Version 101.2 by Xiaoling on 2022/10/13 16:38

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45
46
47 )))
48
49 (((
50 [[image:1653295757274-912.png]]
51
52
53 )))
54
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072CZT6 MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173
174 )))
175
176 == 1.3 Features ==
177
178
179 * LoRaWAN Class A & Class C protocol
180 * Optional Customized LoRa Protocol
181 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
182 * AT Commands to change parameters
183 * Remote configure parameters via LoRa Downlink
184 * Firmware upgradable via program port
185 * Counting
186
187
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199
200
201 == 1.5 Hardware Variants ==
202
203
204 (% border="1" style="background-color:#f7faff; width:500px" %)
205 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
206 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
207 * 2 x Digital Input (Bi-direction)
208 * 2 x Digital Output
209 * 2 x Relay Output (5A@250VAC / 30VDC)
210 * 2 x 0~~20mA Analog Input (res:0.01mA)
211 * 2 x 0~~30V Analog Input (res:0.01v)
212 * 1 x Counting Port
213 )))
214
215
216
217 = 2. Power ON Device =
218
219
220 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
221
222 (((
223 PWR will on when device is properly powered.
224
225
226 )))
227
228 [[image:1653297104069-180.png]]
229
230
231
232 = 3. Operation Mode =
233
234
235 == 3.1 How it works? ==
236
237
238 (((
239 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
240 )))
241
242 (((
243 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
244 )))
245
246
247
248 == 3.2 Example to join LoRaWAN network ==
249
250
251 (((
252 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
253
254
255 )))
256
257 [[image:image-20220523172350-1.png||height="266" width="864"]]
258
259
260 (((
261 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
262
263
264 )))
265
266 (((
267 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
268 )))
269
270 (((
271 Each LT is shipped with a sticker with the default device EUI as below:
272 )))
273
274 [[image:1653297924498-393.png]]
275
276
277 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
278
279 Add APP EUI in the application.
280
281 [[image:1653297955910-247.png||height="321" width="716"]]
282
283
284 Add APP KEY and DEV EUI
285
286 [[image:1653298023685-319.png]]
287
288
289
290 (((
291 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300
301 There are five working modes + one interrupt mode on LT for different type application:
302
303 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
306 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
307 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
308 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
309
310
311
312 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
313
314
315 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
316
317 [[image:image-20220523174024-3.png]]
318
319 (((
320
321
322 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
323 )))
324
325 [[image:image-20220523174254-4.png]]
326
327 * RO is for relay. ROx=1 : close,ROx=0 always open.
328 * DI is for digital input. DIx=1: high or float, DIx=0: low.
329 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
330
331 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
332
333 For example if payload is: [[image:image-20220523175847-2.png]]
334
335
336 **The value for the interface is:  **
337
338 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
339
340 AVI2 channel voltage is 0x04AC/1000=1.196V
341
342 ACI1 channel current is 0x1310/1000=4.880mA
343
344 ACI2 channel current is 0x1300/1000=4.864mA
345
346 The last byte 0xAA= 10101010(B) means
347
348 * [1] RO1 relay channel is close and the RO1 LED is ON.
349 * [0] RO2 relay channel is open and RO2 LED is OFF;
350
351
352
353 **LT22222-L:**
354
355 * [1] DI2 channel is high input and DI2 LED is ON;
356 * [0] DI1 channel is low input;
357
358 * [0] DO3 channel output state
359 ** DO3 is float in case no load between DO3 and V+.;
360 ** DO3 is high in case there is load between DO3 and V+.
361 ** DO3 LED is off in both case
362 * [1] DO2 channel output is low and DO2 LED is ON.
363 * [0] DO1 channel output state
364 ** DO1 is float in case no load between DO1 and V+.;
365 ** DO1 is high in case there is load between DO1 and V+.
366 ** DO1 LED is off in both case
367
368
369 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
370
371
372 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
373
374 (((
375 Total : 11 bytes payload
376 )))
377
378 [[image:image-20220523180452-3.png]]
379
380
381 (((
382 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
383 )))
384
385 [[image:image-20220523180506-4.png]]
386
387 * RO is for relay. ROx=1 : close,ROx=0 always open.
388 * FIRST: Indicate this is the first packet after join network.
389 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
390
391 (((
392 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
393 )))
394
395 (((
396
397
398 **To use counting mode, please run:**
399 )))
400
401 (% class="box infomessage" %)
402 (((
403 (((
404 **AT+MOD=2**
405
406 **ATZ**
407 )))
408 )))
409
410 (((
411
412
413 (% style="color:#4f81bd" %)**AT Commands for counting:**
414
415
416 )))
417
418 (((
419 **For LT22222-L:**
420
421
422 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
423
424 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
425
426 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
427
428 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
429
430 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
431
432 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
433 )))
434
435
436
437 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
438
439
440 **LT22222-L**: This mode the DI1 is used as a counting pin.
441
442 [[image:image-20220523181246-5.png]]
443
444 (((
445
446
447 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
448 )))
449
450 [[image:image-20220523181301-6.png]]
451
452 * RO is for relay. ROx=1 : close,ROx=0 always open.
453 * FIRST: Indicate this is the first packet after join network.
454 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
455
456 (((
457 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
458 )))
459
460
461 (((
462 **To use counting mode, please run:**
463 )))
464
465 (% class="box infomessage" %)
466 (((
467 (((
468 **AT+MOD=3**
469
470 **ATZ**
471 )))
472 )))
473
474 (((
475 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
476 )))
477
478
479
480 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
481
482
483 **LT22222-L**: This mode the DI1 is used as a counting pin.
484
485 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
486
487 [[image:image-20220523181903-8.png]]
488
489
490 (((
491 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
492 )))
493
494 [[image:image-20220523181727-7.png]]
495
496 * RO is for relay. ROx=1 : close,ROx=0 always open.
497 * FIRST: Indicate this is the first packet after join network.
498 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
499
500 (((
501 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
502 )))
503
504 (((
505
506
507 **To use this mode, please run:**
508 )))
509
510 (% class="box infomessage" %)
511 (((
512 (((
513 **AT+MOD=4**
514
515 **ATZ**
516 )))
517 )))
518
519
520
521 (((
522 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
523 )))
524
525 (((
526
527
528 **Plus below command for AVI1 Counting:**
529
530
531 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
532
533 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
534
535 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
536
537 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
538 )))
539
540
541
542 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
543
544
545 **LT22222-L**: This mode the DI1 is used as a counting pin.
546
547 [[image:image-20220523182334-9.png]]
548
549 (((
550
551
552 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
553 )))
554
555 * RO is for relay. ROx=1 : close,ROx=0 always open.
556 * FIRST: Indicate this is the first packet after join network.
557 * (((
558 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
559 )))
560
561 (((
562 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
563 )))
564
565 (((
566
567
568 **To use this mode, please run:**
569 )))
570
571 (% class="box infomessage" %)
572 (((
573 (((
574 **AT+MOD=5**
575
576 **ATZ**
577 )))
578 )))
579
580 (((
581 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
582 )))
583
584
585
586 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
587
588
589 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
590
591 For example, if user has configured below commands:
592
593 * **AT+MOD=1 ** **~-~->**  The normal working mode
594 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
595
596 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
597
598 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
599 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
600
601 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
602
603
604 (% style="color:#4f81bd" %)**Trigger base on voltage**:
605
606 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
607
608
609 **Example:**
610
611 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
612
613 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
614
615
616
617 (% style="color:#4f81bd" %)**Trigger base on current**:
618
619 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
620
621
622 **Example:**
623
624 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
625
626
627
628 (% style="color:#4f81bd" %)**Trigger base on DI status**:
629
630 DI status trigger Flag.
631
632 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
633
634
635 **Example:**
636
637 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
638
639
640
641 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
642
643 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
644
645 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
646
647 AA: Code for this downlink Command:
648
649 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
650
651 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
652
653 yy2 yy2: AC1 or AV1 high limit.
654
655 yy3 yy3: AC2 or AV2 low limit.
656
657 Yy4 yy4: AC2 or AV2 high limit.
658
659
660 **Example1**: AA 00 13 88 00 00 00 00 00 00
661
662 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
663
664
665 **Example2**: AA 02 01 00
666
667 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
668
669
670
671 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
672
673 MOD6 Payload : total 11 bytes payload
674
675 [[image:image-20220524085923-1.png]]
676
677
678 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
679
680 [[image:image-20220524090106-2.png]]
681
682 * Each bits shows if the corresponding trigger has been configured.
683
684 **Example:**
685
686 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
687
688
689
690 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
691
692 [[image:image-20220524090249-3.png]]
693
694 * Each bits shows which status has been trigger on this uplink.
695
696 **Example:**
697
698 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
699
700
701
702 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
703
704 [[image:image-20220524090456-4.png]]
705
706 * Each bits shows which status has been trigger on this uplink.
707
708 **Example:**
709
710 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
711
712 00000101: Means both DI1 and DI2 trigger are enabled.
713
714
715
716 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
717
718 Downlink command to poll MOD6 status:
719
720 **AB 06**
721
722 When device got this command, it will send the MOD6 payload.
723
724
725
726
727 === 3.3.7 Payload Decoder ===
728
729 (((
730
731
732 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
733 )))
734
735
736
737 == 3.4 ​Configure LT via AT or Downlink ==
738
739
740 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
741
742 (((
743 There are two kinds of Commands:
744 )))
745
746 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
747
748 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
749
750
751
752 === 3.4.1 Common Commands ===
753
754
755 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
756
757
758
759 === 3.4.2 Sensor related commands ===
760
761
762 ==== 3.4.2.1 Set Transmit Interval ====
763
764
765 Set device uplink interval.
766
767 * (% style="color:#037691" %)**AT Command:**
768
769 **AT+TDC=N **
770
771
772 **Example: **AT+TDC=30000. Means set interval to 30 seconds
773
774
775 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
776
777 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
778
779
780
781
782 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
783
784
785 Set work mode.
786
787 * (% style="color:#037691" %)**AT Command:**
788
789 **AT+MOD=N  **
790
791
792 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
793
794
795 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
796
797 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
798
799
800
801
802 ==== 3.4.2.3 Poll an uplink ====
803
804
805 * (% style="color:#037691" %)**AT Command:**
806
807 There is no AT Command to poll uplink
808
809
810 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
811
812 **0x08 FF     **~/~/ Poll an uplink
813
814
815 **Example**: 0x08FF, ask device to send an Uplink
816
817
818
819
820 ==== 3.4.2.4 Enable Trigger Mode ====
821
822
823 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
824
825 * (% style="color:#037691" %)**AT Command:**
826
827 **AT+ADDMOD6=1 or 0**
828
829 1: Enable Trigger Mode
830
831 0: Disable Trigger Mode
832
833
834 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
835
836 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
837
838
839
840
841 ==== 3.4.2.5 Poll trigger settings ====
842
843
844 Poll trigger settings,
845
846 * (% style="color:#037691" %)**AT Command:**
847
848 There is no AT Command for this feature.
849
850
851 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
852
853 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
854
855
856
857
858 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
859
860
861 Enable Disable DI1/DI2/DI2 as trigger,
862
863 * (% style="color:#037691" %)**AT Command:**
864
865 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
866
867
868 **Example:**
869
870 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
873
874 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
875
876
877
878
879 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
880
881
882 Set DI1 or DI3(for LT-33222-L) trigger.
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 **AT+TRIG1=a,b**
887
888 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
889
890 b : delay timing.
891
892
893 **Example:**
894
895 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
896
897
898 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
899 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
900
901
902
903 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
904
905
906 Set DI2 trigger.
907
908 * (% style="color:#037691" %)**AT Command:**
909
910 **AT+TRIG2=a,b**
911
912
913 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
914
915 b : delay timing.
916
917
918 **Example:**
919
920 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
921
922
923 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
924
925 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
926
927
928
929
930 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
931
932
933 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
934
935 * (% style="color:#037691" %)**AT Command**
936
937 **AT+ACLIM**
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
941
942 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
943
944
945
946
947 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
948
949
950 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
951
952 * (% style="color:#037691" %)**AT Command**
953
954 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
955
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
958
959 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
960
961
962
963
964 ==== 3.4.2.11 Trigger – Set minimum interval ====
965
966
967 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
968
969 * (% style="color:#037691" %)**AT Command**
970
971 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
972
973
974 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
975
976 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
977
978 (((
979
980
981 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
982 )))
983
984
985
986
987 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
988
989
990 * (% style="color:#037691" %)**AT Command**
991
992 There is no AT Command to control Digital Output
993
994
995 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
996 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
997
998 (((
999 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1000 )))
1001
1002 (((
1003 01: Low,  00: High ,  11: No action
1004 )))
1005
1006 [[image:image-20220524092754-5.png]]
1007
1008 (((
1009 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1010 )))
1011
1012 (((
1013 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1014 )))
1015
1016
1017
1018
1019 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1020
1021
1022 * (% style="color:#037691" %)**AT Command**
1023
1024 There is no AT Command to control Digital Output
1025
1026
1027 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1028
1029 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1030
1031
1032 This is to control the digital output time of DO pin. Include four bytes:
1033
1034 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1035
1036 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1037
1038 01: DO pins will change back to original state after timeout.
1039
1040 00: DO pins will change to an inverter state after timeout 
1041
1042
1043 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1044
1045 [[image:image-20220524093238-6.png]]
1046
1047
1048 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1049
1050 [[image:image-20220524093328-7.png]]
1051
1052
1053 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1054
1055 [[image:image-20220524093351-8.png]]
1056
1057
1058 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1059
1060 Latching time. Unit: ms
1061
1062 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1063
1064
1065 **Example payload:**
1066
1067 **~1. A9 01 01 01 01 07 D0**
1068
1069 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1070
1071 **2. A9 01 00 01 11 07 D0**
1072
1073 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1074
1075 **3. A9 00 00 00 00 07 D0**
1076
1077 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1078
1079 **4. A9 00 11 01 00 07 D0**
1080
1081 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1082
1083
1084
1085
1086 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1087
1088
1089 * (% style="color:#037691" %)**AT Command:**
1090
1091 There is no AT Command to control Relay Output
1092
1093
1094 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1095
1096 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1097
1098
1099 (((
1100 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1101 )))
1102
1103 (((
1104 01: Close ,  00: Open , 11: No action
1105 )))
1106
1107 (((
1108 [[image:image-20220524093724-9.png]]
1109 )))
1110
1111 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1112
1113
1114
1115
1116 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1117
1118
1119 * (% style="color:#037691" %)**AT Command:**
1120
1121 There is no AT Command to control Relay Output
1122
1123
1124 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1125
1126 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1127
1128
1129 This is to control the relay output time of relay. Include four bytes:
1130
1131 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1132
1133 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1134
1135 01: Relays will change back to original state after timeout.
1136
1137 00: Relays will change to an inverter state after timeout
1138
1139
1140 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1141
1142 [[image:image-20221008095908-1.png||height="364" width="564"]]
1143
1144
1145 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1146
1147 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1148
1149
1150 **Example payload:**
1151
1152 **~1. 05 01 11 07 D**
1153
1154 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1155
1156 **2. 05 01 10 07 D0**
1157
1158 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1159
1160 **3. 05 00 01 07 D0**
1161
1162 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1163
1164 **4. 05 00 00 07 D0**
1165
1166 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1167
1168
1169
1170 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1171
1172
1173 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1174
1175 * (% style="color:#037691" %)**AT Command:**
1176
1177 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1181
1182 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1183
1184
1185
1186
1187 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1188
1189
1190 * (% style="color:#037691" %)**AT Command:**
1191
1192 **AT+SETCNT=aa,(bb cc dd ee) **
1193
1194 aa: 1: Set count1,
1195
1196 2: Set count2,
1197
1198 3: Set AV1 count
1199
1200 Bb cc dd ee: number to be set
1201
1202
1203 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1204
1205 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1206
1207
1208
1209
1210 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1211
1212
1213 Clear counting for counting mode
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 **AT+CLRCOUNT ** ~/~/ clear all counting
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1221
1222 **0x A6 01    ** ~/~/ clear all counting
1223
1224
1225
1226
1227 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1228
1229
1230 * (% style="color:#037691" %)**AT Command:**
1231
1232 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1233
1234
1235 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1236
1237 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1238
1239 (((
1240 range: aa bb cc:0 to 16777215,  (unit:second)
1241
1242
1243
1244
1245 )))
1246
1247 ==== 3.4.2.20 Reset save DR DO state ====
1248
1249
1250 * (% style="color:#037691" %)**AT Command:**
1251
1252 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1253
1254 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1255
1256
1257 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1258
1259 **0x AD aa      **~/~/ same as AT+RODORET =aa
1260
1261 (((
1262
1263
1264
1265
1266 ==== 3.4.2.21 Encrypted payload ====
1267
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1272
1273 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1274
1275
1276
1277
1278 ==== 3.4.2.22 Get sensor value ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1284
1285 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1286
1287
1288
1289
1290 ==== 3.4.2.23 Resets the downlink packet count ====
1291
1292
1293 * (% style="color:#037691" %)**AT Command:**
1294
1295 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1296
1297 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1298
1299
1300
1301
1302 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1308
1309 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1310
1311
1312 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1313
1314 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1315
1316
1317
1318
1319 ==== 3.4.2.25 Copy downlink to uplink ====
1320
1321
1322 * (% style="color:#037691" %)**AT Command**(%%)**:**
1323
1324 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1325
1326 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1327
1328
1329 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1330
1331 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1332
1333
1334
1335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1336
1337 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1338
1339
1340
1341 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1342
1343
1344 * (((
1345 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1346
1347 **26 01  ** ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1348
1349
1350 )))
1351
1352 **Example:**
1353
1354 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1355
1356
1357
1358 )))
1359
1360 == 3.5 Integrate with Mydevice ==
1361
1362
1363 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1364
1365 (((
1366 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1367 )))
1368
1369 (((
1370 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1371
1372
1373 )))
1374
1375 [[image:image-20220719105525-1.png||height="377" width="677"]]
1376
1377
1378
1379 [[image:image-20220719110247-2.png||height="388" width="683"]]
1380
1381
1382 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383
1384 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1385
1386 Search under The things network
1387
1388 [[image:1653356838789-523.png||height="337" width="740"]]
1389
1390
1391
1392 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1393
1394 [[image:image-20220524094909-1.png||height="335" width="729"]]
1395
1396
1397 [[image:image-20220524094909-2.png||height="337" width="729"]]
1398
1399
1400 [[image:image-20220524094909-3.png||height="338" width="727"]]
1401
1402
1403 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1404
1405
1406 [[image:image-20220524094909-5.png||height="341" width="734"]]
1407
1408
1409
1410 == 3.6 Interface Detail ==
1411
1412
1413 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1414
1415
1416 Support NPN Type sensor
1417
1418 [[image:1653356991268-289.png]]
1419
1420
1421
1422 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1423
1424
1425 (((
1426 The DI port of LT-22222-L can support NPN or PNP output sensor.
1427 )))
1428
1429 (((
1430 (((
1431 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1432
1433
1434 )))
1435 )))
1436
1437 [[image:1653357170703-587.png]]
1438
1439 (((
1440 (((
1441 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1442 )))
1443 )))
1444
1445 (((
1446
1447 )))
1448
1449 (((
1450 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1451 )))
1452
1453 (((
1454 This type of sensor will output a low signal GND when active.
1455 )))
1456
1457 * (((
1458 Connect sensor's output to DI1-
1459 )))
1460 * (((
1461 Connect sensor's VCC to DI1+.
1462 )))
1463
1464 (((
1465 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1466 )))
1467
1468 (((
1469 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1470 )))
1471
1472 (((
1473 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1474 )))
1475
1476 (((
1477
1478
1479
1480 )))
1481
1482 (((
1483 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1484 )))
1485
1486 (((
1487 This type of sensor will output a high signal (example 24v) when active.
1488 )))
1489
1490 * (((
1491 Connect sensor's output to DI1+
1492 )))
1493 * (((
1494 Connect sensor's GND DI1-.
1495 )))
1496
1497 (((
1498 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1499 )))
1500
1501 (((
1502 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1503 )))
1504
1505 (((
1506 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1507 )))
1508
1509 (((
1510
1511
1512
1513 )))
1514
1515 (((
1516 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1517 )))
1518
1519 (((
1520 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1521 )))
1522
1523 * (((
1524 Connect sensor's output to DI1+ with a serial 50K resistor
1525 )))
1526 * (((
1527 Connect sensor's GND DI1-.
1528 )))
1529
1530 (((
1531 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1532 )))
1533
1534 (((
1535 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1536 )))
1537
1538 (((
1539 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1540 )))
1541
1542
1543
1544 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1545
1546
1547 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1548
1549 [[image:1653357531600-905.png]]
1550
1551
1552
1553 === 3.6.4 Analog Input Interface ===
1554
1555
1556 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1557
1558
1559 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1560
1561 [[image:1653357592296-182.png]]
1562
1563 Example to connect a 4~~20mA sensor
1564
1565 We take the wind speed sensor as an example for reference only.
1566
1567
1568 **Specifications of the wind speed sensor:**
1569
1570 Red:  12~~24v
1571
1572 Yellow:  4~~20mA
1573
1574 Black:  GND
1575
1576
1577 **Connection diagram:**
1578
1579 [[image:1653357640609-758.png]]
1580
1581 [[image:1653357648330-671.png||height="155" width="733"]]
1582
1583
1584
1585 === 3.6.5 Relay Output ===
1586
1587
1588 (((
1589 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1590 )))
1591
1592 [[image:image-20220524100215-9.png]]
1593
1594
1595 [[image:image-20220524100215-10.png||height="382" width="723"]]
1596
1597
1598
1599 == 3.7 LEDs Indicators ==
1600
1601
1602 [[image:image-20220524100748-11.png]]
1603
1604
1605
1606 = 4. Use AT Command =
1607
1608
1609 == 4.1 Access AT Command ==
1610
1611
1612 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1613
1614 [[image:1653358238933-385.png]]
1615
1616
1617 (((
1618 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1619 )))
1620
1621 [[image:1653358355238-883.png]]
1622
1623
1624 (((
1625 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1626 )))
1627
1628 (((
1629 AT+<CMD>?        : Help on <CMD>
1630 )))
1631
1632 (((
1633 AT+<CMD>         : Run <CMD>
1634 )))
1635
1636 (((
1637 AT+<CMD>=<value> : Set the value
1638 )))
1639
1640 (((
1641 AT+<CMD>=?       : Get the value
1642 )))
1643
1644 (((
1645 ATZ: Trig a reset of the MCU
1646 )))
1647
1648 (((
1649 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1650 )))
1651
1652 (((
1653 AT+DEUI: Get or Set the Device EUI
1654 )))
1655
1656 (((
1657 AT+DADDR: Get or Set the Device Address
1658 )))
1659
1660 (((
1661 AT+APPKEY: Get or Set the Application Key
1662 )))
1663
1664 (((
1665 AT+NWKSKEY: Get or Set the Network Session Key
1666 )))
1667
1668 (((
1669 AT+APPSKEY: Get or Set the Application Session Key
1670 )))
1671
1672 (((
1673 AT+APPEUI: Get or Set the Application EUI
1674 )))
1675
1676 (((
1677 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1678 )))
1679
1680 (((
1681 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1682 )))
1683
1684 (((
1685 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1686 )))
1687
1688 (((
1689 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1690 )))
1691
1692 (((
1693 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1694 )))
1695
1696 (((
1697 AT+RX2FQ: Get or Set the Rx2 window frequency
1698 )))
1699
1700 (((
1701 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1702 )))
1703
1704 (((
1705 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1706 )))
1707
1708 (((
1709 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1710 )))
1711
1712 (((
1713 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1714 )))
1715
1716 (((
1717 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1718 )))
1719
1720 (((
1721 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1722 )))
1723
1724 (((
1725 AT+NWKID: Get or Set the Network ID
1726 )))
1727
1728 (((
1729 AT+FCU: Get or Set the Frame Counter Uplink
1730 )))
1731
1732 (((
1733 AT+FCD: Get or Set the Frame Counter Downlink
1734 )))
1735
1736 (((
1737 AT+CLASS: Get or Set the Device Class
1738 )))
1739
1740 (((
1741 AT+JOIN: Join network
1742 )))
1743
1744 (((
1745 AT+NJS: Get OTAA Join Status
1746 )))
1747
1748 (((
1749 AT+SENDB: Send hexadecimal data along with the application port
1750 )))
1751
1752 (((
1753 AT+SEND: Send text data along with the application port
1754 )))
1755
1756 (((
1757 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1758 )))
1759
1760 (((
1761 AT+RECV: Print last received data in raw format
1762 )))
1763
1764 (((
1765 AT+VER: Get current image version and Frequency Band
1766 )))
1767
1768 (((
1769 AT+CFM: Get or Set the confirmation mode (0-1)
1770 )))
1771
1772 (((
1773 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1774 )))
1775
1776 (((
1777 AT+SNR: Get the SNR of the last received packet
1778 )))
1779
1780 (((
1781 AT+RSSI: Get the RSSI of the last received packet
1782 )))
1783
1784 (((
1785 AT+TDC: Get or set the application data transmission interval in ms
1786 )))
1787
1788 (((
1789 AT+PORT: Get or set the application port
1790 )))
1791
1792 (((
1793 AT+DISAT: Disable AT commands
1794 )))
1795
1796 (((
1797 AT+PWORD: Set password, max 9 digits
1798 )))
1799
1800 (((
1801 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1802 )))
1803
1804 (((
1805 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1806 )))
1807
1808 (((
1809 AT+CFG: Print all settings
1810 )))
1811
1812
1813
1814 == 4.2 Common AT Command Sequence ==
1815
1816
1817 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1818
1819 (((
1820
1821
1822 **If device has not joined network yet:**
1823 )))
1824
1825 (((
1826 (% style="background-color:#dcdcdc" %)123456
1827 )))
1828
1829 (((
1830 (% style="background-color:#dcdcdc" %)AT+FDR
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)123456
1835 )))
1836
1837 (((
1838 (% style="background-color:#dcdcdc" %)AT+NJM=0
1839 )))
1840
1841 (((
1842 (% style="background-color:#dcdcdc" %)ATZ
1843 )))
1844
1845
1846 (((
1847 **If device already joined network:**
1848 )))
1849
1850 (((
1851 (% style="background-color:#dcdcdc" %)AT+NJM=0
1852 )))
1853
1854 (((
1855 (% style="background-color:#dcdcdc" %)ATZ
1856 )))
1857
1858
1859
1860 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1861
1862 (((
1863
1864
1865 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1866 )))
1867
1868 (((
1869 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1870 )))
1871
1872 (((
1873 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1874 )))
1875
1876 (((
1877 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1878 )))
1879
1880 (((
1881 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1882 )))
1883
1884 (((
1885 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1886 )))
1887
1888 (((
1889 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1890 )))
1891
1892 (((
1893 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1894 )))
1895
1896 (((
1897 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1898 )))
1899
1900 (((
1901 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1914
1915
1916 )))
1917
1918 (((
1919 (% style="color:red" %)**Note:**
1920 )))
1921
1922 (((
1923 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1924 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1925 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1926 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1927
1928
1929 )))
1930
1931 (((
1932 [[image:1653359097980-169.png||height="188" width="729"]]
1933 )))
1934
1935 (((
1936
1937 )))
1938
1939
1940 === 4.2.3 Change to Class A ===
1941
1942
1943 If sensor JOINED
1944 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1945 ATZ
1946
1947
1948
1949 = 5. FAQ =
1950
1951
1952 == 5.1 How to upgrade the image? ==
1953
1954
1955 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1956
1957 * Support new features
1958 * For bug fix
1959 * Change LoRaWAN bands.
1960
1961 Below shows the hardware connection for how to upload an image to the LT:
1962
1963 [[image:1653359603330-121.png]]
1964
1965
1966 (((
1967 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1968 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1969 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1970
1971
1972 (% style="color:blue" %)**For LT-22222-L**(%%):
1973 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1974
1975
1976 )))
1977
1978 [[image:image-20220524103407-12.png]]
1979
1980 [[image:image-20220524103429-13.png]]
1981
1982 [[image:image-20220524104033-15.png]]
1983
1984
1985 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1986
1987
1988 [[image:1653360054704-518.png||height="186" width="745"]]
1989
1990
1991 (((
1992 (((
1993
1994
1995 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1996
1997
1998 )))
1999 )))
2000
2001 (((
2002 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2003 )))
2004
2005 (((
2006
2007
2008
2009 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2010
2011
2012 )))
2013
2014 (((
2015 (((
2016 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2017 )))
2018 )))
2019
2020 (((
2021 (((
2022 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2023
2024
2025
2026 )))
2027 )))
2028
2029 (((
2030 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2031
2032
2033 )))
2034
2035 (((
2036 [[image:1653360231087-571.png||height="401" width="727"]]
2037
2038
2039 )))
2040
2041 (((
2042 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2043 )))
2044
2045
2046
2047 (((
2048 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2049
2050
2051 )))
2052
2053 (((
2054 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2055 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2056 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2057 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2058 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2059 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2060 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2061 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2062 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2063 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2064 )))
2065
2066
2067 (((
2068 As shown in below:
2069 )))
2070
2071 [[image:1653360498588-932.png||height="485" width="726"]]
2072
2073
2074
2075 == 5.4 Can I see counting event in Serial? ==
2076
2077
2078 (((
2079 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2080
2081
2082
2083 == 5.5 Can i use point to point communication for LT-22222-L? ==
2084
2085
2086 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2087
2088
2089
2090 )))
2091
2092 (((
2093 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2094
2095
2096 If the device is not shut down, but directly powered off.
2097
2098 It will default that this is a power-off state.
2099
2100 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2101
2102 After restart, the status before power failure will be read from flash.
2103
2104
2105 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2106
2107 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2108
2109 [[image:image-20221006170630-1.png||height="610" width="945"]]
2110
2111
2112
2113 = 6. Trouble Shooting =
2114
2115
2116 )))
2117
2118 (((
2119 (((
2120 == 6.1 Downlink doesn't work, how to solve it? ==
2121
2122
2123 )))
2124 )))
2125
2126 (((
2127 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2128 )))
2129
2130 (((
2131
2132
2133
2134 == 6.2 Have trouble to upload image. ==
2135
2136
2137 )))
2138
2139 (((
2140 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2141 )))
2142
2143 (((
2144
2145
2146
2147 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2148
2149
2150 )))
2151
2152 (((
2153 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2154 )))
2155
2156
2157
2158 = 7. Order Info =
2159
2160
2161 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2162
2163 (% style="color:#4f81bd" %)**XXX:**
2164
2165 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2166 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2167 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2168 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2169 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2170 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2171 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2172 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2173 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2174
2175
2176
2177 = 8. Packing Info =
2178
2179
2180 **Package Includes**:
2181
2182 * LT-22222-L I/O Controller x 1
2183 * Stick Antenna for LoRa RF part x 1
2184 * Bracket for controller x1
2185 * Program cable x 1
2186
2187 **Dimension and weight**:
2188
2189 * Device Size: 13.5 x 7 x 3 cm
2190 * Device Weight: 105g
2191 * Package Size / pcs : 14.5 x 8 x 5 cm
2192 * Weight / pcs : 170g
2193
2194
2195
2196 = 9. Support =
2197
2198
2199 * (((
2200 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2201 )))
2202 * (((
2203 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2204
2205
2206
2207
2208 )))
2209
2210 = 10. Reference​​​​​ =
2211
2212
2213 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2214 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2215 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]