Last modified by Mengting Qiu on 2025/06/04 18:42

From version 238.1
edited by Dilisi S
on 2024/12/23 05:17
Change comment: Dec 22 - fix lt-33222-l specs
To version 230.15
edited by Xiaoling
on 2024/12/09 10:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.pradeeka
1 +XWiki.Xiaoling
Content
... ... @@ -98,6 +98,7 @@
98 98  * Automatic RF Sense and CAD with ultra-fast AFC.
99 99  * Packet engine up to 256 bytes with CRC.
100 100  
101 +
101 101  == 1.3 Features ==
102 102  
103 103  
... ... @@ -109,6 +109,7 @@
109 109  * Firmware upgradable via program port
110 110  * Counting
111 111  
113 +
112 112  == 1.4 Applications ==
113 113  
114 114  
... ... @@ -119,17 +119,18 @@
119 119  * Smart cities
120 120  * Smart factory
121 121  
124 +
122 122  == 1.5 Hardware Variants ==
123 123  
124 124  
125 125  (% border="1" cellspacing="3" style="width:510px" %)
126 126  |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 -|(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
130 +|(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
128 128  (% style="text-align:center" %)
129 129  [[image:lt33222-l.jpg||height="110" width="95"]]
130 130  )))|(% style="width:256px" %)(((
131 -* 3 x Digital Input (Bi-direction)
132 -* 3 x Digital Output
134 +* 2 x Digital Input (Bi-direction)
135 +* 2 x Digital Output
133 133  * 2 x Relay Output (5A@250VAC / 30VDC)
134 134  * 2 x 0~~20mA Analog Input (res:0.01mA)
135 135  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -136,6 +136,7 @@
136 136  * 1 x Counting Port
137 137  )))
138 138  
142 +
139 139  = 2. Assembling the device =
140 140  
141 141  == 2.1 Connecting the antenna ==
... ... @@ -151,11 +151,11 @@
151 151  == 2.2 Terminals ==
152 152  
153 153  
154 -The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
158 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155 155  
156 156  **Upper screw terminal block (from left to right):**
157 157  
158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
162 +(% border="1" cellspacing="3" style="width:381px;background-color:#f2f2f2" %)
159 159  |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 160  |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 161  |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
... ... @@ -166,7 +166,7 @@
166 166  
167 167  **Lower screw terminal block (from left to right):**
168 168  
169 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
173 +(% border="1" cellspacing="3" style="width:253px;background-color:#f2f2f2" %)
170 170  |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 171  |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 172  |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
... ... @@ -181,7 +181,6 @@
181 181  
182 182  == 2.3 Connecting LT-22222-L to a Power Source ==
183 183  
184 -
185 185  The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186 186  
187 187  {{warning}}
... ... @@ -194,27 +194,23 @@
194 194  
195 195  = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196 196  
197 -
198 198  The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199 199  
200 200  
201 -== 3.1 Prerequisites ==
203 +=== 3.2.1 Prerequisites ===
202 202  
205 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
203 203  
204 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205 -
206 206  [[image:image-20230425173427-2.png||height="246" width="530"]]
207 207  
208 208  {{info}}
209 -If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
210 210  {{/info}}
211 211  
212 212  The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213 213  
215 +=== 3.2.2 The Things Stack ===
214 214  
215 -== 3.2 The Things Stack ==
216 -
217 -
218 218  This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219 219  
220 220  {{info}}
... ... @@ -225,7 +225,7 @@
225 225  The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226 226  
227 227  
228 -[[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
227 +[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
229 229  
230 230  {{info}}
231 231   You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
... ... @@ -232,9 +232,8 @@
232 232  {{/info}}
233 233  
234 234  
235 -=== 3.2.1 Setting up ===
234 +==== 3.2.2.1 Setting up ====
236 236  
237 -
238 238  * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 239  * Log in to your The Things Stack Sandbox account.
240 240  * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
... ... @@ -241,9 +241,8 @@
241 241  * Go to your application's page and click on the **End devices** in the left menu.
242 242  * On the End devices page, click on **+ Register end device**. Two registration options are available:
243 243  
244 -==== 3.2.1.1 Using the LoRaWAN Device Repository ====
242 +==== 3.2.2.2 Using the LoRaWAN Device Repository ====
245 245  
246 -
247 247  * On the **Register end device** page:
248 248  ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 249  ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
... ... @@ -267,9 +267,8 @@
267 267  [[image:lt-22222-l-dev-repo-reg-p2.png]]
268 268  
269 269  
270 -==== 3.2.1.2 Adding device manually ====
267 +==== 3.2.2.3 Adding device manually ====
271 271  
272 -
273 273  * On the **Register end device** page:
274 274  ** Select the option **Enter end device specifies manually** under **Input method**.
275 275  ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
... ... @@ -299,11 +299,10 @@
299 299  [[image:lt-22222-device-overview.png]]
300 300  
301 301  
302 -=== 3.2.2 Joining ===
298 +==== 3.2.2.4 Joining ====
303 303  
300 +On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
304 304  
305 -On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
306 -
307 307  Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
308 308  
309 309  
... ... @@ -310,17 +310,18 @@
310 310  [[image:lt-22222-l-joining.png]]
311 311  
312 312  
313 -=== 3.2.3 Uplinks ===
314 314  
309 +==== 3.2.2.5 Uplinks ====
315 315  
316 -After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
317 317  
318 -Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312 +After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
319 319  
314 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
315 +
320 320  [[image:lt-22222-ul-payload-decoded.png]]
321 321  
322 322  
323 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
319 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
324 324  
325 325  {{info}}
326 326  The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
... ... @@ -329,18 +329,17 @@
329 329  [[image:lt-22222-ul-payload-fmt.png]]
330 330  
331 331  
332 -We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
328 +We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
333 333  
334 334  (% class="wikigeneratedid" %)
335 335  [[image:lt-22222-l-js-custom-payload-formatter.png]]
336 336  
337 337  
338 -=== 3.2.4 Downlinks ===
334 +==== 3.2.2.6 Downlinks ====
339 339  
336 +When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
340 340  
341 -When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
342 342  
343 -
344 344  == 3.3 Working Modes and Uplink Payload formats ==
345 345  
346 346  
... ... @@ -360,10 +360,8 @@
360 360  
361 361  The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
362 362  
363 -
364 364  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
365 365  
366 -
367 367  (((
368 368  This is the default mode.
369 369  
... ... @@ -436,7 +436,6 @@
436 436  
437 437  MOD = 1
438 438  
439 -
440 440  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
441 441  
442 442  
... ... @@ -515,7 +515,6 @@
515 515  
516 516  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
517 517  
518 -
519 519  (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
520 520  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
521 521  It starts counting again when it reaches the maximum value.**
... ... @@ -569,7 +569,6 @@
569 569  
570 570  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
571 571  
572 -
573 573  (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
574 574  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
575 575  It starts counting again when it reaches the maximum value.**
... ... @@ -639,7 +639,6 @@
639 639  
640 640  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
641 641  
642 -
643 643  (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
644 644  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
645 645  It starts counting again when it reaches the maximum value.**
... ... @@ -726,7 +726,7 @@
726 726  
727 727  AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
728 728  
729 -AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
718 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
730 730  
731 731  
732 732  (% style="color:#4f81bd" %)**Trigger based on current**:
... ... @@ -782,7 +782,7 @@
782 782  
783 783  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
784 784  
785 -MOD6 Payload: a total of 11 bytes
774 +MOD6 Payload: total of 11 bytes
786 786  
787 787  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
788 788  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -796,7 +796,7 @@
796 796  MOD(6)
797 797  )))
798 798  
799 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
788 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
800 800  
801 801  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
802 802  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -825,7 +825,7 @@
825 825  10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
826 826  
827 827  
828 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
817 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
829 829  
830 830  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
831 831  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -854,7 +854,7 @@
854 854  10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
855 855  
856 856  
857 -(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
846 +(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
858 858  
859 859  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
860 860  |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
... ... @@ -864,7 +864,7 @@
864 864  
865 865  **Example:**
866 866  
867 -00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
856 +00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
868 868  
869 869  00000101: This means both DI1 and DI2 triggers are enabled.
870 870  
... ... @@ -875,7 +875,7 @@
875 875  
876 876  **AB 06**
877 877  
878 -When the device receives this command, it will send the MOD6 payload.
867 +When device receives this command, it will send the MOD6 payload.
879 879  
880 880  
881 881  === 3.3.7 Payload Decoder ===
... ... @@ -896,7 +896,7 @@
896 896  
897 897  (((
898 898  (((
899 -There are two types of commands:
888 +There are two tytes of commands:
900 900  )))
901 901  )))
902 902  
... ... @@ -908,7 +908,7 @@
908 908  
909 909  
910 910  (((
911 -These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
900 +These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
912 912  
913 913  
914 914  )))
... ... @@ -1099,7 +1099,7 @@
1099 1099  |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1100 1100  AB 06
1101 1101  
1102 -Uplink the trigger settings.
1091 +Uplinks the trigger settings.
1103 1103  )))
1104 1104  
1105 1105  ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
... ... @@ -1328,7 +1328,7 @@
1328 1328  )))
1329 1329  |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1330 1330  
1331 -==== 3.4.2.11 Trigger – Set the minimum interval ====
1320 +==== 3.4.2.11 Trigger – Set minimum interval ====
1332 1332  
1333 1333  
1334 1334  Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
... ... @@ -1418,140 +1418,126 @@
1418 1418  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1419 1419  
1420 1420  
1421 -(% style="color:#037691" %)**AT command**
1410 +* (% style="color:#037691" %)**AT Command**
1422 1422  
1423 1423  There is no AT command to control the digital output.
1424 1424  
1425 1425  
1426 -(% style="color:#037691" %)**Downlink payload**
1415 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1427 1427  
1417 +(% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1428 1428  
1429 -(% border="2" style="width:500px" %)
1430 -|(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1431 -|(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1432 -**inverter_mode**: 1 byte in hex.
1419 +This is to control the digital output time of DO pin. Include four bytes:
1433 1433  
1421 +(% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1422 +
1423 +(% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1424 +
1434 1434  **01:** DO pins revert to their original state after the timeout.
1435 1435  **00:** DO pins switch to an inverted state after the timeout.
1436 1436  
1437 1437  
1438 -**DO1_control_method_and_port_status **- 1 byte in hex
1429 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1439 1439  
1440 -0x01 : DO1 set to low
1431 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1432 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1433 +|0x01|DO1 set to low
1434 +|0x00|DO1 set to high
1435 +|0x11|DO1 NO Action
1441 1441  
1442 -0x00 : DO1 set to high
1437 +(% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1443 1443  
1444 -0x11 : DO1 NO action
1439 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1440 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1441 +|0x01|DO2 set to low
1442 +|0x00|DO2 set to high
1443 +|0x11|DO2 NO Action
1445 1445  
1445 +(% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1446 1446  
1447 -**DO2_control_method_and_port_status** - 1 byte in hex
1447 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1448 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1449 +|0x01|DO3 set to low
1450 +|0x00|DO3 set to high
1451 +|0x11|DO3 NO Action
1448 1448  
1449 -0x01 : DO2 set to low
1453 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1450 1450  
1451 -0x00 : DO2 set to high
1452 1452  
1453 -0x11 : DO2 NO action
1454 -
1455 -
1456 -**DO3_control_method_and_port_status **- 1 byte in hex
1457 -
1458 -0x01 : DO3 set to low
1459 -
1460 -0x00 : DO3 set to high
1461 -
1462 -0x11 : DO3 NO action
1463 -
1464 -
1465 -**latching_time** : 4 bytes in hex
1466 -
1467 1467  (% style="color:red" %)**Note: **
1468 1468  
1469 - Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1458 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1470 1470  
1471 1471   Before firmware v1.6.0, the latch time only supported 2 bytes.
1472 1472  
1473 1473  (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474 -)))
1475 -|(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1476 -|(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1477 -**A9 01 01 01 01 07 D0**
1478 1478  
1479 -DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1480 1480  
1465 +**Example payload:**
1481 1481  
1482 -**A9 01 00 01 11 07 D0**
1467 +**~1. A9 01 01 01 01 07 D0**
1483 1483  
1484 -DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1469 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1485 1485  
1471 +**2. A9 01 00 01 11 07 D0**
1486 1486  
1487 -**A9 00 00 00 00 07 D0**
1473 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1488 1488  
1475 +**3. A9 00 00 00 00 07 D0**
1476 +
1489 1489  DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1490 1490  
1479 +**4. A9 00 11 01 00 07 D0**
1491 1491  
1492 -**A9 00 11 01 00 07 D0**
1481 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1493 1493  
1494 -DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1495 -)))
1496 1496  
1497 1497  ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1498 1498  
1499 1499  
1500 -(% style="color:#037691" %)**AT Command:**
1487 +* (% style="color:#037691" %)**AT Command:**
1501 1501  
1502 -There is no AT Command to control the Relay Output.
1489 +There is no AT Command to control the Relay Output
1503 1503  
1504 1504  
1505 -(% style="color:#037691" %)**Downlink Payload**
1492 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1506 1506  
1507 -(% border="2" style="width:500px" %)
1508 -|(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1509 -|(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1510 -**RO1_status** : 1 byte in hex
1494 +(% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1511 1511  
1512 -00: Close
1513 1513  
1514 -01: Open
1497 +(((
1498 +If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1499 +)))
1515 1515  
1516 -11: No action
1501 +(((
1502 +00: Close ,  01: Open , 11: No action
1517 1517  
1518 -
1519 -**RO2_status** : 1 byte in hex
1520 -
1521 -00: Close
1522 -
1523 -01: Open
1524 -
1525 -11: No action
1504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1505 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1506 +|03  00  11|Open|No Action
1507 +|03  01  11|Close|No Action
1508 +|03  11  00|No Action|Open
1509 +|03  11  01|No Action|Close
1510 +|03  00  00|Open|Open
1511 +|03  01  01|Close|Close
1512 +|03  01  00|Close|Open
1513 +|03  00  01|Open|Close
1526 1526  )))
1527 -|(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1528 -|(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1529 -(% border="2" %)
1530 -|=Payload|=RO1|=RO2
1531 -|03  00  11|Open|No action
1532 -|03  01  11|Close|No action
1533 -|03 11  00|No action|Open
1534 -|03 11 10|No action|Close
1535 -|03 00 00|Open|Open
1536 -|03 01 01|Close|Close
1537 -|03 01 00|Close|Open
1538 -|03 00 01|Open|Close
1539 1539  
1540 -(% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1541 -)))
1516 +(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1542 1542  
1518 +
1543 1543  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1544 1544  
1545 1545  
1546 1546  Controls the relay output time.
1547 1547  
1524 +* (% style="color:#037691" %)**AT Command:**
1548 1548  
1549 -(% style="color:#037691" %)**AT Command:**
1550 -
1551 1551  There is no AT Command to control the Relay Output
1552 1552  
1553 1553  
1554 -(% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1529 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1555 1555  
1556 1556  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1557 1557  
... ... @@ -1562,9 +1562,9 @@
1562 1562  
1563 1563  (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1564 1564  
1565 -01: Relays will change back to their original state after a timeout.
1540 +01: Relays will change back to their original state after timeout.
1566 1566  
1567 -00: Relays will change to the inverter state after a timeout.
1542 +00: Relays will change to the inverter state after timeout.
1568 1568  
1569 1569  
1570 1570  (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
... ... @@ -1593,7 +1593,7 @@
1593 1593  
1594 1594  **2. 05 01 10 07 D0**
1595 1595  
1596 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1571 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1597 1597  
1598 1598  **3. 05 00 01 07 D0**
1599 1599  
... ... @@ -1624,7 +1624,7 @@
1624 1624  
1625 1625  **1**: higher than
1626 1626  
1627 -if you leave the logic parameter blank, it is considered 0
1602 +if you leave logic parameter blank, it is considered 0
1628 1628  )))
1629 1629  |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1630 1630  AT+VOLMAX=20000
... ... @@ -1655,7 +1655,7 @@
1655 1655  
1656 1656  **1**: higher than
1657 1657  
1658 -if you leave the logic parameter blank, it is considered 1 (higher than)
1633 +if you leave logic parameter blank, it is considered 1 (higher than)
1659 1659  )))
1660 1660  |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1661 1661  A5 **4E 20**
... ... @@ -1919,7 +1919,7 @@
1919 1919  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1920 1920  
1921 1921  
1922 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1897 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1923 1923  
1924 1924  (% style="color:#037691" %)**AT Command**
1925 1925  
... ... @@ -1988,15 +1988,15 @@
1988 1988  There is no downlink option available for this feature.
1989 1989  
1990 1990  
1991 -==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1966 +==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1992 1992  
1993 1993  
1994 -This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1969 +This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1995 1995  
1996 1996  * (((
1997 1997  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1998 1998  
1999 -(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
1974 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
2000 2000  
2001 2001  
2002 2002  
... ... @@ -2051,7 +2051,7 @@
2051 2051  * Ensure the following options are turned on.
2052 2052  ** Enable integration
2053 2053  ** Debug mode
2054 -** Allow creating devices or assets
2029 +** Allow create devices or assets
2055 2055  * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2056 2056  
2057 2057  [[image:thingseye-io-step-2.png]]
... ... @@ -2126,7 +2126,7 @@
2126 2126  [[image:thingseye-events.png]]
2127 2127  
2128 2128  
2129 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2104 +* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2130 2130  
2131 2131  [[image:thingseye-json.png]]
2132 2132  
... ... @@ -2137,16 +2137,12 @@
2137 2137  If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2138 2138  
2139 2139  
2140 -==== 3.5.2.4 Viewing sensor data on a dashboard ====
2115 +==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2141 2141  
2142 2142  
2143 -You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2118 +This will be added soon.
2144 2144  
2145 2145  
2146 -
2147 -[[image:lt-22222-l-dashboard.png]]
2148 -
2149 -
2150 2150  == 3.6 Interface Details ==
2151 2151  
2152 2152  === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
... ... @@ -2361,7 +2361,7 @@
2361 2361  == 3.7 LED Indicators ==
2362 2362  
2363 2363  
2364 -The table below lists the behaviour of LED indicators for each port function.
2335 +The table below lists the behavior of LED indicators for each port function.
2365 2365  
2366 2366  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2367 2367  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
... ... @@ -2368,11 +2368,11 @@
2368 2368  |**PWR**|Always on when there is power
2369 2369  |**TX**|(((
2370 2370  (((
2371 -Device booting: TX blinks 5 times.
2342 +Device boot: TX blinks 5 times.
2372 2372  )))
2373 2373  
2374 2374  (((
2375 -Successful network joins: TX remains ON for 5 seconds.
2346 +Successful network join: TX remains ON for 5 seconds.
2376 2376  )))
2377 2377  
2378 2378  (((
... ... @@ -2456,13 +2456,13 @@
2456 2456  * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2457 2457  * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2458 2458  * ##**AT+CLASS**##: Get or set the Device Class
2459 -* ##**AT+JOIN**##: Join Network
2430 +* ##**AT+JOIN**##: Join network
2460 2460  * ##**AT+NJS**##: Get OTAA Join Status
2461 2461  * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2462 2462  * ##**AT+SEND**##: Send text data along with the application port
2463 -* ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2464 -* ##**AT+RECV**##: Print the last received data in raw format
2465 -* ##**AT+VER**##: Get the current image version and Frequency Band
2434 +* ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2435 +* ##**AT+RECV**##: Print last received data in raw format
2436 +* ##**AT+VER**##: Get current image version and Frequency Band
2466 2466  * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2467 2467  * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2468 2468  * ##**AT+SNR**##: Get the SNR of the last received packet
... ... @@ -2490,7 +2490,7 @@
2490 2490  )))
2491 2491  
2492 2492  (((
2493 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2464 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2494 2494  )))
2495 2495  
2496 2496  (((
... ... @@ -2498,7 +2498,7 @@
2498 2498  )))
2499 2499  
2500 2500  (((
2501 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2472 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2502 2502  )))
2503 2503  
2504 2504  (((
... ... @@ -2529,7 +2529,7 @@
2529 2529  
2530 2530  
2531 2531  (((
2532 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2503 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2533 2533  )))
2534 2534  )))
2535 2535  
... ... @@ -2538,7 +2538,7 @@
2538 2538  )))
2539 2539  
2540 2540  (((
2541 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2512 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2542 2542  )))
2543 2543  
2544 2544  (((
... ... @@ -2620,7 +2620,7 @@
2620 2620  == 5.1 Counting how many objects pass through the flow line ==
2621 2621  
2622 2622  
2623 -See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2594 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2624 2624  
2625 2625  
2626 2626  = 6. FAQ =
... ... @@ -2690,13 +2690,13 @@
2690 2690  )))
2691 2691  
2692 2692  (((
2693 -You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2664 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2694 2694  )))
2695 2695  
2696 2696  (((
2697 2697  
2698 2698  
2699 -== 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2670 +== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2700 2700  
2701 2701  
2702 2702  )))
... ... @@ -2798,9 +2798,9 @@
2798 2798  * If the device is not properly shut down and is directly powered off.
2799 2799  * It will default to a power-off state.
2800 2800  * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2801 -* After a restart, the status before the power failure will be read from Flash.
2772 +* After a restart, the status before the power failure will be read from flash.
2802 2802  
2803 -== 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2774 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2804 2804  
2805 2805  
2806 2806  The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
... ... @@ -2890,6 +2890,7 @@
2890 2890  * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2891 2891  * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2892 2892  
2864 +
2893 2893  = 9. Package information =
2894 2894  
2895 2895  
... ... @@ -2907,6 +2907,7 @@
2907 2907  * Package Size / pcs : 14.5 x 8 x 5 cm
2908 2908  * Weight / pcs : 170 g
2909 2909  
2882 +
2910 2910  = 10. Support =
2911 2911  
2912 2912  
lt-22222-l-dashboard.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -352.8 KB
Content