883
884
885 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
886
887 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
888
889
890
891
892 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
893
894
895 Enable Disable DI1/DI2/DI2 as trigger,
896
897 * (% style="color:#037691" %)**AT Command:**
898
899 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
900
901
902 **Example:**
903
904 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
907
908 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
909
910
911
912
913 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
914
915
916 Set DI1 or DI3(for LT-33222-L) trigger.
917
918 * (% style="color:#037691" %)**AT Command:**
919
920 **AT+TRIG1=a,b**
921
922 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
923
924 b : delay timing.
925
926
927 **Example:**
928
929 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
930
931
932 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
933 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
934
935 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
936
937
938 Set DI2 trigger.
939
940 * (% style="color:#037691" %)**AT Command:**
941
942 **AT+TRIG2=a,b**
943
944
945 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
946
947 b : delay timing.
948
949
950 **Example:**
951
952 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
953
954
955 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
956
957 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
958
959
960
961
962 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
963
964
965 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
966
967 * (% style="color:#037691" %)**AT Command**
968
969 **AT+ACLIM**
970
971
972 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
973
974 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
975
976
977
978
979 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
980
981
982 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
983
984 * (% style="color:#037691" %)**AT Command**
985
986 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
987
988
989 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
990
991 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
992
993
994
995
996 ==== 3.4.2.11 Trigger – Set minimum interval ====
997
998
999 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1000
1001 * (% style="color:#037691" %)**AT Command**
1002
1003 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
1004
1005
1006 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1007
1008 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1009
1010 (((
1011
1012
1013 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1014 )))
1015
1016
1017
1018
1019 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1020
1021
1022 * (% style="color:#037691" %)**AT Command**
1023
1024 There is no AT Command to control Digital Output
1025
1026
1027 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1028 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
1029
1030 (((
1031 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1032 )))
1033
1034 (((
1035 01: Low,  00: High ,  11: No action
1036 )))
1037
1038 [[image:image-20220524092754-5.png]]
1039
1040 (((
1041 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1042 )))
1043
1044 (((
1045 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1046 )))
1047
1048
1049
1050
1051 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1052
1053
1054 * (% style="color:#037691" %)**AT Command**
1055
1056 There is no AT Command to control Digital Output
1057
1058
1059 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1060
1061 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1062
1063
1064 This is to control the digital output time of DO pin. Include four bytes:
1065
1066 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1067
1068 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1069
1070 01: DO pins will change back to original state after timeout.
1071
1072 00: DO pins will change to an inverter state after timeout 
1073
1074
1075 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1076
1077 [[image:image-20220524093238-6.png]]
1078
1079
1080 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1081
1082 [[image:image-20220524093328-7.png]]
1083
1084
1085 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1086
1087 [[image:image-20220524093351-8.png]]
1088
1089
1090 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1091
1092 Latching time. Unit: ms
1093
1094 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1095
1096
1097 **Example payload:**
1098
1099 **~1. A9 01 01 01 01 07 D0**
1100
1101 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1102
1103 **2. A9 01 00 01 11 07 D0**
1104
1105 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1106
1107 **3. A9 00 00 00 00 07 D0**
1108
1109 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1110
1111 **4. A9 00 11 01 00 07 D0**
1112
1113 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1114
1115
1116
1117
1118 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1119
1120
1121 * (% style="color:#037691" %)**AT Command:**
1122
1123 There is no AT Command to control Relay Output
1124
1125
1126 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1127
1128 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1129
1130
1131 (((
1132 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1133 )))
1134
1135 (((
1136 01: Close ,  00: Open , 11: No action
1137 )))
1138
1139 (((
1140 [[image:image-20220524093724-9.png]]
1141 )))
1142
1143 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1144
1145
1146
1147
1148 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1149
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 There is no AT Command to control Relay Output
1154
1155
1156 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1157
1158 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1159
1160
1161 This is to control the relay output time of relay. Include four bytes:
1162
1163 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1164
1165 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1166
1167 01: Relays will change back to original state after timeout.
1168
1169 00: Relays will change to an inverter state after timeout
1170
1171
1172 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1173
1174 [[image:image-20221008095908-1.png||height="364" width="564"]]
1175
1176
1177 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1178
1179 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1180
1181
1182 **Example payload:**
1183
1184 **~1. 05 01 11 07 D**
1185
1186 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1187
1188 **2. 05 01 10 07 D0**
1189
1190 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1191
1192 **3. 05 00 01 07 D0**
1193
1194 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1195
1196 **4. 05 00 00 07 D0**
1197
1198 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1199
1200
1201
1202 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1203
1204
1205 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1206
1207 * (% style="color:#037691" %)**AT Command:**
1208
1209 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1210
1211
1212 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1213
1214 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1215
1216
1217
1218
1219 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1220
1221
1222 * (% style="color:#037691" %)**AT Command:**
1223
1224 **AT+SETCNT=aa,(bb cc dd ee) **
1225
1226 aa: 1: Set count1,
1227
1228 2: Set count2,
1229
1230 3: Set AV1 count
1231
1232 Bb cc dd ee: number to be set
1233
1234
1235 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1236
1237 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1238
1239
1240
1241
1242 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1243
1244
1245 Clear counting for counting mode
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 **AT+CLRCOUNT ** ~/~/ clear all counting
1250
1251
1252 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1253
1254 **0x A6 01    ** ~/~/ clear all counting
1255
1256
1257
1258
1259 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1260
1261
1262 * (% style="color:#037691" %)**AT Command:**
1263
1264 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1265
1266
1267 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1268
1269 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1270
1271 (((
1272 range: aa bb cc:0 to 16777215,  (unit:second)
1273
1274
1275
1276
1277 )))
1278
1279 ==== 3.4.2.20 Reset save DR DO state ====
1280
1281
1282 * (% style="color:#037691" %)**AT Command:**
1283
1284 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1285
1286 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1287
1288
1289 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1290
1291 **0x AD aa      **~/~/ same as AT+RODORET =aa
1292
1293 (((
1294
1295
1296
1297
1298 ==== 3.4.2.21 Encrypted payload ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1304
1305 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1306
1307
1308
1309
1310 ==== 3.4.2.22 Get sensor value ====
1311
1312
1313 * (% style="color:#037691" %)**AT Command:**
1314
1315 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1316
1317 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1318
1319
1320
1321
1322 ==== 3.4.2.23 Resets the downlink packet count ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1328
1329 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1330
1331
1332
1333
1334 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1335
1336
1337 * (% style="color:#037691" %)**AT Command:**
1338
1339 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1340
1341 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1342
1343
1344 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1345
1346 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1347
1348
1349
1350
1351 ==== 3.4.2.25 Copy downlink to uplink ====
1352
1353
1354 * (% style="color:#037691" %)**AT Command**(%%)**:**
1355
1356 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1357
1358 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1359
1360
1361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1362
1363 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1364
1365
1366
1367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1368
1369 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1370
1371
1372
1373 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1374
1375
1376 * (((
1377 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1378
1379 **26 01  ** ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1380
1381
1382 )))
1383
1384 **Example:**
1385
1386 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1387
1388
1389
1390 )))
1391
1392 == 3.5 Integrate with Mydevice ==
1393
1394
1395 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1396
1397 (((
1398 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1399 )))
1400
1401 (((
1402 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1403
1404
1405 )))
1406
1407 [[image:image-20220719105525-1.png||height="377" width="677"]]
1408
1409
1410
1411 [[image:image-20220719110247-2.png||height="388" width="683"]]
1412
1413
1414 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1415
1416 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1417
1418 Search under The things network
1419
1420 [[image:1653356838789-523.png||height="337" width="740"]]
1421
1422
1423
1424 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1425
1426 [[image:image-20220524094909-1.png||height="335" width="729"]]
1427
1428
1429 [[image:image-20220524094909-2.png||height="337" width="729"]]
1430
1431
1432 [[image:image-20220524094909-3.png||height="338" width="727"]]
1433
1434
1435 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1436
1437
1438 [[image:image-20220524094909-5.png||height="341" width="734"]]
1439
1440
1441
1442 == 3.6 Interface Detail ==
1443
1444
1445 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1446
1447
1448 Support NPN Type sensor
1449
1450 [[image:1653356991268-289.png]]
1451
1452
1453
1454 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1455
1456
1457 (((
1458 The DI port of LT-22222-L can support NPN or PNP output sensor.
1459 )))
1460
1461 (((
1462 (((
1463 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1464
1465
1466 )))
1467 )))
1468
1469 [[image:1653357170703-587.png]]
1470
1471 (((
1472 (((
1473 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1474 )))
1475 )))
1476
1477 (((
1478
1479 )))
1480
1481 (((
1482 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1483 )))
1484
1485 (((
1486 This type of sensor will output a low signal GND when active.
1487 )))
1488
1489 * (((
1490 Connect sensor's output to DI1-
1491 )))
1492 * (((
1493 Connect sensor's VCC to DI1+.
1494 )))
1495
1496 (((
1497 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1498 )))
1499
1500 (((
1501 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1502 )))
1503
1504 (((
1505 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1506 )))
1507
1508 (((
1509
1510
1511
1512 )))
1513
1514 (((
1515 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1516 )))
1517
1518 (((
1519 This type of sensor will output a high signal (example 24v) when active.
1520 )))
1521
1522 * (((
1523 Connect sensor's output to DI1+
1524 )))
1525 * (((
1526 Connect sensor's GND DI1-.
1527 )))
1528
1529 (((
1530 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1531 )))
1532
1533 (((
1534 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1535 )))
1536
1537 (((
1538 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1539 )))
1540
1541 (((
1542
1543
1544
1545 )))
1546
1547 (((
1548 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1549 )))
1550
1551 (((
1552 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1553 )))
1554
1555 * (((
1556 Connect sensor's output to DI1+ with a serial 50K resistor
1557 )))
1558 * (((
1559 Connect sensor's GND DI1-.
1560 )))
1561
1562 (((
1563 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1564 )))
1565
1566 (((
1567 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1568 )))
1569
1570 (((
1571 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1572 )))
1573
1574
1575
1576 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1577
1578
1579 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1580
1581 [[image:1653357531600-905.png]]
1582
1583
1584
1585 === 3.6.4 Analog Input Interface ===
1586
1587
1588 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1589
1590
1591 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1592
1593 [[image:1653357592296-182.png]]
1594
1595 Example to connect a 4~~20mA sensor
1596
1597 We take the wind speed sensor as an example for reference only.
1598
1599
1600 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1601
1602 **Red:  12~~24v**
1603
1604 **Yellow:  4~~20mA**
1605
1606 **Black:  GND**
1607
1608
1609 **Connection diagram:**
1610
1611 [[image:1653357640609-758.png]]
1612
1613 [[image:1653357648330-671.png||height="155" width="733"]]
1614
1615
1616
1617 === 3.6.5 Relay Output ===
1618
1619
1620 (((
1621 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 )))
1623
1624 [[image:image-20220524100215-9.png]]
1625
1626
1627 [[image:image-20220524100215-10.png||height="382" width="723"]]
1628
1629
1630
1631 == 3.7 LEDs Indicators ==
1632
1633
1634 [[image:image-20220524100748-11.png]]
1635
1636
1637
1638 = 4. Use AT Command =
1639
1640
1641 == 4.1 Access AT Command ==
1642
1643
1644 (((
1645 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1646 )))
1647
1648 (((
1649
1650 )))
1651
1652 [[image:1653358238933-385.png]]
1653
1654
1655 (((
1656 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1657 )))
1658
1659 [[image:1653358355238-883.png]]
1660
1661
1662 (((
1663 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1664 )))
1665
1666 (((
1667 AT+<CMD>?        : Help on <CMD>
1668 )))
1669
1670 (((
1671 AT+<CMD>         : Run <CMD>
1672 )))
1673
1674 (((
1675 AT+<CMD>=<value> : Set the value
1676 )))
1677
1678 (((
1679 AT+<CMD>=?       :  Get the value
1680 )))
1681
1682 (((
1683 ATZ: Trig a reset of the MCU
1684 )))
1685
1686 (((
1687 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1688 )))
1689
1690 (((
1691 AT+DEUI: Get or Set the Device EUI
1692 )))
1693
1694 (((
1695 AT+DADDR: Get or Set the Device Address
1696 )))
1697
1698 (((
1699 AT+APPKEY: Get or Set the Application Key
1700 )))
1701
1702 (((
1703 AT+NWKSKEY: Get or Set the Network Session Key
1704 )))
1705
1706 (((
1707 AT+APPSKEY:  Get or Set the Application Session Key
1708 )))
1709
1710 (((
1711 AT+APPEUI:  Get or Set the Application EUI
1712 )))
1713
1714 (((
1715 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1716 )))
1717
1718 (((
1719 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1720 )))
1721
1722 (((
1723 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1724 )))
1725
1726 (((
1727 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1728 )))
1729
1730 (((
1731 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1732 )))
1733
1734 (((
1735 AT+RX2FQ: Get or Set the Rx2 window frequency
1736 )))
1737
1738 (((
1739 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1740 )))
1741
1742 (((
1743 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1744 )))
1745
1746 (((
1747 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1748 )))
1749
1750 (((
1751 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1752 )))
1753
1754 (((
1755 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1756 )))
1757
1758 (((
1759 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1760 )))
1761
1762 (((
1763 AT+NWKID: Get or Set the Network ID
1764 )))
1765
1766 (((
1767 AT+FCU: Get or Set the Frame Counter Uplink
1768 )))
1769
1770 (((
1771 AT+FCD: Get or Set the Frame Counter Downlink
1772 )))
1773
1774 (((
1775 AT+CLASS: Get or Set the Device Class
1776 )))
1777
1778 (((
1779 AT+JOIN: Join network
1780 )))
1781
1782 (((
1783 AT+NJS: Get OTAA Join Status
1784 )))
1785
1786 (((
1787 AT+SENDB: Send hexadecimal data along with the application port
1788 )))
1789
1790 (((
1791 AT+SEND: Send text data along with the application port
1792 )))
1793
1794 (((
1795 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1796 )))
1797
1798 (((
1799 AT+RECV: Print last received data in raw format
1800 )))
1801
1802 (((
1803 AT+VER:  Get current image version and Frequency Band
1804 )))
1805
1806 (((
1807 AT+CFM: Get or Set the confirmation mode (0-1)
1808 )))
1809
1810 (((
1811 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1812 )))
1813
1814 (((
1815 AT+SNR: Get the SNR of the last received packet
1816 )))
1817
1818 (((
1819 AT+RSSI: Get the RSSI of the last received packet
1820 )))
1821
1822 (((
1823 AT+TDC: Get or set the application data transmission interval in ms
1824 )))
1825
1826 (((
1827 AT+PORT: Get or set the application port
1828 )))
1829
1830 (((
1831 AT+DISAT: Disable AT commands
1832 )))
1833
1834 (((
1835 AT+PWORD: Set password, max 9 digits
1836 )))
1837
1838 (((
1839 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1840 )))
1841
1842 (((
1843 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1844 )))
1845
1846 (((
1847 AT+CFG: Print all settings
1848 )))
1849
1850
1851
1852 == 4.2 Common AT Command Sequence ==
1853
1854
1855 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1856
1857 (((
1858
1859
1860 (((
1861 (% style="color:blue" %)**If device has not joined network yet:**
1862 )))
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)**123456**
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)**AT+FDR**
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)**123456**
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**ATZ**
1883 )))
1884
1885
1886 (((
1887 (% style="color:blue" %)**If device already joined network:**
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)**ATZ**
1896 )))
1897
1898
1899
1900 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1901
1902 (((
1903
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1907 )))
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1936 )))
1937
1938 (((
1939 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1956
1957
1958 )))
1959
1960 (((
1961 (% style="color:red" %)**Note:**
1962 )))
1963
1964 (((
1965 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1966
1967 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1968
1969 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1970 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1971
1972 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1973
1974
1975 )))
1976
1977 (((
1978 [[image:1653359097980-169.png||height="188" width="729"]]
1979 )))
1980
1981 (((
1982
1983 )))
1984
1985
1986 === 4.2.3 Change to Class A ===
1987
1988
1989 (((
1990 (% style="color:blue" %)If sensor JOINED:
1991
1992 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1993 ATZ**
1994 )))
1995
1996
1997
1998 = 5. FAQ =
1999
2000
2001 == 5.1 How to upgrade the image? ==
2002
2003
2004 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2005
2006 * Support new features
2007 * For bug fix
2008 * Change LoRaWAN bands.
2009
2010 Below shows the hardware connection for how to upload an image to the LT:
2011
2012 [[image:1653359603330-121.png]]
2013
2014
2015 (((
2016 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2017 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2018 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2019
2020
2021 (((
2022 (% style="color:blue" %)**For LT-22222-L**(%%):
2023 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2024 )))
2025
2026
2027 )))
2028
2029 [[image:image-20220524103407-12.png]]
2030
2031 [[image:image-20220524103429-13.png]]
2032
2033 [[image:image-20220524104033-15.png]]
2034
2035
2036 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2037
2038
2039 [[image:1653360054704-518.png||height="186" width="745"]]
2040
2041
2042 (((
2043 (((
2044
2045
2046 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2047
2048
2049 )))
2050 )))
2051
2052 (((
2053 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2054 )))
2055
2056 (((
2057
2058
2059
2060 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2061
2062
2063 )))
2064
2065 (((
2066 (((
2067 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2068 )))
2069 )))
2070
2071 (((
2072 (((
2073 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2074
2075
2076
2077 )))
2078 )))
2079
2080 (((
2081 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2082
2083
2084 )))
2085
2086 (((
2087 [[image:1653360231087-571.png||height="401" width="727"]]
2088
2089
2090 )))
2091
2092 (((
2093 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2094 )))
2095
2096
2097
2098 (((
2099 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2100
2101
2102 )))
2103
2104 (((
2105 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2106 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2107 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2108 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2109 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2110 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2111 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2112 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2113 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2114 )))
2115
2116
2117 (((
2118 As shown in below:
2119 )))
2120
2121 [[image:1653360498588-932.png||height="485" width="726"]]
2122
2123
2124
2125 == 5.4 Can I see counting event in Serial? ==
2126
2127
2128 (((
2129 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2130
2131
2132
2133 == 5.5 Can i use point to point communication for LT-22222-L? ==
2134
2135
2136 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2137
2138
2139
2140 )))
2141
2142 (((
2143 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2144
2145
2146 If the device is not shut down, but directly powered off.
2147
2148 It will default that this is a power-off state.
2149
2150 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2151
2152 After restart, the status before power failure will be read from flash.
2153
2154
2155
2156 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2157
2158
2159 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2160
2161
2162 [[image:image-20221006170630-1.png||height="610" width="945"]]
2163
2164
2165
2166 = 6. Trouble Shooting =
2167
2168
2169 )))
2170
2171 (((
2172 (((
2173 == 6.1 Downlink doesn't work, how to solve it? ==
2174
2175
2176 )))
2177 )))
2178
2179 (((
2180 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2181 )))
2182
2183 (((
2184
2185
2186
2187 == 6.2 Have trouble to upload image. ==
2188
2189
2190 )))
2191
2192 (((
2193 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2194 )))
2195
2196 (((
2197
2198
2199
2200 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2201
2202
2203 )))
2204
2205 (((
2206 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2207 )))
2208
2209
2210
2211 = 7. Order Info =
2212
2213
2214 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2215
2216 (% style="color:#4f81bd" %)**XXX:**
2217
2218 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2219 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2220 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2221 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2222 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2223 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2224 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2225 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2226 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2227
2228
2229
2230 = 8. Packing Info =
2231
2232
2233 **Package Includes**:
2234
2235 * LT-22222-L I/O Controller x 1
2236 * Stick Antenna for LoRa RF part x 1
2237 * Bracket for controller x1
2238 * Program cable x 1
2239
2240 **Dimension and weight**:
2241
2242 * Device Size: 13.5 x 7 x 3 cm
2243 * Device Weight: 105g
2244 * Package Size / pcs : 14.5 x 8 x 5 cm
2245 * Weight / pcs : 170g
2246
2247
2248
2249 = 9. Support =
2250
2251
2252 * (((
2253 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2254 )))
2255 * (((
2256 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2257
2258
2259
2260
2261 )))
2262
2263 = 10. Reference​​​​​ =
2264
2265
2266 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2267 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2268 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0