Last modified by Mengting Qiu on 2025/06/04 18:42

From version 244.1
edited by Xiaoling
on 2025/03/20 15:59
Change comment: There is no comment for this version
To version 180.1
edited by Dilisi S
on 2024/11/09 06:08
Change comment: Nov 8 edits - part 2

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L -- LoRa I/O Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -21,15 +21,10 @@
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 -
25 25  (((
26 26  (((
27 -{{info}}
28 -**This manual is also applicable to the LT-33222-L.**
29 -{{/info}}
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
30 30  
31 -The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32 -
33 33  The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 35  )))
... ... @@ -41,36 +41,33 @@
41 41  (((
42 42  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
45 45  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 46  * Setup your own private LoRaWAN network.
42 +
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
47 47  )))
48 48  
49 49  (((
50 -
47 +[[image:1653295757274-912.png]]
51 51  
52 -The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
49 +
53 53  )))
54 54  
55 -(% class="wikigeneratedid" %)
56 -[[image:lorawan-nw.jpg||height="354" width="900"]]
57 -
58 -
59 59  == 1.2 Specifications ==
60 60  
61 -
62 62  (% style="color:#037691" %)**Hardware System:**
63 63  
64 64  * STM32L072xxxx MCU
65 65  * SX1276/78 Wireless Chip 
66 66  * Power Consumption:
67 -** Idle: 4mA@12V
59 +** Idle: 4mA@12v
68 68  ** 20dB Transmit: 34mA@12V
69 69  * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70 70  
71 71  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72 72  
73 -* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
74 74  * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 75  * 2 x Relay Output (5A@250VAC / 30VDC)
76 76  * 2 x 0~~20mA Analog Input (res:0.01mA)
... ... @@ -80,8 +80,8 @@
80 80  (% style="color:#037691" %)**LoRa Spec:**
81 81  
82 82  * Frequency Range:
83 -** Band 1 (HF): 862 ~~ 1020 MHz
84 -** Band 2 (LF): 410 ~~ 528 MHz
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
85 85  * 168 dB maximum link budget.
86 86  * +20 dBm - 100 mW constant RF output vs.
87 87  * +14 dBm high-efficiency PA.
... ... @@ -100,8 +100,7 @@
100 100  
101 101  == 1.3 Features ==
102 102  
103 -
104 -* LoRaWAN Class A & Class C modes
95 +* LoRaWAN Class A & Class C protocol
105 105  * Optional Customized LoRa Protocol
106 106  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 107  * AT Commands to change parameters
... ... @@ -111,25 +111,24 @@
111 111  
112 112  == 1.4 Applications ==
113 113  
105 +* Smart Buildings & Home Automation
106 +* Logistics and Supply Chain Management
107 +* Smart Metering
108 +* Smart Agriculture
109 +* Smart Cities
110 +* Smart Factory
114 114  
115 -* Smart buildings & home automation
116 -* Logistics and supply chain management
117 -* Smart metering
118 -* Smart agriculture
119 -* Smart cities
120 -* Smart factory
121 -
122 122  == 1.5 Hardware Variants ==
123 123  
124 124  
125 -(% border="1" cellspacing="3" style="width:510px" %)
126 -|(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 -|(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
115 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
117 +|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
128 128  (% style="text-align:center" %)
129 -[[image:lt33222-l.jpg||height="110" width="95"]]
130 -)))|(% style="width:256px" %)(((
131 -* 3 x Digital Input (Bi-direction)
132 -* 3 x Digital Output
119 +[[image:image-20230424115112-1.png||height="106" width="58"]]
120 +)))|(% style="width:334px" %)(((
121 +* 2 x Digital Input (Bi-direction)
122 +* 2 x Digital Output
133 133  * 2 x Relay Output (5A@250VAC / 30VDC)
134 134  * 2 x 0~~20mA Analog Input (res:0.01mA)
135 135  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -136,222 +136,167 @@
136 136  * 1 x Counting Port
137 137  )))
138 138  
139 -= 2. Assembling the device =
129 += 2. Assembling the Device =
140 140  
141 -== 2.1 Connecting the antenna ==
131 +== 2.1 What is included in the package? ==
142 142  
133 +The package includes the following items:
143 143  
144 -Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
145 145  
146 -{{warning}}
147 -**Warning! Do not power on the device without connecting the antenna.**
148 -{{/warning}}
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
149 149  
150 -
151 151  == 2.2 Terminals ==
152 152  
144 +Upper screw terminal block (from left to right):
153 153  
154 -The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
155 155  
156 -**Upper screw terminal block (from left to right):**
155 +Lower screw terminal block (from left to right):
157 157  
158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 -|=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 -|(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 -|(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 -|(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 -|(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 -|(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 -|(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
166 166  
167 -**Lower screw terminal block (from left to right):**
170 +== 2.3 Powering the LT-22222-L ==
168 168  
169 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 -|=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 -|(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 -|(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 -|(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 -|(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 -|(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 -|(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 -|(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 -|(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 -|(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 -|(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
181 181  
182 -== 2.3 Connecting LT-22222-L to a Power Source ==
183 183  
175 +[[image:1653297104069-180.png]]
184 184  
185 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186 186  
187 -{{warning}}
188 -**We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 -{{/warning}}
178 += 3. Operation Mode =
190 190  
180 +== 3.1 How does it work? ==
191 191  
192 -[[image:1653297104069-180.png]]
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
193 193  
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
194 194  
195 -= 3. Registering LT-22222-L with a LoRaWAN Network Server =
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
196 196  
188 +== 3.2 Registering with a LoRaWAN network server ==
197 197  
198 -The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
199 199  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
200 200  
201 -== 3.1 Prerequisites ==
194 +=== 3.2.1 Prerequisites ===
202 202  
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
203 203  
204 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205 -
206 206  [[image:image-20230425173427-2.png||height="246" width="530"]]
207 207  
208 -{{info}}
209 -If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 -{{/info}}
211 -
212 212  The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213 213  
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
214 214  
215 -== 3.2 The Things Stack ==
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
216 216  
208 +==== ====
217 217  
218 -This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
219 219  
220 -{{info}}
221 -The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 -{{/info}}
223 -
224 -
225 -The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226 -
227 -
228 -[[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229 -
230 -{{info}}
231 - You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 -{{/info}}
233 -
234 -
235 -=== 3.2.1 Setting up ===
236 -
237 -
238 -* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 -* Log in to your The Things Stack Sandbox account.
240 -* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 -* Go to your application's page and click on the **End devices** in the left menu.
242 -* On the End devices page, click on **+ Register end device**. Two registration options are available:
243 -
244 -==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245 -
246 -
212 +* Go to your application and click on the **Register end device** button.
247 247  * On the **Register end device** page:
248 -** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 -** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 -*** **End device brand**: Dragino Technology Co., Limited
251 -*** **Model**: LT22222-L I/O Controller
252 -*** **Hardware ver**: Unknown
253 -*** **Firmware ver**: 1.6.0
254 -*** **Profile (Region)**: Select the region that matches your device.
255 -** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
256 256  
257 -[[image:lt-22222-l-dev-repo-reg-p1.png]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
258 258  
259 259  
260 -* Register end device page continued...
261 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 -** In the **DevEUI** field, enter the **DevEUI**.
263 -** In the **AppKey** field, enter the **AppKey.**
264 -** In the **End device ID** field, enter a unique name for your LT-22222-L within this application.
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
265 265  ** Under **After registration**, select the **View registered end device** option.
266 -** Click **Register end device** button.
267 267  
268 -[[image:lt-22222-l-dev-repo-reg-p2.png]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
269 269  
230 +==== ====
270 270  
271 -* You will be navigated to the **Device overview** page.
232 +==== 3.2.2.2 Entering device information manually ====
272 272  
273 -[[image:lt-22222-device-overview.png]]
274 -
275 -
276 -==== 3.2.1.2 Adding device manually ====
277 -
278 -
279 279  * On the **Register end device** page:
280 -** Select the option **Enter end device specifies manually** under **Input method**.
281 -** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
282 -** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
283 -** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
284 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
285 -** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
286 -** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
287 287  
288 -[[image:lt-22222-l-manually-p1.png]]
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
289 289  
290 290  
291 -* Register end device page continued...
292 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
293 -** In the **DevEUI** field, enter the **DevEUI**.
294 -** In the **AppKey** field, enter the **AppKey**.
295 -** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
296 296  ** Under **After registration**, select the **View registered end device** option.
297 297  ** Click the **Register end device** button.
298 298  
299 -[[image:lt-22222-l-manually-p2.png]]
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
300 300  
301 301  
302 302  You will be navigated to the **Device overview** page.
303 303  
304 304  
305 -[[image:lt-22222-device-overview.png]]
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
306 306  
307 307  
308 -=== 3.2.2 Joining ===
263 +==== 3.2.2.3 Joining ====
309 309  
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
310 310  
311 -On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
312 312  
313 -Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
314 314  
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
315 315  
316 -[[image:lt-22222-l-joining.png]]
317 317  
273 +By default, you will receive an uplink data message every 10 minutes.
318 318  
319 -=== 3.2.3 Uplinks ===
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
320 320  
321 -
322 -After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
323 -
324 -Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
325 -
326 326  [[image:lt-22222-ul-payload-decoded.png]]
327 327  
328 328  
329 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
330 330  
331 -{{info}}
332 -The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
333 -{{/info}}
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
334 334  
335 -[[image:lt-22222-ul-payload-fmt.png]]
336 336  
285 +== 3.3 Work Modes and their Uplink Payload formats ==
337 337  
338 -We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
339 339  
340 -(% class="wikigeneratedid" %)
341 -[[image:lt-22222-l-js-custom-payload-formatter.png]]
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
342 342  
343 -
344 -=== 3.2.4 Downlinks ===
345 -
346 -
347 -When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
348 -
349 -
350 -== 3.3 Working Modes and Uplink Payload formats ==
351 -
352 -
353 -The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
354 -
355 355  * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
356 356  
357 357  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
... ... @@ -364,17 +364,14 @@
364 364  
365 365  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
366 366  
367 -The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
368 368  
369 -
370 370  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
371 371  
372 -
373 373  (((
374 374  This is the default mode.
375 375  
376 -The uplink payload is 11 bytes long.
377 -(% style="display:none" wfd-invisible="true" %)
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
378 378  
379 379  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
380 380  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -432,14 +432,9 @@
432 432  * [1] DO2 channel output is LOW, and the DO2 LED is ON.
433 433  * [0] DO1 channel output state:
434 434  ** DO1 is FLOATING when there is no load between DO1 and V+.
435 -** DO1 is HIGH and there is a load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
436 436  ** DO1 LED is OFF in both cases.
437 437  
438 -Reserve = 0
439 -
440 -MOD = 1
441 -
442 -
443 443  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
444 444  
445 445  
... ... @@ -450,10 +450,6 @@
450 450  (((
451 451  The uplink payload is 11 bytes long.
452 452  
453 -(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
454 -The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
455 -It starts counting again when it reaches the maximum value.**
456 -
457 457  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
458 458  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
459 459  |Value|COUNT1|COUNT2 |DIDORO*|(((
... ... @@ -519,10 +519,6 @@
519 519  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
520 520  
521 521  
522 -(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
523 -The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
524 -It starts counting again when it reaches the maximum value.**
525 -
526 526  **LT22222-L**: In this mode, the DI1 is used as a counting pin.
527 527  
528 528  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -573,11 +573,6 @@
573 573  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
574 574  
575 575  
576 -(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
577 -The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
578 -It starts counting again when it reaches the maximum value.**
579 -
580 -
581 581  (((
582 582  **LT22222-L**: In this mode, the DI1 is used as a counting pin.
583 583  )))
... ... @@ -624,19 +624,19 @@
624 624  )))
625 625  
626 626  (((
627 -AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 628  )))
629 629  
630 630  (((
631 631  **In addition to that, below are the commands for AVI1 Counting:**
632 632  
633 -(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
634 634  
635 -(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
549 +(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
636 636  
637 -(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
551 +(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
638 638  
639 -(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
640 640  )))
641 641  
642 642  
... ... @@ -643,11 +643,6 @@
643 643  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
644 644  
645 645  
646 -(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
647 -The maximum count for four bytes is FFFF (hex) = 65535 (dec).
648 -It starts counting again when it reaches the maximum value.**
649 -
650 -
651 651  **LT22222-L**: In this mode, the DI1 is used as a counting pin.
652 652  
653 653  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -698,28 +698,23 @@
698 698  )))
699 699  
700 700  
701 -=== 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
610 +=== 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
702 702  
703 703  
704 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
705 705  
706 -For example, if you configure the following commands:
615 +For example, if you configured the following commands:
707 707  
708 -* **AT+MOD=1 ** **~-~->**  Sets the default working mode
709 -* **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
617 +* **AT+MOD=1 ** **~-~->**  The normal working mode
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
710 710  
711 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
712 712  
713 -1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
714 -1. (((
715 -Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
716 716  
717 -* The first uplink uses the payload specified in trigger mode (MOD=6).
718 -* The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
719 -)))
625 +(% style="color:#037691" %)**AT Command to set Trigger Condition**:
720 720  
721 -(% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
722 -
723 723  (% style="color:#4f81bd" %)**Trigger based on voltage**:
724 724  
725 725  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
... ... @@ -727,9 +727,9 @@
727 727  
728 728  **Example:**
729 729  
730 -AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
731 731  
732 -AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
733 733  
734 734  
735 735  (% style="color:#4f81bd" %)**Trigger based on current**:
... ... @@ -739,7 +739,7 @@
739 739  
740 740  **Example:**
741 741  
742 -AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
743 743  
744 744  
745 745  (% style="color:#4f81bd" %)**Trigger based on DI status**:
... ... @@ -756,9 +756,9 @@
756 756  
757 757  (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
758 758  
759 -**Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
663 +Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
760 760  
761 -**Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
665 +Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
762 762  
763 763   AA: Type Code for this downlink Command:
764 764  
... ... @@ -785,9 +785,9 @@
785 785  
786 786  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
787 787  
788 -MOD6 Payload: a total of 11 bytes
692 +MOD6 Payload: total of 11 bytes
789 789  
790 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
694 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
791 791  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
792 792  |Value|(((
793 793  TRI_A FLAG
... ... @@ -799,9 +799,9 @@
799 799  MOD(6)
800 800  )))
801 801  
802 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
803 803  
804 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
805 805  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
806 806  |(((
807 807  AV1_LOW
... ... @@ -825,12 +825,12 @@
825 825  
826 826  **Example:**
827 827  
828 -10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
829 829  
830 830  
831 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
832 832  
833 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
834 834  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
835 835  |(((
836 836  AV1_LOW
... ... @@ -854,31 +854,31 @@
854 854  
855 855  **Example:**
856 856  
857 -10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
858 858  
859 859  
860 -(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
764 +(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
861 861  
862 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
863 -|(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
864 -|(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
766 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
865 865  
866 -* Each bit shows which status has been triggered on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
867 867  
868 868  **Example:**
869 869  
870 -00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
774 +00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
871 871  
872 -00000101: This means both DI1 and DI2 triggers are enabled.
776 +00000101: Means both DI1 and DI2 trigger are enabled.
873 873  
874 874  
875 -(% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
779 +(% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
876 876  
877 -Downlink command to poll/request MOD6 status:
781 +Downlink command to poll MOD6 status:
878 878  
879 879  **AB 06**
880 880  
881 -When the device receives this command, it will send the MOD6 payload.
785 +When device got this command, it will send the MOD6 payload.
882 882  
883 883  
884 884  === 3.3.7 Payload Decoder ===
... ... @@ -886,705 +886,412 @@
886 886  (((
887 887  
888 888  
889 -**Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
793 +**Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
890 890  )))
891 891  
892 892  
893 -== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
894 894  
895 895  
896 896  (((
897 -You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
898 898  )))
899 899  
900 900  (((
901 901  (((
902 -There are two types of commands:
806 +There are two kinds of Commands:
903 903  )))
904 904  )))
905 905  
906 -* (% style="color:blue" %)**Common commands**(%%):
810 +* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
907 907  
908 -* (% style="color:blue" %)**Sensor-related commands**(%%):
812 +* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
909 909  
910 -=== 3.4.1 Common commands ===
814 +=== 3.4.1 Common Commands ===
911 911  
912 -
913 913  (((
914 -These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
915 -
916 -
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
917 917  )))
918 918  
919 -=== 3.4.2 Sensor-related commands ===
920 920  
821 +=== 3.4.2 Sensor related commands ===
921 921  
922 -These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
823 +==== 3.4.2.1 Set Transmit Interval ====
923 923  
924 -
925 -==== 3.4.2.1 Set Transmit/Uplink Interval ====
926 -
927 -
928 928  Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
929 929  
930 -(% style="color:#037691" %)**AT command**
827 +* (% style="color:#037691" %)**AT command:**
931 931  
932 -(% border="2" style="width:500px" %)
933 -|**Command**|AT+TDC=<time>
934 -|**Parameters**|**time **: uplink interval in milliseconds
935 -|**Get**|AT+TDC=?
936 -|**Response**|(((
937 -current uplink interval
829 +(% style="color:blue" %)**AT+TDC=N**
938 938  
939 -OK
940 -)))
941 -|**Set**|AT+TDC=<time>
942 -|**Response**|OK
943 -|**Example**|(((
944 -AT+TDC=30000
831 +where N is the time in milliseconds.
945 945  
946 -Sets the uplink interval to **30 seconds** (30000 milliseconds)
947 -)))
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
948 948  
949 -(% style="color:#037691" %)**Downlink payload**
950 950  
951 -(% border="2" style="width:500px" %)
952 -|**Payload**|(((
953 -<prefix><time>
954 -)))
955 -|**Parameters**|(((
956 -**prefix** : 0x01
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
957 957  
958 -**time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
959 -)))
960 -|**Example**|(((
961 -01 **00 00 1E**
838 +(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
962 962  
963 -Sets the uplink interval to **30 seconds**
964 964  
965 -Conversion: 30 (dec) = 00 00 1E (hex)
966 966  
967 -See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
968 968  
969 -[[image:Screenshot 2024-11-23 at 18.27.11.png]]
970 -)))
971 971  
972 -==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
845 +Sets the work mode.
973 973  
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
974 974  
975 -Sets the working mode.
849 +Where N is the work mode.
976 976  
977 -(% style="color:#037691" %)**AT command**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
978 978  
979 -(% border="2" style="width:500px" %)
980 -|(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
981 -|(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
982 -**working_mode** :
983 983  
984 -1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
985 985  
986 -2 = Double DI Counting + DO + RO
856 +(% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
987 987  
988 -3 = Single DI Counting + 2 x ACI + DO + RO
989 989  
990 -4 = Single DI Counting + 1 x Voltage Counting + DO + RO
991 991  
992 -5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
860 +==== 3.4.2.3 Poll an uplink ====
993 993  
994 -6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
995 -)))
996 -|(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
997 -|(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
998 -Current working mode
999 999  
1000 -OK
1001 -)))
1002 -|(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1003 -|(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1004 -Attention:Take effect after ATZ
863 +Asks the device to send an uplink.
1005 1005  
1006 -OK
1007 -)))
1008 -|(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1009 -AT+MOD=2
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
1010 1010  
1011 -Sets the device to working mode 2 (Double DI Counting + DO + RO)
1012 -)))
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
1013 1013  
1014 -(% class="wikigeneratedid" %)
1015 -(% style="color:#037691" %)**Downlink payload**
869 +(% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
1016 1016  
1017 -(% border="2" style="width:500px" %)
1018 -|(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1019 -|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1020 -**prefix** : 0x0A
871 +**Example**: 0x08FF, ask device to send an Uplink
1021 1021  
1022 -**working_mode** : Working mode, represented by 1 byte in hexadecimal.
1023 -)))
1024 -|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1025 -0A **02**
1026 1026  
1027 -Sets the device to working mode 2 (Double DI Counting + DO + RO)
1028 -)))
1029 1029  
1030 -==== 3.4.2.3 Request an uplink from the device ====
1031 -
1032 -
1033 -Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1034 -
1035 -(% style="color:#037691" %)**AT command**
1036 -
1037 -There is no AT Command available for this feature.
1038 -
1039 -(% style="color:#037691" %)**Downlink payload**
1040 -
1041 -(% border="2" style="width:500px" %)
1042 -|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1043 -|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1044 -|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1045 -08 **FF**
1046 -
1047 -Requests an uplink from LT-22222-L.
1048 -)))
1049 -
1050 1050  ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1051 1051  
1052 1052  
1053 -Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1054 1054  
1055 -(% style="color:#037691" %)**AT Command**
880 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
1056 1056  
1057 -(% border="2" style="width:500px" %)
1058 -|(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1059 -|(% style="width:95px" %)**Response**|(% style="width:403px" %)
1060 -|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1061 -**enable/disable trigger_mode** :
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
1062 1062  
1063 -1 = enable trigger mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
1064 1064  
1065 -0 = disable trigger mode
1066 -)))
1067 -|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1068 -AT+ADDMOD6=1
1069 1069  
1070 -Enable trigger mode for the current working mode
1071 -)))
887 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
1072 1072  
1073 -(% style="color:#037691" %)**Downlink payload**
889 +(% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
1074 1074  
1075 -(% border="2" style="width:500px" %)
1076 -|(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1077 -|(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1078 -**prefix** : 0x0A 06 (two bytes in hexadecimal)
1079 1079  
1080 -**enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1081 -)))
1082 -|(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1083 -0A 06 **01**
1084 1084  
1085 -Enable trigger mode for the current working mode
1086 -)))
893 +==== 3.4.2.5 Poll trigger settings ====
1087 1087  
1088 -==== 3.4.2.5 Request trigger settings ====
1089 1089  
896 +Polls the trigger settings
1090 1090  
1091 -Requests the trigger settings.
898 +* (% style="color:#037691" %)**AT Command:**
1092 1092  
1093 -(% style="color:#037691" %)**AT Command:**
900 +There is no AT Command for this feature.
1094 1094  
1095 -There is no AT Command available for this feature.
902 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1096 1096  
1097 -(% style="color:#037691" %)**Downlink Payload**
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
1098 1098  
1099 -(% border="2" style="width:500px" %)
1100 -|(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1101 -|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1102 -|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1103 -AB 06
1104 1104  
1105 -Uplink the trigger settings.
1106 -)))
1107 1107  
1108 -==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
908 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1109 1109  
1110 1110  
1111 -Enable or disable DI1/DI2/DI3 as a trigger.
911 +Enable or Disable DI1/DI2/DI2 as trigger,
1112 1112  
1113 -(% style="color:#037691" %)**AT Command**
913 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1114 1114  
1115 -(% border="2" style="width:500px" %)
1116 -|(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1117 -|(% style="width:98px" %)**Response**|(% style="width:400px" %)
1118 -|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1119 -**DI1_trigger:**
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
1120 1120  
1121 -1 = enable DI1 trigger
1122 1122  
1123 -0 = disable DI1 trigger
918 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1124 1124  
1125 -**DI2 _trigger**
920 +(% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1126 1126  
1127 -1 = enable DI2 trigger
1128 1128  
1129 -0 = disable DI2 trigger
1130 -)))
1131 -|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1132 -AT+DTRI=1,0
1133 1133  
1134 -Enable DI1 trigger, disable DI2 trigger
1135 -)))
924 +==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1136 1136  
1137 -(% class="wikigeneratedid" %)
1138 -(% style="color:#037691" %)**Downlink Payload**
1139 1139  
1140 -(% border="2" style="width:500px" %)
1141 -|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1142 -|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1143 -**prefix :** AA 02 (two bytes in hexadecimal)
927 +Set DI1 or DI3(for LT-33222-L) trigger.
1144 1144  
1145 -**DI1_trigger:**
929 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1146 1146  
1147 -1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
931 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1148 1148  
1149 -0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
933 +(% style="color:red" %)**b :** (%%)delay timing.
1150 1150  
1151 -**DI2 _trigger**
935 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1152 1152  
1153 -1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1154 1154  
1155 -0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1156 -)))
1157 -|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1158 -AA 02 **01 00**
938 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1159 1159  
1160 -Enable DI1 trigger, disable DI2 trigger
1161 -)))
940 +(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1162 1162  
1163 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1164 1164  
1165 1165  
1166 -Sets DI1 or DI3 (for LT-33222-L) as a trigger.
944 +==== 3.4.2.8 Trigger2 Set DI2 as trigger ====
1167 1167  
1168 -(% style="color:#037691" %)**AT Command**
1169 1169  
1170 -(% border="2" style="width:500px" %)
1171 -|(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1172 -|(% style="width:101px" %)**Response**|(% style="width:397px" %)
1173 -|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1174 -**interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
947 +Sets DI2 trigger.
1175 1175  
1176 -**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1177 -)))
1178 -|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1179 -AT+TRIG1=1,100
949 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1180 1180  
1181 -Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1182 -)))
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1183 1183  
1184 -(% class="wikigeneratedid" %)
1185 -(% style="color:#037691" %)**Downlink Payload**
953 +(% style="color:red" %)**b :** (%%)delay timing.
1186 1186  
1187 -(% border="2" style="width:500px" %)
1188 -|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1189 -|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1190 -**prefix** : 09 01 (hexadecimal)
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
1191 1191  
1192 -**interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1193 1193  
1194 -**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1195 -)))
1196 -|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1197 -09 01 **01 00 64**
958 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1198 1198  
1199 -Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1200 -)))
960 +(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1201 1201  
1202 -==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1203 1203  
1204 1204  
1205 -Sets DI2 as a trigger.
964 +==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1206 1206  
1207 -(% style="color:#037691" %)**AT Command**
1208 1208  
1209 -(% border="2" style="width:500px" %)
1210 -|(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1211 -|(% style="width:94px" %)**Response**|(% style="width:404px" %)
1212 -|(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1213 -**interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
967 +Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1214 1214  
1215 -**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1216 -)))
1217 -|(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1218 -AT+TRIG2=0,100
969 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1219 1219  
1220 -Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1221 -)))
971 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1222 1222  
1223 -(% style="color:#037691" %)**Downlink Payload**
973 +(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1224 1224  
1225 -(% border="2" style="width:500px" %)
1226 -|(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1227 -|(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1228 -**prefix** : 09 02 (hexadecimal)
1229 1229  
1230 -**interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1231 1231  
1232 -**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1233 -)))
1234 -|(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1235 -
1236 -==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1237 -
1238 -
1239 -Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1240 -
1241 -(% style="color:#037691" %)**AT Command**
1242 -
1243 -(% border="2" style="width:500px" %)
1244 -|(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1245 -AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1246 -)))
1247 -|(% style="width:104px" %)**Response**|(% style="width:394px" %)
1248 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1249 -**AC1_LIMIT_LOW** : lower limit of the current to be checked
1250 -
1251 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1252 -
1253 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1254 -
1255 -**AC2_LIMIT_LOW** : higher limit of the current to be checked
1256 -)))
1257 -|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1258 -AT+ACLIM=10000,15000,0,0
1259 -
1260 -Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1261 -)))
1262 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1263 -
1264 -(% style="color:#037691" %)**Downlink Payload**
1265 -
1266 -(% border="2" style="width:500px" %)
1267 -|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1268 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1269 -**prefix **: AA 01 (hexadecimal)
1270 -
1271 -**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1272 -
1273 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1274 -
1275 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1276 -
1277 -**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1278 -)))
1279 -|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1280 -AA 01 **27** **10 3A** **98** 00 00 00 00
1281 -
1282 -Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1283 -)))
1284 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1285 -
1286 1286  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1287 1287  
1288 1288  
1289 -Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
980 +Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1290 1290  
1291 -(% style="color:#037691" %)**AT Command**
982 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1292 1292  
1293 -(% border="2" style="width:500px" %)
1294 -|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1295 -|(% style="width:104px" %)**Response**|(% style="width:387px" %)
1296 -|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1297 -**AC1_LIMIT_LOW** : lower limit of the current to be checked
984 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1298 1298  
1299 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked
986 +(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1300 1300  
1301 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1302 1302  
1303 -**AC2_LIMIT_LOW** : higher limit of the current to be checked
1304 -)))
1305 -|(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1306 -AT+AVLIM=3000,6000,0,2000
1307 1307  
1308 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1309 -)))
1310 -|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
990 +==== 3.4.2.11 Trigger – Set minimum interval ====
1311 1311  
1312 -(% style="color:#037691" %)**Downlink Payload**
1313 1313  
1314 -(% border="2" style="width:500px" %)
1315 -|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1316 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1317 -**prefix **: AA 00 (hexadecimal)
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1318 1318  
1319 -**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
995 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1320 1320  
1321 -**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
997 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1322 1322  
1323 -**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
999 +(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1324 1324  
1325 -**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1001 +(((
1002 +(% style="color:red" %)**Note: ATDC setting must be more than 5min**
1326 1326  )))
1327 -|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1328 -AA 00 **0B B8 17 70 00 00 07 D0**
1329 1329  
1330 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1331 -)))
1332 -|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1333 1333  
1334 -==== 3.4.2.11 Trigger – Set the minimum interval ====
1335 1335  
1336 -
1337 -Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1338 -
1339 -(% style="color:#037691" %)**AT Command**
1340 -
1341 -(% border="2" style="width:500px" %)
1342 -|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1343 -|(% style="width:113px" %)**Response**|(% style="width:385px" %)
1344 -|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1345 -**time** : in minutes
1346 -)))
1347 -|(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1348 -AT+ATDC=5
1349 -
1350 -The device won't respond to the second trigger within 5 minutes after the first trigger.
1351 -)))
1352 -|(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1353 -
1354 -(% style="color:#037691" %)**Downlink Payload**
1355 -
1356 -(% border="2" style="width:500px" %)
1357 -|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1358 -|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1359 -**prefix** : AC (hexadecimal)
1360 -
1361 -**time **: in minutes (two bytes in hexadecimal)
1362 -)))
1363 -|(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1364 -AC **00 05**
1365 -
1366 -The device won't respond to the second trigger within 5 minutes after the first trigger.
1367 -)))
1368 -|(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1369 -
1370 1370  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1371 1371  
1372 1372  
1373 -Controls the digital outputs DO1, DO2, and DO3
1010 +* (% style="color:#037691" %)**AT Command**
1374 1374  
1375 -(% style="color:#037691" %)**AT Command**
1012 +There is no AT Command to control Digital Output
1376 1376  
1377 -There is no AT Command to control the Digital Output.
1378 1378  
1015 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1379 1379  
1380 -(% style="color:#037691" %)**Downlink Payload**
1017 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1381 1381  
1382 -(% border="2" style="width:500px" %)
1383 -|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1384 -|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1385 -**prefix** : 02 (hexadecimal)
1386 -
1387 -**DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1388 -
1389 -**DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1390 -
1391 -**DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1019 +(((
1020 +If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1392 1392  )))
1393 -|(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1394 -02 **01 00 01**
1395 1395  
1396 -If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1397 -
1398 -**More examples:**
1399 -
1400 1400  (((
1401 -01: Low,  00: High,  11: No action
1024 +01: Low,  00: High ,  11: No action
1402 1402  
1403 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1404 -|(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1405 -|(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1406 -|(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1407 -|(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1026 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1028 +|02  01  00  11|Low|High|No Action
1029 +|02  00  11  01|High|No Action|Low
1030 +|02  11  01  00|No Action|Low|High
1408 1408  )))
1409 1409  
1410 1410  (((
1411 -(((
1412 -(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1034 +(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1413 1413  )))
1414 1414  
1415 1415  (((
1416 -(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1038 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1417 1417  )))
1418 -)))
1419 -)))
1420 1420  
1421 -==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1422 1422  
1423 1423  
1424 -(% style="color:#037691" %)**AT command**
1043 +==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1425 1425  
1426 -There is no AT command to control the digital output.
1427 1427  
1046 +* (% style="color:#037691" %)**AT Command**
1428 1428  
1429 -(% style="color:#037691" %)**Downlink payload**
1048 +There is no AT Command to control Digital Output
1430 1430  
1431 -(% border="2" style="width:500px" %)
1432 -|(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1433 -|(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1434 -**inverter_mode**: 1 byte in hex.
1435 1435  
1436 -**01:** DO pins revert to their original state after the timeout.
1437 -**00:** DO pins switch to an inverted state after the timeout.
1051 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1438 1438  
1053 +(% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1439 1439  
1440 -**DO1_control_method_and_port_status **- 1 byte in hex
1441 1441  
1442 -0x01 : DO1 set to low
1056 +This is to control the digital output time of DO pin. Include four bytes:
1443 1443  
1444 -0x00 : DO1 set to high
1058 +(% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1445 1445  
1446 -0x11 : DO1 NO action
1060 +(% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1447 1447  
1062 +01: DO pins will change back to original state after timeout.
1448 1448  
1449 -**DO2_control_method_and_port_status** - 1 byte in hex
1064 +00: DO pins will change to an inverter state after timeout 
1450 1450  
1451 -0x01 : DO2 set to low
1452 1452  
1453 -0x00 : DO2 set to high
1067 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1454 1454  
1455 -0x11 : DO2 NO action
1069 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1071 +|0x01|DO1 set to low
1072 +|0x00|DO1 set to high
1073 +|0x11|DO1 NO Action
1456 1456  
1075 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1457 1457  
1458 -**DO3_control_method_and_port_status **- 1 byte in hex
1077 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1079 +|0x01|DO2 set to low
1080 +|0x00|DO2 set to high
1081 +|0x11|DO2 NO Action
1459 1459  
1460 -0x01 : DO3 set to low
1083 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1461 1461  
1462 -0x00 : DO3 set to high
1085 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1087 +|0x01|DO3 set to low
1088 +|0x00|DO3 set to high
1089 +|0x11|DO3 NO Action
1463 1463  
1464 -0x11 : DO3 NO action
1091 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1465 1465  
1466 1466  
1467 -**latching_time** : 4 bytes in hex
1468 -
1469 1469  (% style="color:red" %)**Note: **
1470 1470  
1471 - Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1096 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1472 1472  
1473 - Before firmware v1.6.0, the latch time only supported 2 bytes.
1098 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1474 1474  
1475 -(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1476 -)))
1477 -|(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1478 -|(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1479 -**A9 01 01 01 01 07 D0**
1100 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1480 1480  
1481 -DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1482 1482  
1103 +**Example payload:**
1483 1483  
1484 -**A9 01 00 01 11 07 D0**
1105 +**~1. A9 01 01 01 01 07 D0**
1485 1485  
1486 -DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1107 +DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1487 1487  
1109 +**2. A9 01 00 01 11 07 D0**
1488 1488  
1489 -**A9 00 00 00 00 07 D0**
1111 +DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1490 1490  
1491 -DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1113 +**3. A9 00 00 00 00 07 D0**
1492 1492  
1115 +DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1493 1493  
1494 -**A9 00 11 01 00 07 D0**
1117 +**4. A9 00 11 01 00 07 D0**
1495 1495  
1496 -DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1497 -)))
1119 +DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1498 1498  
1499 -==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1500 1500  
1501 1501  
1502 -(% style="color:#037691" %)**AT Command:**
1123 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1503 1503  
1504 -There is no AT Command to control the Relay Output.
1505 1505  
1126 +* (% style="color:#037691" %)**AT Command:**
1506 1506  
1507 -(% style="color:#037691" %)**Downlink Payload**
1128 +There is no AT Command to control Relay Output
1508 1508  
1509 -(% border="2" style="width:500px" %)
1510 -|(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1511 -|(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1512 -**RO1_status** : 1 byte in hex
1513 1513  
1514 -00: Close
1131 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1515 1515  
1516 -01: Open
1133 +(% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1517 1517  
1518 -11: No action
1519 1519  
1136 +(((
1137 +If payload = 0x030100, it means set RO1 to close and RO2 to open.
1138 +)))
1520 1520  
1521 -**RO2_status** : 1 byte in hex
1140 +(((
1141 +00: Closed ,  01: Open , 11: No action
1522 1522  
1523 -00: Close
1143 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1145 +|03  00  11|Open|No Action
1146 +|03  01  11|Close|No Action
1147 +|03  11  00|No Action|Open
1148 +|03  11  01|No Action|Close
1149 +|03  00  00|Open|Open
1150 +|03  01  01|Close|Close
1151 +|03  01  00|Close|Open
1152 +|03  00  01|Open|Close
1153 +)))
1524 1524  
1525 -01: Open
1155 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1526 1526  
1527 -11: No action
1528 -)))
1529 -|(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1530 -|(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1531 -(% border="2" %)
1532 -|=Payload|=RO1|=RO2
1533 -|03  00  11|Open|No action
1534 -|03  01  11|Close|No action
1535 -|03 11  00|No action|Open
1536 -|03 11  01|No action|Close
1537 -|03 00 00|Open|Open
1538 -|03 01 01|Close|Close
1539 -|03 01 00|Close|Open
1540 -|03 00 01|Open|Close
1541 1541  
1542 -(% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1543 -)))
1544 1544  
1545 1545  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1546 1546  
1547 1547  
1548 -Controls the relay output time.
1162 +* (% style="color:#037691" %)**AT Command:**
1549 1549  
1164 +There is no AT Command to control Relay Output
1550 1550  
1551 -(% style="color:#037691" %)**AT Command:**
1552 1552  
1553 -There is no AT Command to control the Relay Output
1167 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1554 1554  
1169 +(% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1555 1555  
1556 -(% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1557 1557  
1558 -(% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1172 +This is to control the relay output time of relay. Include four bytes:
1559 1559  
1174 +(% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1560 1560  
1561 -This controls the relay output time and includes 4 bytes:
1176 +(% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1562 1562  
1563 -(% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1178 +01: Relays will change back to original state after timeout.
1564 1564  
1565 -(% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1180 +00: Relays will change to an inverter state after timeout
1566 1566  
1567 -01: Relays will change back to their original state after a timeout.
1568 1568  
1569 -00: Relays will change to the inverter state after a timeout.
1183 +(% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1570 1570  
1571 -
1572 -(% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1573 -
1574 1574  [[image:image-20221008095908-1.png||height="364" width="564"]]
1575 1575  
1576 1576  
1577 -(% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1188 +(% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1578 1578  
1579 1579  
1580 1580  (% style="color:red" %)**Note:**
1581 1581  
1582 - Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1193 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1583 1583  
1584 - Before firmware v1.6.0, the latch time only supported 2 bytes.
1195 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1585 1585  
1586 1586  
1587 -(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1198 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1588 1588  
1589 1589  
1590 1590  **Example payload:**
... ... @@ -1591,19 +1591,19 @@
1591 1591  
1592 1592  **~1. 05 01 11 07 D0**
1593 1593  
1594 -Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1205 +Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1595 1595  
1596 1596  **2. 05 01 10 07 D0**
1597 1597  
1598 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1209 +Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1599 1599  
1600 1600  **3. 05 00 01 07 D0**
1601 1601  
1602 -Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1213 +Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1603 1603  
1604 1604  **4. 05 00 00 07 D0**
1605 1605  
1606 -Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1217 +Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1607 1607  
1608 1608  
1609 1609  
... ... @@ -1610,397 +1610,157 @@
1610 1610  ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1611 1611  
1612 1612  
1613 -When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1224 +When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1614 1614  
1615 -(% style="color:#037691" %)**AT Command**
1226 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1616 1616  
1617 -(% border="2" style="width:500px" %)
1618 -|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1619 -|(% style="width:137px" %)**Response**|(% style="width:361px" %)
1620 -|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1621 -**voltage** : voltage threshold in mV
1228 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1622 1622  
1623 -**logic**:
1230 +(% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1624 1624  
1625 -**0** : lower than
1626 1626  
1627 -**1**: higher than
1628 1628  
1629 -if you leave the logic parameter blank, it is considered 0
1630 -)))
1631 -|(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1632 -AT+VOLMAX=20000
1633 -
1634 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1635 -
1636 -AT+VOLMAX=20000,0
1637 -
1638 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1639 -
1640 -AT+VOLMAX=20000,1
1641 -
1642 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1643 -)))
1644 -
1645 -(% style="color:#037691" %)**Downlink Payload**
1646 -
1647 -(% border="2" style="width:500px" %)
1648 -|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1649 -|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1650 -**prefix** : A5 (hex)
1651 -
1652 -**voltage** : voltage threshold in mV (2 bytes in hex)
1653 -
1654 -**logic**: (1 byte in hexadecimal)
1655 -
1656 -**0** : lower than
1657 -
1658 -**1**: higher than
1659 -
1660 -if you leave the logic parameter blank, it is considered 1 (higher than)
1661 -)))
1662 -|(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1663 -A5 **4E 20**
1664 -
1665 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1666 -
1667 -A5 **4E 20 00**
1668 -
1669 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1670 -
1671 -A5 **4E 20 01**
1672 -
1673 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1674 -)))
1675 -
1676 1676  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1677 1677  
1678 1678  
1679 -This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1237 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1680 1680  
1681 -(% style="color:#037691" %)**AT Command**
1239 +(% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1682 1682  
1683 -(% border="2" style="width:500px" %)
1684 -|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1685 -|(% style="width:134px" %)**Response**|(% style="width:364px" %)
1686 -|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1687 -**counting_parameter** :
1241 +(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1688 1688  
1689 -1: COUNT1
1690 1690  
1691 -2: COUNT2
1244 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1692 1692  
1693 -3: AVI1 Count
1246 +(% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1694 1694  
1695 -**number** : Start number
1696 -)))
1697 -|(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1698 -AT+SETCNT=1,10
1699 1699  
1700 -Sets the COUNT1 to 10.
1701 -)))
1702 1702  
1703 -(% style="color:#037691" %)**Downlink Payload**
1704 -
1705 -(% border="2" style="width:500px" %)
1706 -|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1707 -|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1708 -prefix : A8 (hex)
1709 -
1710 -**counting_parameter** : (1 byte in hexadecimal)
1711 -
1712 -1: COUNT1
1713 -
1714 -2: COUNT2
1715 -
1716 -3: AVI1 Count
1717 -
1718 -**number** : Start number, 4 bytes in hexadecimal
1719 -)))
1720 -|(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1721 -A8 **01 00 00 00 0A**
1722 -
1723 -Sets the COUNT1 to 10.
1724 -)))
1725 -
1726 1726  ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1727 1727  
1728 1728  
1729 -This command clears the counting in counting mode.
1253 +Clear counting for counting mode
1730 1730  
1731 -(% style="color:#037691" %)**AT Command**
1255 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1732 1732  
1733 -(% border="2" style="width:500px" %)
1734 -|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1735 -|(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1257 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1736 1736  
1737 -(% style="color:#037691" %)**Downlink Payload**
1259 +(% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1738 1738  
1739 -(% border="2" style="width:500px" %)
1740 -|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1741 -|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1742 -prefix : A6 (hex)
1743 1743  
1744 -clear? : 01 (hex)
1745 -)))
1746 -|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1747 1747  
1748 -==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1749 1749  
1750 1750  
1751 -This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1266 +* (% style="color:#037691" %)**AT Command:**
1752 1752  
1753 -(% style="color:#037691" %)**AT Command**
1268 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1754 1754  
1755 -(% border="2" style="width:500px" %)
1756 -|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1757 -|(% style="width:124px" %)**Response**|(% style="width:374px" %)
1758 -|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1759 -|(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1760 -AT+COUTIME=60
1761 1761  
1762 -Sets the device to save its counting results to the memory every 60 seconds.
1763 -)))
1271 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1764 1764  
1765 -(% style="color:#037691" %)**Downlink Payload**
1273 +(% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1766 1766  
1767 -(% border="2" style="width:500px" %)
1768 -|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1769 -|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1770 -prefix : A7
1771 -
1772 -time : seconds, 3 bytes in hexadecimal
1275 +(((
1276 +range: aa bb cc:0 to 16777215,  (unit:second)
1773 1773  )))
1774 -|(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1775 -A7 **00 00 3C**
1776 1776  
1777 -Sets the device to save its counting results to the memory every 60 seconds.
1778 -)))
1779 1779  
1780 -==== 3.4.2.20 Reset saved RO and DO states ====
1781 1781  
1281 +==== 3.4.2.20 Reset save RO DO state ====
1782 1782  
1783 -This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1784 1784  
1785 -(% style="color:#037691" %)**AT Command**
1284 +* (% style="color:#037691" %)**AT Command:**
1786 1786  
1787 -(% border="2" style="width:500px" %)
1788 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1789 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1790 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1791 -**state** :
1286 +(% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1792 1792  
1793 -**0** RODO will close when the device joins the network. (default)
1288 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1794 1794  
1795 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1796 -)))
1797 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1798 -(% style="color:blue" %)**AT+RODORESET=1 **
1799 1799  
1800 -RODO will close when the device joins the network. (default)
1291 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1801 1801  
1802 -(% style="color:blue" %)**AT+RODORESET=0 **
1293 +(% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1803 1803  
1804 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1805 -)))
1806 1806  
1807 -(% style="color:#037691" %)**Downlink Payload**
1808 1808  
1809 -(% border="2" style="width:500px" %)
1810 -|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1811 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1812 -**prefix** : AD
1813 -
1814 -**state** :
1815 -
1816 -**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1817 -
1818 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1819 -)))
1820 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1821 -AD **01**
1822 -
1823 -RODO will close when the device joins the network. (default)
1824 -
1825 -AD **00**
1826 -
1827 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1828 -)))
1829 -
1830 1830  ==== 3.4.2.21 Encrypted payload ====
1831 1831  
1832 1832  
1833 -This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1300 +* (% style="color:#037691" %)**AT Command:**
1834 1834  
1835 -(% style="color:#037691" %)**AT Command:**
1302 +(% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1836 1836  
1837 -(% border="2" style="width:500px" %)
1838 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1839 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1840 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1841 -**state** :
1304 +(% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1842 1842  
1843 -**1** : The payload is uploaded without encryption
1844 1844  
1845 -**0** : The payload is encrypted when uploaded (default)
1846 -)))
1847 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1848 -AT+DECRYPT=1
1849 1849  
1850 -The payload is uploaded without encryption
1851 -
1852 -AT+DECRYPT=0
1853 -
1854 -The payload is encrypted when uploaded (default)
1855 -)))
1856 -
1857 -There is no downlink payload for this configuration.
1858 -
1859 -
1860 1860  ==== 3.4.2.22 Get sensor value ====
1861 1861  
1862 1862  
1863 -This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1311 +* (% style="color:#037691" %)**AT Command:**
1864 1864  
1865 -(% style="color:#037691" %)**AT Command**
1313 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1866 1866  
1867 -(% border="2" style="width:500px" %)
1868 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1869 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1870 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1871 -**state** :
1315 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1872 1872  
1873 -**0 **: Retrieves the current sensor reading via the serial port.
1874 1874  
1875 -**1 **: Retrieves and uploads the current sensor reading via the serial port.
1876 -)))
1877 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1878 -AT+GETSENSORVALUE=0
1879 1879  
1880 -Retrieves the current sensor reading via the serial port.
1319 +==== 3.4.2.23 Resets the downlink packet count ====
1881 1881  
1882 -AT+GETSENSORVALUE=1
1883 1883  
1884 -Retrieves and uplinks the current sensor reading via the serial port.
1885 -)))
1322 +* (% style="color:#037691" %)**AT Command:**
1886 1886  
1887 -There is no downlink payload for this configuration.
1324 +(% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1888 1888  
1326 +(% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1889 1889  
1890 -==== 3.4.2.23 Resetting the downlink packet count ====
1891 1891  
1892 1892  
1893 -This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1894 -
1895 -(% style="color:#037691" %)**AT Command**
1896 -
1897 -(% border="2" style="width:500px" %)
1898 -|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1899 -|(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1900 -
1901 -)))
1902 -|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1903 -**state **:
1904 -
1905 -**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1906 -
1907 -
1908 -**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1909 -)))
1910 -|(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1911 -AT+DISFCNTCHECK=0
1912 -
1913 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1914 -
1915 -AT+DISFCNTCHECK=1
1916 -
1917 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1918 -)))
1919 -
1920 -There is no downlink payload for this configuration.
1921 -
1922 -
1923 1923  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1924 1924  
1925 1925  
1926 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1333 +* (% style="color:#037691" %)**AT Command:**
1927 1927  
1928 -(% style="color:#037691" %)**AT Command**
1335 +(% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1929 1929  
1930 -(% border="2" style="width:500px" %)
1931 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1932 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1933 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1934 -**state** :
1337 +(% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1935 1935  
1936 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1937 1937  
1938 -**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1939 -)))
1940 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1941 -AT+DISMACANS=0
1340 +* (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1942 1942  
1943 -When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1342 +(% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1944 1944  
1945 -AT+DISMACANS=1
1946 1946  
1947 -When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1948 -)))
1949 1949  
1950 -(% style="color:#037691" %)**Downlink Payload**
1951 -
1952 -(% border="2" style="width:500px" %)
1953 -|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1954 -|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1955 -**prefix** : 21
1956 -
1957 -**state** : (2 bytes in hexadecimal)
1958 -
1959 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1960 -
1961 -**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1962 -)))
1963 -|(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1964 -21 **00 01**
1965 -
1966 -Set DISMACANS=1
1967 -)))
1968 -
1969 1969  ==== 3.4.2.25 Copy downlink to uplink ====
1970 1970  
1971 1971  
1972 -This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1349 +* (% style="color:#037691" %)**AT Command**(%%)**:**
1973 1973  
1974 -(% style="color:#037691" %)**AT Command**(%%)**:**
1351 +(% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1975 1975  
1976 -(% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1353 +Example**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1977 1977  
1978 -Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1979 1979  
1980 -
1981 1981  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1982 1982  
1983 1983  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1984 1984  
1360 +
1361 +
1985 1985  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1986 1986  
1987 1987  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1988 1988  
1989 1989  
1990 -(% style="color:#037691" %)**Downlink Payload**(%%)**:**
1991 1991  
1992 -There is no downlink option available for this feature.
1368 +==== 3.4.2.26 Query version number and frequency band 、TDC ====
1993 1993  
1994 1994  
1995 -==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1996 -
1997 -
1998 -This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1999 -
2000 2000  * (((
2001 2001  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2002 2002  
2003 -(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
1374 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
2004 2004  
2005 2005  
2006 2006  )))
... ... @@ -2012,37 +2012,30 @@
2012 2012  
2013 2013  == 3.5 Integrating with ThingsEye.io ==
2014 2014  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2015 2015  
2016 -The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
2017 2017  
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
2018 2018  
2019 -=== 3.5.1 Configuring The Things Stack ===
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
2020 2020  
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
2021 2021  
2022 -We use The Things Stack Sandbox in this example:
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
2023 2023  
2024 -* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2025 -* Select **MQTT** under **Integrations** in the left menu.
2026 -* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2027 -* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2028 -
2029 -{{info}}
2030 -The username and  password (API key) you created here are required in the next section.
2031 -{{/info}}
2032 -
2033 -[[image:tts-mqtt-integration.png]]
2034 -
2035 -
2036 2036  === 3.5.2 Configuring ThingsEye.io ===
2037 2037  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
2038 2038  
2039 -The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2040 -
2041 2041  * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2042 2042  * Under the **Integrations center**, click **Integrations**.
2043 2043  * Click the **Add integration** button (the button with the **+** symbol).
2044 2044  
2045 -[[image:thingseye-io-step-1.png]]
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
2046 2046  
2047 2047  
2048 2048  On the **Add integration** window, configure the following:
... ... @@ -2054,10 +2054,10 @@
2054 2054  * Ensure the following options are turned on.
2055 2055  ** Enable integration
2056 2056  ** Debug mode
2057 -** Allow creating devices or assets
1421 +** Allow create devices or assets
2058 2058  * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2059 2059  
2060 -[[image:thingseye-io-step-2.png]]
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
2061 2061  
2062 2062  
2063 2063  **Uplink data converter:**
... ... @@ -2068,18 +2068,18 @@
2068 2068  * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2069 2069  * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2070 2070  
2071 -[[image:thingseye-io-step-3.png]]
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
2072 2072  
2073 2073  
2074 2074  **Downlink data converter (this is an optional step):**
2075 2075  
2076 2076  * Click the **Create new** button if it is not selected by default.
2077 -* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
2078 2078  * Click the **JavaScript** button.
2079 -* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
2080 2080  * Click the **Next** button. You will be navigated to the **Connection** tab.
2081 2081  
2082 -[[image:thingseye-io-step-4.png]]
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
2083 2083  
2084 2084  
2085 2085  **Connection:**
... ... @@ -2086,7 +2086,7 @@
2086 2086  
2087 2087  * Choose **Region** from the **Host type**.
2088 2088  * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2089 -* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
2090 2090  * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2091 2091  
2092 2092  [[image:message-1.png]]
... ... @@ -2094,70 +2094,58 @@
2094 2094  
2095 2095  * Click the **Add** button.
2096 2096  
2097 -[[image:thingseye-io-step-5.png]]
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
2098 2098  
2099 2099  
2100 -Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
2101 2101  
2102 -[[image:thingseye.io_integrationsCenter_integrations.png]]
2103 2103  
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
2104 2104  
2105 -==== 3.5.2.1 Viewing integration details ====
2106 2106  
1470 +**Viewing integration details**:
2107 2107  
2108 -Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
2109 2109  
2110 -[[image:integration-details.png]]
1474 +[[image:integration-details.png||height="686" width="1000"]]
2111 2111  
2112 2112  
2113 2113  If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2114 2114  
2115 -{{info}}
2116 -See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2117 -{{/info}}
1479 +Note: See also ThingsEye documentation.
2118 2118  
2119 2119  
2120 -==== 3.5.2.2 Viewing events ====
1482 +**Viewing events:**
2121 2121  
1484 +This tab  displays all the uplink messages from the LT-22222-L.
2122 2122  
2123 -The **Events **tab displays all the uplink messages from the LT-22222-L.
2124 -
1486 +* Click on the **Events **tab.
2125 2125  * Select **Debug **from the **Event type** dropdown.
2126 2126  * Select the** time frame** from the **time window**.
2127 2127  
2128 -[[image:thingseye-events.png]]
1490 +[insert image]
2129 2129  
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
2130 2130  
2131 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
1494 +[insert image]
2132 2132  
2133 -[[image:thingseye-json.png]]
2134 2134  
1497 +**Deleting the integration**:
2135 2135  
2136 -==== 3.5.2.3 Deleting an integration ====
1499 +If you want to delete this integration, click the **Delete integratio**n button.
2137 2137  
2138 2138  
2139 -If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2140 -
2141 -
2142 -==== 3.5.2.4 Viewing sensor data on a dashboard ====
2143 -
2144 -
2145 -You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-L. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2146 -
2147 -[[image:lt-22222-l-dashboard.png]]
2148 -
2149 -
2150 2150  == 3.6 Interface Details ==
2151 2151  
2152 -=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
1504 +=== 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
2153 2153  
2154 2154  
2155 -Supports** NPN-type **sensors.
1507 +Support NPN-type sensor
2156 2156  
2157 2157  [[image:1653356991268-289.png]]
2158 2158  
2159 2159  
2160 -=== 3.6.2 Digital Input Ports: DI1/DI2 ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
2161 2161  
2162 2162  
2163 2163  (((
... ... @@ -2274,20 +2274,20 @@
2274 2274  )))
2275 2275  
2276 2276  
2277 -(% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
2278 2278  
2279 -From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
2280 2280  
2281 -To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
2282 2282  
2283 2283  [[image:image-20230616235145-1.png]]
2284 2284  
2285 -(% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2286 2286  
2287 2287  [[image:image-20240219115718-1.png]]
2288 2288  
2289 2289  
2290 -=== 3.6.3 Digital Output Ports: DO1/DO2 ===
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
2291 2291  
2292 2292  
2293 2293  (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
... ... @@ -2349,7 +2349,7 @@
2349 2349  (((
2350 2350  The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2351 2351  
2352 -(% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2353 2353  )))
2354 2354  
2355 2355  [[image:image-20220524100215-9.png]]
... ... @@ -2358,21 +2358,19 @@
2358 2358  [[image:image-20220524100215-10.png||height="382" width="723"]]
2359 2359  
2360 2360  
2361 -== 3.7 LED Indicators ==
1713 +== 3.7 LEDs Indicators ==
2362 2362  
2363 2363  
2364 -The table below lists the behaviour of LED indicators for each port function.
2365 -
2366 2366  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2367 2367  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2368 -|**PWR**|Always on when there is power
1718 +|**PWR**|Always on if there is power
2369 2369  |**TX**|(((
2370 2370  (((
2371 -Device booting: TX blinks 5 times.
1721 +Device boot: TX blinks 5 times.
2372 2372  )))
2373 2373  
2374 2374  (((
2375 -Successful network joins: TX remains ON for 5 seconds.
1725 +Successful join network: TX ON for 5 seconds.
2376 2376  )))
2377 2377  
2378 2378  (((
... ... @@ -2379,7 +2379,7 @@
2379 2379  Transmit a LoRa packet: TX blinks once
2380 2380  )))
2381 2381  )))
2382 -|**RX**|RX blinks once when a packet is received.
1732 +|**RX**|RX blinks once when receiving a packet.
2383 2383  |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2384 2384  |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2385 2385  |**DI1**|(((
... ... @@ -2393,20 +2393,16 @@
2393 2393  
2394 2394  = 4. Using AT Commands =
2395 2395  
2396 -
2397 2397  The LT-22222-L supports programming using AT Commands.
2398 2398  
2399 -
2400 2400  == 4.1 Connecting the LT-22222-L to a PC ==
2401 2401  
2402 -
2403 2403  (((
2404 -You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1752 +)))
2405 2405  
2406 -[[image:usb-ttl-audio-jack-connection.jpg]]
1754 +[[image:1653358238933-385.png]]
2407 2407  
2408 -
2409 -)))
2410 2410  
2411 2411  (((
2412 2412  On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
... ... @@ -2416,60 +2416,60 @@
2416 2416  
2417 2417  
2418 2418  (((
2419 -== 4.2 LT-22222-L related AT commands ==
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2420 2420  
2421 -
1767 +== 4.2 LT-22222-L related AT commands ==
2422 2422  )))
2423 2423  
2424 2424  (((
2425 -The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
2426 2426  
2427 -* **##AT##+<CMD>?** : Help on <CMD>
2428 -* **##AT##+<CMD>** : Run <CMD>
2429 -* **##AT##+<CMD>=<value>** : Set the value
2430 -* **##AT##+<CMD>=?** : Get the value
2431 -* ##**ATZ**##: Trigger a reset of the MCU
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
2432 2432  * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2433 2433  * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2434 2434  * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2435 2435  * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2436 -* ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2437 -* **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2438 -* **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2439 -* **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2440 -* ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2441 -* **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2442 -* **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2443 -* ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2444 -* ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2445 -* ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2446 -* ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2447 -* ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2448 -* ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2449 -* ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2450 -* ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2451 -* ##**AT+NWKID**##: Get or set the Network ID
2452 -* ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2453 -* ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2454 -* ##**AT+CLASS**##: Get or set the Device Class
2455 -* ##**AT+JOIN**##: Join Network
2456 -* ##**AT+NJS**##: Get OTAA Join Status
2457 -* ##**AT+SENDB**##: Send hexadecimal data along with the application port
2458 -* ##**AT+SEND**##: Send text data along with the application port
2459 -* ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2460 -* ##**AT+RECV**##: Print the last received data in raw format
2461 -* ##**AT+VER**##: Get the current image version and Frequency Band
2462 -* ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2463 -* ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2464 -* ##**AT+SNR**##: Get the SNR of the last received packet
2465 -* ##**AT+RSSI**##: Get the RSSI of the last received packet
2466 -* ##**AT+TDC**##: Get or set the application data transmission interval in ms
2467 -* ##**AT+PORT**##: Get or set the application port
2468 -* ##**AT+DISAT**##: Disable AT commands
2469 -* ##**AT+PWORD**##: Set password, max 9 digits
2470 -* ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2471 -* ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2472 -* ##**AT+CFG**##: Print all settings
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
2473 2473  )))
2474 2474  
2475 2475  
... ... @@ -2481,28 +2481,28 @@
2481 2481  
2482 2482  
2483 2483  (((
2484 -(% style="color:blue" %)**If the device has not yet joined the network:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
2485 2485  )))
2486 2486  )))
2487 2487  
2488 2488  (((
2489 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2490 2490  )))
2491 2491  
2492 2492  (((
2493 -(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
2494 2494  )))
2495 2495  
2496 2496  (((
2497 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2498 2498  )))
2499 2499  
2500 2500  (((
2501 -(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
2502 2502  )))
2503 2503  
2504 2504  (((
2505 -(% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
2506 2506  )))
2507 2507  
2508 2508  
... ... @@ -2525,20 +2525,20 @@
2525 2525  
2526 2526  
2527 2527  (((
2528 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
1874 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2529 2529  )))
2530 2530  )))
2531 2531  
2532 2532  (((
2533 -(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
1879 +(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2534 2534  )))
2535 2535  
2536 2536  (((
2537 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
1883 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2538 2538  )))
2539 2539  
2540 2540  (((
2541 -(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
1887 +(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2542 2542  )))
2543 2543  
2544 2544  (((
... ... @@ -2558,19 +2558,19 @@
2558 2558  )))
2559 2559  
2560 2560  (((
2561 -(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
1907 +(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2562 2562  )))
2563 2563  
2564 2564  (((
2565 -(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
1911 +(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2566 2566  )))
2567 2567  
2568 2568  (((
2569 -(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
1915 +(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2570 2570  )))
2571 2571  
2572 2572  (((
2573 -(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
1919 +(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2574 2574  )))
2575 2575  
2576 2576  (((
... ... @@ -2584,13 +2584,14 @@
2584 2584  )))
2585 2585  
2586 2586  (((
2587 -**~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
1933 +**~1. Make sure the device is set to ABP mode in the IoT Server.**
2588 2588  
2589 -**2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
1935 +**2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2590 2590  
2591 -**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1937 +**3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1938 +dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2592 2592  
2593 -**4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
1940 +**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2594 2594  )))
2595 2595  
2596 2596  (((
... ... @@ -2602,7 +2602,7 @@
2602 2602  
2603 2603  
2604 2604  (((
2605 -(% style="color:blue" %)**If the sensor has JOINED:**
1952 +(% style="color:blue" %)**If sensor JOINED:**
2606 2606  
2607 2607  (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2608 2608  
... ... @@ -2612,22 +2612,21 @@
2612 2612  
2613 2613  = 5. Case Study =
2614 2614  
2615 -== 5.1 Counting how many objects pass through the flow line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2616 2616  
2617 2617  
2618 -See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2619 2619  
2620 2620  
2621 2621  = 6. FAQ =
2622 2622  
2623 -
2624 2624  This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2625 2625  
2626 -
2627 2627  == 6.1 How to update the firmware? ==
2628 2628  
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2629 2629  
2630 -Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
1976 +Updating your LT-22222-L with the latest firmware version helps to:
2631 2631  
2632 2632  * Support new features
2633 2633  * Fix bugs
... ... @@ -2636,7 +2636,7 @@
2636 2636  You will need the following things before proceeding:
2637 2637  
2638 2638  * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2639 -* USB to TTL adapter/converter
1985 +* USB to TTL adapter
2640 2640  * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2641 2641  * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2642 2642  
... ... @@ -2646,8 +2646,8 @@
2646 2646  
2647 2647  Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2648 2648  
2649 -[[image:usb-ttl-audio-jack-connection.jpg]]
2650 2650  
1996 +[[image:1653359603330-121.png]]
2651 2651  
2652 2652  
2653 2653  Start the STM32 Flash Loader and choose the correct COM port to update.
... ... @@ -2671,7 +2671,7 @@
2671 2671  [[image:image-20220524104033-15.png]]
2672 2672  
2673 2673  
2674 -(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2675 2675  
2676 2676  [[image:1653360054704-518.png||height="186" width="745"]]
2677 2677  
... ... @@ -2685,13 +2685,13 @@
2685 2685  )))
2686 2686  
2687 2687  (((
2688 -You can follow the introductions on [[how to upgrade the image>>||anchor="H6.1Howtoupdatethefirmware3F"]]. When downloading, select the required image file.
2034 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2689 2689  )))
2690 2690  
2691 2691  (((
2692 2692  
2693 2693  
2694 -== 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2695 2695  
2696 2696  
2697 2697  )))
... ... @@ -2698,13 +2698,13 @@
2698 2698  
2699 2699  (((
2700 2700  (((
2701 -In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2702 2702  )))
2703 2703  )))
2704 2704  
2705 2705  (((
2706 2706  (((
2707 -We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2708 2708  
2709 2709  
2710 2710  )))
... ... @@ -2711,55 +2711,52 @@
2711 2711  )))
2712 2712  
2713 2713  (((
2714 -(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2715 2715  
2716 -[[image:lt-22222-l-abp.png||height="686" width="1000"]]
2062 +
2717 2717  )))
2718 2718  
2719 2719  (((
2066 +[[image:1653360231087-571.png||height="401" width="727"]]
2067 +
2720 2720  
2721 2721  )))
2722 2722  
2723 -{{warning}}
2724 -Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2725 -{{/warning}}
2071 +(((
2072 +(% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2073 +)))
2726 2726  
2727 2727  
2076 +
2728 2728  (((
2729 -(% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2078 +(% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2730 2730  
2731 2731  
2732 2732  )))
2733 2733  
2734 2734  (((
2735 -(% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2084 +(% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2736 2736  
2737 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2086 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2738 2738  
2739 -(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2088 +(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2740 2740  
2741 -(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2090 +(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2742 2742  
2743 -(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2092 +(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2744 2744  
2745 -(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2094 +(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2746 2746  
2747 -(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2096 +(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2748 2748  
2749 -(% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2098 +(% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2750 2750  
2751 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2752 -
2753 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2754 -
2755 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2756 -
2757 -(% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2100 +(% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2758 2758  )))
2759 2759  
2760 2760  
2761 2761  (((
2762 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2105 +As shown in below:
2763 2763  )))
2764 2764  
2765 2765  [[image:1653360498588-932.png||height="485" width="726"]]
... ... @@ -2775,7 +2775,7 @@
2775 2775  
2776 2776  
2777 2777  (((
2778 -You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2779 2779  
2780 2780  
2781 2781  == 6.6 Can I use point-to-point communication with LT-22222-L? ==
... ... @@ -2782,8 +2782,6 @@
2782 2782  
2783 2783  
2784 2784  Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2785 -
2786 -
2787 2787  )))
2788 2788  
2789 2789  (((
... ... @@ -2793,9 +2793,9 @@
2793 2793  * If the device is not properly shut down and is directly powered off.
2794 2794  * It will default to a power-off state.
2795 2795  * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2796 -* After a restart, the status before the power failure will be read from Flash.
2137 +* After a restart, the status before the power failure will be read from flash.
2797 2797  
2798 -== 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2799 2799  
2800 2800  
2801 2801  The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
... ... @@ -2807,7 +2807,7 @@
2807 2807  == 6.9 Can the LT-22222-L save the RO state? ==
2808 2808  
2809 2809  
2810 -To enable this feature, the firmware version must be 1.6.0 or higher.
2151 +The firmware version must be at least 1.6.0.
2811 2811  
2812 2812  
2813 2813  == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
... ... @@ -2817,11 +2817,6 @@
2817 2817  
2818 2818  
2819 2819  = 7. Troubleshooting =
2820 -
2821 -
2822 -This section provides some known troubleshooting tips.
2823 -
2824 -
2825 2825  )))
2826 2826  
2827 2827  (((
... ... @@ -2861,11 +2861,11 @@
2861 2861  )))
2862 2862  
2863 2863  
2864 -== 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2865 2865  
2866 2866  
2867 2867  The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2868 -Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2869 2869  
2870 2870  
2871 2871  = 8. Ordering information =
... ... @@ -2885,15 +2885,15 @@
2885 2885  * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2886 2886  * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2887 2887  
2888 -= 9. Package information =
2224 += 9. Packing information =
2889 2889  
2890 2890  
2891 2891  **Package includes**:
2892 2892  
2893 -* 1 x LT-22222-L I/O Controller
2894 -* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2895 -* 1 x bracket for DIN rail mounting
2896 -* 1 x 3.5 mm programming cable
2229 +* LT-22222-L I/O Controller x 1
2230 +* Stick Antenna for LoRa RF part x 1
2231 +* Bracket for controller x1
2232 +* 3.5mm Programming cable x 1
2897 2897  
2898 2898  **Dimension and weight**:
2899 2899  
Screenshot 2024-11-23 at 18.27.11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -143.4 KB
Content
Screenshot 2024-12-08 193946.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -32.4 KB
Content
dragino-lorawan-nw-lt-22222-n.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -267.3 KB
Content
dragino-ttn-te.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -273.8 KB
Content
lorawan-nw.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -250.6 KB
Content
lt-22222-l-abp.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -321.4 KB
Content
lt-22222-l-dashboard.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -352.8 KB
Content
lt-22222-l-joining.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -301.9 KB
Content
lt-22222-l-js-custom-payload-formatter.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -453.9 KB
Content
lt33222-l.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -31.3 KB
Content
thingseye-events.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -530.6 KB
Content
thingseye-json.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -554.8 KB
Content
usb-ttl-audio-jack-connection.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -394.4 KB
Content
usb-ttl-programming.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -462.9 KB
Content