Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -98,6 +98,7 @@ 98 98 * Automatic RF Sense and CAD with ultra-fast AFC. 99 99 * Packet engine up to 256 bytes with CRC. 100 100 101 + 101 101 == 1.3 Features == 102 102 103 103 ... ... @@ -109,6 +109,7 @@ 109 109 * Firmware upgradable via program port 110 110 * Counting 111 111 113 + 112 112 == 1.4 Applications == 113 113 114 114 ... ... @@ -119,17 +119,18 @@ 119 119 * Smart cities 120 120 * Smart factory 121 121 124 + 122 122 == 1.5 Hardware Variants == 123 123 124 124 125 125 (% border="1" cellspacing="3" style="width:510px" %) 126 126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description** 127 -|(% style="width:94px" %)**LT- 33222-L**|(% style="width:172px" %)(((130 +|(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)((( 128 128 (% style="text-align:center" %) 129 129 [[image:lt33222-l.jpg||height="110" width="95"]] 130 130 )))|(% style="width:256px" %)((( 131 -* 3x Digital Input (Bi-direction)132 -* 3x Digital Output134 +* 2 x Digital Input (Bi-direction) 135 +* 2 x Digital Output 133 133 * 2 x Relay Output (5A@250VAC / 30VDC) 134 134 * 2 x 0~~20mA Analog Input (res:0.01mA) 135 135 * 2 x 0~~30V Analog Input (res:0.01v) ... ... @@ -136,6 +136,7 @@ 136 136 * 1 x Counting Port 137 137 ))) 138 138 142 + 139 139 = 2. Assembling the device = 140 140 141 141 == 2.1 Connecting the antenna == ... ... @@ -151,11 +151,11 @@ 151 151 == 2.2 Terminals == 152 152 153 153 154 -The LT-22222-L has two screw terminal blocks. The upper screw t erminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.158 +The LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals. 155 155 156 156 **Upper screw terminal block (from left to right):** 157 157 158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2 ; width:381px" %)162 +(% border="1" cellspacing="3" style="width:381px;background-color:#f2f2f2" %) 159 159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function 160 160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground 161 161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage ... ... @@ -166,7 +166,7 @@ 166 166 167 167 **Lower screw terminal block (from left to right):** 168 168 169 -(% border="1" cellspacing="3" style="background-color:#f2f2f2 ; width:253px" %)173 +(% border="1" cellspacing="3" style="width:253px;background-color:#f2f2f2" %) 170 170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function 171 171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1 172 172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1 ... ... @@ -181,7 +181,6 @@ 181 181 182 182 == 2.3 Connecting LT-22222-L to a Power Source == 183 183 184 - 185 185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered. 186 186 187 187 {{warning}} ... ... @@ -194,27 +194,23 @@ 194 194 195 195 = 3. Registering LT-22222-L with a LoRaWAN Network Server = 196 196 197 - 198 198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. 199 199 200 200 201 -== 3.1 Prerequisites == 203 +=== 3.2.1 Prerequisites === 202 202 205 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 203 203 204 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 205 - 206 206 [[image:image-20230425173427-2.png||height="246" width="530"]] 207 207 208 208 {{info}} 209 -I fyou are unabletoset theprovided root key and other identifiers in the network server,youmustgeneratenew keysandidentifierswith the networkserverand configure thedevicewiththemusing ATcommands.210 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 210 210 {{/info}} 211 211 212 212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 213 213 215 +=== 3.2.2 The Things Stack === 214 214 215 -== 3.2 The Things Stack == 216 - 217 - 218 218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox. 219 219 220 220 {{info}} ... ... @@ -225,7 +225,7 @@ 225 225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform. 226 226 227 227 228 -[[image:dragino-lorawan-nw-lt-22222-n.jpg ||height="374" width="1400"]]227 +[[image:dragino-lorawan-nw-lt-22222-n.jpg]] 229 229 230 230 {{info}} 231 231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area. ... ... @@ -232,9 +232,8 @@ 232 232 {{/info}} 233 233 234 234 235 -=== 3.2.1 Setting up === 234 +==== 3.2.2.1 Setting up ==== 236 236 237 - 238 238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet. 239 239 * Log in to your The Things Stack Sandbox account. 240 240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs). ... ... @@ -241,9 +241,8 @@ 241 241 * Go to your application's page and click on the **End devices** in the left menu. 242 242 * On the End devices page, click on **+ Register end device**. Two registration options are available: 243 243 244 -==== 3.2. 1.1Using the LoRaWAN Device Repository ====242 +==== 3.2.2.2 Using the LoRaWAN Device Repository ==== 245 245 246 - 247 247 * On the **Register end device** page: 248 248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**. 249 249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists. ... ... @@ -261,21 +261,14 @@ 261 261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'. 262 262 ** In the **DevEUI** field, enter the **DevEUI**. 263 263 ** In the **AppKey** field, enter the **AppKey.** 264 -** In the **End device ID** field, enter a unique name for your LT-22222- Lwithin this application.261 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application. 265 265 ** Under **After registration**, select the **View registered end device** option. 266 -** Click **Register end device** button. 267 267 268 268 [[image:lt-22222-l-dev-repo-reg-p2.png]] 269 269 270 270 271 - *Youwill benavigatedto the**Deviceoverview** page.267 +==== 3.2.2.3 Adding device manually ==== 272 272 273 -[[image:lt-22222-device-overview.png]] 274 - 275 - 276 -==== 3.2.1.2 Adding device manually ==== 277 - 278 - 279 279 * On the **Register end device** page: 280 280 ** Select the option **Enter end device specifies manually** under **Input method**. 281 281 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list. ... ... @@ -305,11 +305,10 @@ 305 305 [[image:lt-22222-device-overview.png]] 306 306 307 307 308 -=== 3.2.2 Joining === 298 +==== 3.2.2.4 Joining ==== 309 309 300 +On the Device's page, click on **Live data** tab. The Live data panel for your device will display. 310 310 311 -On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank. 312 - 313 313 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. 314 314 315 315 ... ... @@ -316,17 +316,18 @@ 316 316 [[image:lt-22222-l-joining.png]] 317 317 318 318 319 -=== 3.2.3 Uplinks === 320 320 309 +==== 3.2.2.5 Uplinks ==== 321 321 322 -After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes. 323 323 324 - Clickononeofthe**Forward uplink data messages**toseeits payloadcontent.Thepayloadcontentisencapsulatedwithinthedecode_payload{}** JSONobject.312 +After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes. 325 325 314 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 315 + 326 326 [[image:lt-22222-ul-payload-decoded.png]] 327 327 328 328 329 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application]> End devices** >[**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.319 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes. 330 330 331 331 {{info}} 332 332 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters. ... ... @@ -335,18 +335,17 @@ 335 335 [[image:lt-22222-ul-payload-fmt.png]] 336 336 337 337 338 -We have writtena payload formatter that resolves some decoding issues present inTheThings StackDevice Repositorypayloadformatter. You can add it under the**Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:328 +We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]: 339 339 340 340 (% class="wikigeneratedid" %) 341 341 [[image:lt-22222-l-js-custom-payload-formatter.png]] 342 342 343 343 344 -=== 3.2. 4Downlinks ===334 +==== 3.2.2.6 Downlinks ==== 345 345 336 +When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**. 346 346 347 -When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**. 348 348 349 - 350 350 == 3.3 Working Modes and Uplink Payload formats == 351 351 352 352 ... ... @@ -366,16 +366,17 @@ 366 366 367 367 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes. 368 368 369 - 370 370 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 371 371 372 - 373 373 ((( 374 374 This is the default mode. 375 375 376 376 The uplink payload is 11 bytes long. 377 -(% style="display:none" wfd-invisible="true" %) 378 378 365 +(% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes. 366 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 367 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %) 368 + 379 379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 380 380 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 381 381 |Value|((( ... ... @@ -439,7 +439,6 @@ 439 439 440 440 MOD = 1 441 441 442 - 443 443 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 444 444 445 445 ... ... @@ -518,7 +518,6 @@ 518 518 519 519 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 520 520 521 - 522 522 (% style="color:red" %)**Note: The maximum count depends on the bytes it is. 523 523 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 524 524 It starts counting again when it reaches the maximum value.** ... ... @@ -572,7 +572,6 @@ 572 572 573 573 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting === 574 574 575 - 576 576 (% style="color:red" %)**Note:The maximum count depends on the bytes it is. 577 577 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 578 578 It starts counting again when it reaches the maximum value.** ... ... @@ -642,9 +642,8 @@ 642 642 643 643 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 644 644 645 - 646 646 (% style="color:red" %)**Note:The maximum count depends on the bytes it is. 647 -The maximum count for four bytes is FFFF (hex) = 65 535(dec).633 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 648 648 It starts counting again when it reaches the maximum value.** 649 649 650 650 ... ... @@ -729,7 +729,7 @@ 729 729 730 730 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 731 731 732 -AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage islower than 5V. Use 0 for parameters that are not in use)718 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 733 733 734 734 735 735 (% style="color:#4f81bd" %)**Trigger based on current**: ... ... @@ -785,7 +785,7 @@ 785 785 786 786 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 787 787 788 -MOD6 Payload: atotal of 11 bytes774 +MOD6 Payload: total of 11 bytes 789 789 790 790 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 791 791 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -799,7 +799,7 @@ 799 799 MOD(6) 800 800 ))) 801 801 802 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below .788 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 803 803 804 804 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 805 805 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** ... ... @@ -828,7 +828,7 @@ 828 828 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW. 829 829 830 830 831 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger ed. Total 1 byte as below.817 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 832 832 833 833 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 834 834 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** ... ... @@ -857,7 +857,7 @@ 857 857 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low. 858 858 859 859 860 -(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger ed. Total 1.846 +(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below 861 861 862 862 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 863 863 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0** ... ... @@ -867,7 +867,7 @@ 867 867 868 868 **Example:** 869 869 870 -00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger edby DI1.856 +00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1. 871 871 872 872 00000101: This means both DI1 and DI2 triggers are enabled. 873 873 ... ... @@ -878,7 +878,7 @@ 878 878 879 879 **AB 06** 880 880 881 -When thedevice receives this command, it will send the MOD6 payload.867 +When device receives this command, it will send the MOD6 payload. 882 882 883 883 884 884 === 3.3.7 Payload Decoder === ... ... @@ -899,7 +899,7 @@ 899 899 900 900 ((( 901 901 ((( 902 -There are two ty pes of commands:888 +There are two tytes of commands: 903 903 ))) 904 904 ))) 905 905 ... ... @@ -911,7 +911,7 @@ 911 911 912 912 913 913 ((( 914 -These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s. 900 +These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s. 915 915 916 916 917 917 ))) ... ... @@ -1102,7 +1102,7 @@ 1102 1102 |(% style="width:95px" %)**Example**|(% style="width:403px" %)((( 1103 1103 AB 06 1104 1104 1105 -Uplink the trigger settings. 1091 +Uplinks the trigger settings. 1106 1106 ))) 1107 1107 1108 1108 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ==== ... ... @@ -1160,7 +1160,7 @@ 1160 1160 Enable DI1 trigger, disable DI2 trigger 1161 1161 ))) 1162 1162 1163 -==== 3.4.2.7 Trigger1 – Set DI 1or DI3 as a trigger ====1149 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ==== 1164 1164 1165 1165 1166 1166 Sets DI1 or DI3 (for LT-33222-L) as a trigger. ... ... @@ -1331,7 +1331,7 @@ 1331 1331 ))) 1332 1332 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1333 1333 1334 -==== 3.4.2.11 Trigger – Set theminimum interval ====1320 +==== 3.4.2.11 Trigger – Set minimum interval ==== 1335 1335 1336 1336 1337 1337 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger. ... ... @@ -1349,7 +1349,7 @@ 1349 1349 1350 1350 The device won't respond to the second trigger within 5 minutes after the first trigger. 1351 1351 ))) 1352 -|(% style="width:113px" %) **Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**1338 +|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1353 1353 1354 1354 (% style="color:#037691" %)**Downlink Payload** 1355 1355 ... ... @@ -1365,7 +1365,7 @@ 1365 1365 1366 1366 The device won't respond to the second trigger within 5 minutes after the first trigger. 1367 1367 ))) 1368 -|(% style="width:112px" %) **Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**1354 +|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1369 1369 1370 1370 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ==== 1371 1371 ... ... @@ -1421,126 +1421,113 @@ 1421 1421 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ==== 1422 1422 1423 1423 1424 -(% style="color:#037691" %)**AT command**1410 +* (% style="color:#037691" %)**AT Command** 1425 1425 1426 1426 There is no AT command to control the digital output. 1427 1427 1428 1428 1429 -(% style="color:#037691" %)**Downlink payload**1415 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)** 1430 1430 1431 -(% border="2" style="width:500px" %) 1432 -|(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9 1433 -|(% style="width:116px" %)**Parameters**|(% style="width:382px" %)((( 1434 -**inverter_mode**: 1 byte in hex. 1417 +(% style="color:blue" %)**0xA9 aa bb cc **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control 1435 1435 1436 -**01:** DO pins revert to their original state after the timeout. 1437 -**00:** DO pins switch to an inverted state after the timeout. 1419 +This is to control the digital output time of DO pin. Include four bytes: 1438 1438 1421 +(% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9) 1439 1439 1440 - **DO1_control_method_and_port_status**-1byteinhex1423 +(% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode 1441 1441 1442 -0x01 : DO1 set to low 1425 +**01:** DO pins revert to their original state after the timeout. 1426 +**00:** DO pins switch to an inverted state after the timeout. 1443 1443 1444 -0x00 : DO1 set to high 1445 1445 1446 - 0x11:DO1NOaction1429 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status: 1447 1447 1431 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1432 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1433 +|0x01|DO1 set to low 1434 +|0x00|DO1 set to high 1435 +|0x11|DO1 NO Action 1448 1448 1449 -** DO2_control_method_and_port_status** - 1 byte in hex1437 +(% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status: 1450 1450 1451 -0x01 : DO2 set to low 1439 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1440 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1441 +|0x01|DO2 set to low 1442 +|0x00|DO2 set to high 1443 +|0x11|DO2 NO Action 1452 1452 1453 - 0x00:DO2 set to high1445 +(% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status: 1454 1454 1455 -0x11 : DO2 NO action 1447 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1448 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1449 +|0x01|DO3 set to low 1450 +|0x00|DO3 set to high 1451 +|0x11|DO3 NO Action 1456 1456 1453 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms) 1457 1457 1458 -**DO3_control_method_and_port_status **- 1 byte in hex 1459 1459 1460 -0x01 : DO3 set to low 1461 - 1462 -0x00 : DO3 set to high 1463 - 1464 -0x11 : DO3 NO action 1465 - 1466 - 1467 -**latching_time** : 4 bytes in hex 1468 - 1469 1469 (% style="color:red" %)**Note: ** 1470 1470 1471 - Since firmware v1.6.0, the latch time support s4 bytesor2 bytes1458 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes 1472 1472 1473 1473 Before firmware v1.6.0, the latch time only supported 2 bytes. 1474 1474 1475 1475 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.** 1476 -))) 1477 -|(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time> 1478 -|(% style="width:116px" %)**Example**|(% style="width:382px" %)((( 1479 -**A9 01 01 01 01 07 D0** 1480 1480 1481 -DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state. 1482 1482 1465 +**Example payload:** 1483 1483 1484 -**A9 01 0 001 1107 D0**1467 +**~1. A9 01 01 01 01 07 D0** 1485 1485 1486 -DO1 pin is set to high, DO2 pinis set to low, and DO3 pintakesnoaction.Thislastsfor 2 seconds and then revertsto the original state.1469 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state. 1487 1487 1471 +**2. A9 01 00 01 11 07 D0** 1488 1488 1489 - **A90000000007D0**1473 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state. 1490 1490 1475 +**3. A9 00 00 00 00 07 D0** 1476 + 1491 1491 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low. 1492 1492 1479 +**4. A9 00 11 01 00 07 D0** 1493 1493 1494 - **A90011010007D0**1481 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low. 1495 1495 1496 -DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low. 1497 -))) 1498 1498 1499 1499 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1500 1500 1501 1501 1502 -(% style="color:#037691" %)**AT Command:** 1487 +* (% style="color:#037691" %)**AT Command:** 1503 1503 1504 -There is no AT Command to control the Relay Output .1489 +There is no AT Command to control the Relay Output 1505 1505 1506 1506 1507 -(% style="color:#037691" %)**Downlink Payload** 1492 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x03):** 1508 1508 1509 -(% border="2" style="width:500px" %) 1510 -|(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03 1511 -|(% style="width:113px" %)**Parameters**|(% style="width:384px" %)((( 1512 -**RO1_status** : 1 byte in hex 1494 +(% style="color:blue" %)**0x03 aa bb ** (%%)~/~/ Sets RO1/RO2 output 1513 1513 1514 -00: Close 1515 1515 1516 -01: Open 1497 +((( 1498 +If the payload is 0x030100, it means setting RO1 to close and RO2 to open. 1499 +))) 1517 1517 1518 -11: No action 1501 +((( 1502 +00: Close , 01: Open , 11: No action 1519 1519 1520 - 1521 -**RO2_status** : 1 byte in hex 1522 - 1523 -00: Close 1524 - 1525 -01: Open 1526 - 1527 -11: No action 1504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1505 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1506 +|03 00 11|Open|No Action 1507 +|03 01 11|Close|No Action 1508 +|03 11 00|No Action|Open 1509 +|03 11 01|No Action|Close 1510 +|03 00 00|Open|Open 1511 +|03 01 01|Close|Close 1512 +|03 01 00|Close|Open 1513 +|03 00 01|Open|Close 1528 1528 ))) 1529 -|(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status> 1530 -|(% style="width:113px" %)**Example**|(% style="width:384px" %)((( 1531 -(% border="2" %) 1532 -|=Payload|=RO1|=RO2 1533 -|03 00 11|Open|No action 1534 -|03 01 11|Close|No action 1535 -|03 11 00|No action|Open 1536 -|03 11 01|No action|Close 1537 -|03 00 00|Open|Open 1538 -|03 01 01|Close|Close 1539 -|03 01 00|Close|Open 1540 -|03 00 01|Open|Close 1541 1541 1542 -(% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.** 1543 -))) 1516 +(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.** 1544 1544 1545 1545 1546 1546 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ==== ... ... @@ -1548,13 +1548,12 @@ 1548 1548 1549 1549 Controls the relay output time. 1550 1550 1524 +* (% style="color:#037691" %)**AT Command:** 1551 1551 1552 -(% style="color:#037691" %)**AT Command:** 1553 - 1554 1554 There is no AT Command to control the Relay Output 1555 1555 1556 1556 1557 -(% style="color:#037691" %)**Downlink Payload (prefix 0x05):** 1529 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x05):** 1558 1558 1559 1559 (% style="color:blue" %)**0x05 aa bb cc dd ** (%%)~/~/ Sets RO1/RO2 relays with time control 1560 1560 ... ... @@ -1565,9 +1565,9 @@ 1565 1565 1566 1566 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode 1567 1567 1568 -01: Relays will change back to their original state after atimeout.1540 +01: Relays will change back to their original state after timeout. 1569 1569 1570 -00: Relays will change to the inverter state after atimeout.1542 +00: Relays will change to the inverter state after timeout. 1571 1571 1572 1572 1573 1573 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status: ... ... @@ -1596,7 +1596,7 @@ 1596 1596 1597 1597 **2. 05 01 10 07 D0** 1598 1598 1599 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, andthen both will revert to their original state.1571 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state. 1600 1600 1601 1601 **3. 05 00 01 07 D0** 1602 1602 ... ... @@ -1627,7 +1627,7 @@ 1627 1627 1628 1628 **1**: higher than 1629 1629 1630 -if you leave thelogic parameter blank, it is considered 01602 +if you leave logic parameter blank, it is considered 0 1631 1631 ))) 1632 1632 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)((( 1633 1633 AT+VOLMAX=20000 ... ... @@ -1658,7 +1658,7 @@ 1658 1658 1659 1659 **1**: higher than 1660 1660 1661 -if you leave thelogic parameter blank, it is considered 1 (higher than)1633 +if you leave logic parameter blank, it is considered 1 (higher than) 1662 1662 ))) 1663 1663 |(% style="width:140px" %)**Example**|(% style="width:358px" %)((( 1664 1664 A5 **4E 20** ... ... @@ -1674,10 +1674,8 @@ 1674 1674 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1675 1675 ))) 1676 1676 1677 - 1678 1678 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ==== 1679 1679 1680 - 1681 1681 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration. 1682 1682 1683 1683 (% style="color:#037691" %)**AT Command** ... ... @@ -1725,10 +1725,8 @@ 1725 1725 Sets the COUNT1 to 10. 1726 1726 ))) 1727 1727 1728 - 1729 1729 ==== 3.4.2.18 Counting ~-~- Clear Counting ==== 1730 1730 1731 - 1732 1732 This command clears the counting in counting mode. 1733 1733 1734 1734 (% style="color:#037691" %)**AT Command** ... ... @@ -1926,7 +1926,7 @@ 1926 1926 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ==== 1927 1927 1928 1928 1929 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow. 1897 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow. 1930 1930 1931 1931 (% style="color:#037691" %)**AT Command** 1932 1932 ... ... @@ -1995,16 +1995,17 @@ 1995 1995 There is no downlink option available for this feature. 1996 1996 1997 1997 1998 -==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ==== 1966 +==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ==== 1999 1999 2000 2000 2001 -This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device. 1969 +This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device. 2002 2002 2003 2003 * ((( 2004 2004 (% style="color:#037691" %)**Downlink Payload**(%%)**:** 2005 2005 2006 -(% style="color:blue" %)**26 01 ** (%%) ~/~/ The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time. 1974 +(% style="color:blue" %)**26 01 ** (%%) ~/~/ The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time. 2007 2007 1976 + 2008 2008 2009 2009 ))) 2010 2010 ... ... @@ -2057,7 +2057,7 @@ 2057 2057 * Ensure the following options are turned on. 2058 2058 ** Enable integration 2059 2059 ** Debug mode 2060 -** Allow creat ingdevices or assets2029 +** Allow create devices or assets 2061 2061 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 2062 2062 2063 2063 [[image:thingseye-io-step-2.png]] ... ... @@ -2102,6 +2102,7 @@ 2102 2102 2103 2103 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors. 2104 2104 2074 + 2105 2105 [[image:thingseye.io_integrationsCenter_integrations.png]] 2106 2106 2107 2107 ... ... @@ -2131,7 +2131,7 @@ 2131 2131 [[image:thingseye-events.png]] 2132 2132 2133 2133 2134 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message**column of the desired message.2104 +* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message. 2135 2135 2136 2136 [[image:thingseye-json.png]] 2137 2137 ... ... @@ -2142,14 +2142,12 @@ 2142 2142 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page. 2143 2143 2144 2144 2145 -==== 3.5.2.4 Viewing sensorataon adashboard====2115 +==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ==== 2146 2146 2147 2147 2148 - You can create a dashboard withThingsEyeto visualize the sensor data coming from the LT-22222-L. The followingimageshowsaashboardcreatedfor the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.2118 +This will be added soon. 2149 2149 2150 -[[image:lt-22222-l-dashboard.png]] 2151 2151 2152 - 2153 2153 == 3.6 Interface Details == 2154 2154 2155 2155 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) === ... ... @@ -2352,7 +2352,7 @@ 2352 2352 ((( 2353 2353 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 2354 2354 2355 - (% style="color:red" %)**Note:**(%%)The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.2323 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 2356 2356 ))) 2357 2357 2358 2358 [[image:image-20220524100215-9.png]] ... ... @@ -2364,7 +2364,7 @@ 2364 2364 == 3.7 LED Indicators == 2365 2365 2366 2366 2367 -The table below lists the behavio ur of LED indicators for each port function.2335 +The table below lists the behavior of LED indicators for each port function. 2368 2368 2369 2369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 2370 2370 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** ... ... @@ -2371,11 +2371,11 @@ 2371 2371 |**PWR**|Always on when there is power 2372 2372 |**TX**|((( 2373 2373 ((( 2374 -Device boot ing: TX blinks 5 times.2342 +Device boot: TX blinks 5 times. 2375 2375 ))) 2376 2376 2377 2377 ((( 2378 -Successful network join s: TX remains ON for 5 seconds.2346 +Successful network join: TX remains ON for 5 seconds. 2379 2379 ))) 2380 2380 2381 2381 ((( ... ... @@ -2411,6 +2411,7 @@ 2411 2411 2412 2412 ))) 2413 2413 2382 + 2414 2414 ((( 2415 2415 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below: 2416 2416 ))) ... ... @@ -2419,6 +2419,9 @@ 2419 2419 2420 2420 2421 2421 ((( 2391 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 2392 + 2393 + 2422 2422 == 4.2 LT-22222-L related AT commands == 2423 2423 2424 2424 ... ... @@ -2455,13 +2455,13 @@ 2455 2455 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp) 2456 2456 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown) 2457 2457 * ##**AT+CLASS**##: Get or set the Device Class 2458 -* ##**AT+JOIN**##: Join Network2430 +* ##**AT+JOIN**##: Join network 2459 2459 * ##**AT+NJS**##: Get OTAA Join Status 2460 2460 * ##**AT+SENDB**##: Send hexadecimal data along with the application port 2461 2461 * ##**AT+SEND**##: Send text data along with the application port 2462 -* ##**AT+RECVB**##: Print thelast received data in binary format (with hexadecimal values)2463 -* ##**AT+RECV**##: Print thelast received data in raw format2464 -* ##**AT+VER**##: Get thecurrent image version and Frequency Band2434 +* ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values) 2435 +* ##**AT+RECV**##: Print last received data in raw format 2436 +* ##**AT+VER**##: Get current image version and Frequency Band 2465 2465 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1) 2466 2466 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1) 2467 2467 * ##**AT+SNR**##: Get the SNR of the last received packet ... ... @@ -2489,7 +2489,7 @@ 2489 2489 ))) 2490 2490 2491 2491 ((( 2492 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**## 2464 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**## 2493 2493 ))) 2494 2494 2495 2495 ((( ... ... @@ -2497,7 +2497,7 @@ 2497 2497 ))) 2498 2498 2499 2499 ((( 2500 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**## 2472 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**## 2501 2501 ))) 2502 2502 2503 2503 ((( ... ... @@ -2528,7 +2528,7 @@ 2528 2528 2529 2529 2530 2530 ((( 2531 -(% style="background-color:#dcdcdc" %)**123456**(%%) ~/~/ Enter thepassword to enable AT commands access2503 +(% style="background-color:#dcdcdc" %)**123456**(%%) ~/~/ Enter password to enable AT commands access 2532 2532 ))) 2533 2533 ))) 2534 2534 ... ... @@ -2537,7 +2537,7 @@ 2537 2537 ))) 2538 2538 2539 2539 ((( 2540 -(% style="background-color:#dcdcdc" %)** 123456**(%%) ~/~/ Enter thepassword to enable AT command access2512 +(% style="background-color:#dcdcdc" %)** 123456**(%%) ~/~/ Enter password to enable AT commands access 2541 2541 ))) 2542 2542 2543 2543 ((( ... ... @@ -2591,7 +2591,8 @@ 2591 2591 2592 2592 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.** 2593 2593 2594 -**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2566 +**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php? 2567 +dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2595 2595 2596 2596 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.** 2597 2597 ))) ... ... @@ -2618,7 +2618,7 @@ 2618 2618 == 5.1 Counting how many objects pass through the flow line == 2619 2619 2620 2620 2621 -See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]] .2594 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2622 2622 2623 2623 2624 2624 = 6. FAQ = ... ... @@ -2688,13 +2688,13 @@ 2688 2688 ))) 2689 2689 2690 2690 ((( 2691 -You can follow the introductions on [[how to upgrade theimage>>||anchor="H6.1Howtoupdatethefirmware3F"]]. When downloading, select the required image file.2664 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2692 2692 ))) 2693 2693 2694 2694 ((( 2695 2695 2696 2696 2697 -== 6.3 How to set 2670 +== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? == 2698 2698 2699 2699 2700 2700 ))) ... ... @@ -2796,9 +2796,9 @@ 2796 2796 * If the device is not properly shut down and is directly powered off. 2797 2797 * It will default to a power-off state. 2798 2798 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory. 2799 -* After a restart, the status before the power failure will be read from Flash.2772 +* After a restart, the status before the power failure will be read from flash. 2800 2800 2801 -== 6.8 Can I set nNC (Normally Closed) relay? ==2774 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? == 2802 2802 2803 2803 2804 2804 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below: ... ... @@ -2868,7 +2868,7 @@ 2868 2868 2869 2869 2870 2870 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue. 2871 -Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resett ingthedownlinkpacketcount"]]2844 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2872 2872 2873 2873 2874 2874 = 8. Ordering information = ... ... @@ -2888,6 +2888,7 @@ 2888 2888 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865 2889 2889 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779 2890 2890 2864 + 2891 2891 = 9. Package information = 2892 2892 2893 2893 ... ... @@ -2905,6 +2905,7 @@ 2905 2905 * Package Size / pcs : 14.5 x 8 x 5 cm 2906 2906 * Weight / pcs : 170 g 2907 2907 2882 + 2908 2908 = 10. Support = 2909 2909 2910 2910
- lt-22222-l-dashboard.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.pradeeka - Size
-
... ... @@ -1,1 +1,0 @@ 1 -352.8 KB - Content