Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -98,7 +98,6 @@ 98 98 * Automatic RF Sense and CAD with ultra-fast AFC. 99 99 * Packet engine up to 256 bytes with CRC. 100 100 101 - 102 102 == 1.3 Features == 103 103 104 104 ... ... @@ -110,7 +110,6 @@ 110 110 * Firmware upgradable via program port 111 111 * Counting 112 112 113 - 114 114 == 1.4 Applications == 115 115 116 116 ... ... @@ -121,13 +121,12 @@ 121 121 * Smart cities 122 122 * Smart factory 123 123 124 - 125 125 == 1.5 Hardware Variants == 126 126 127 127 128 128 (% border="1" cellspacing="3" style="width:510px" %) 129 129 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description** 130 -|(% style="width:94px" %)**LT-222 22-L**|(% style="width:172px" %)(((127 +|(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)((( 131 131 (% style="text-align:center" %) 132 132 [[image:lt33222-l.jpg||height="110" width="95"]] 133 133 )))|(% style="width:256px" %)((( ... ... @@ -139,7 +139,6 @@ 139 139 * 1 x Counting Port 140 140 ))) 141 141 142 - 143 143 = 2. Assembling the device = 144 144 145 145 == 2.1 Connecting the antenna == ... ... @@ -155,11 +155,11 @@ 155 155 == 2.2 Terminals == 156 156 157 157 158 -The LT-22222-L has two screw terminal blocks. The upper screw t reminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.154 +The LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals. 159 159 160 160 **Upper screw terminal block (from left to right):** 161 161 162 -(% border="1" cellspacing="3" style=" width:381px;background-color:#f2f2f2" %)158 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %) 163 163 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function 164 164 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground 165 165 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage ... ... @@ -170,7 +170,7 @@ 170 170 171 171 **Lower screw terminal block (from left to right):** 172 172 173 -(% border="1" cellspacing="3" style=" width:253px;background-color:#f2f2f2" %)169 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %) 174 174 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function 175 175 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1 176 176 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1 ... ... @@ -185,6 +185,7 @@ 185 185 186 186 == 2.3 Connecting LT-22222-L to a Power Source == 187 187 184 + 188 188 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered. 189 189 190 190 {{warning}} ... ... @@ -197,23 +197,27 @@ 197 197 198 198 = 3. Registering LT-22222-L with a LoRaWAN Network Server = 199 199 197 + 200 200 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. 201 201 202 202 203 -== =3.2.1 Prerequisites ===201 +== 3.1 Prerequisites == 204 204 205 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 206 206 204 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 205 + 207 207 [[image:image-20230425173427-2.png||height="246" width="530"]] 208 208 209 209 {{info}} 210 -I ncaseyoucan't set the root key and other identifiers in the network serverandmustusethem fromtheserver,youcanuse[[AT Commands>>||anchor="H4.UseATCommand"]] toconfigure themonthedevice.209 +If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands. 211 211 {{/info}} 212 212 213 213 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 214 214 215 -=== 3.2.2 The Things Stack === 216 216 215 +== 3.2 The Things Stack == 216 + 217 + 217 217 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox. 218 218 219 219 {{info}} ... ... @@ -224,7 +224,7 @@ 224 224 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform. 225 225 226 226 227 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]] 228 +[[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]] 228 228 229 229 {{info}} 230 230 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area. ... ... @@ -231,8 +231,9 @@ 231 231 {{/info}} 232 232 233 233 234 -=== =3.2.2.1 Setting up ====235 +=== 3.2.1 Setting up === 235 235 237 + 236 236 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet. 237 237 * Log in to your The Things Stack Sandbox account. 238 238 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs). ... ... @@ -239,8 +239,9 @@ 239 239 * Go to your application's page and click on the **End devices** in the left menu. 240 240 * On the End devices page, click on **+ Register end device**. Two registration options are available: 241 241 242 -==== 3.2. 2.2Using the LoRaWAN Device Repository ====244 +==== 3.2.1.1 Using the LoRaWAN Device Repository ==== 243 243 246 + 244 244 * On the **Register end device** page: 245 245 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**. 246 246 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists. ... ... @@ -264,8 +264,9 @@ 264 264 [[image:lt-22222-l-dev-repo-reg-p2.png]] 265 265 266 266 267 -==== 3.2. 2.3Adding device manually ====270 +==== 3.2.1.2 Adding device manually ==== 268 268 272 + 269 269 * On the **Register end device** page: 270 270 ** Select the option **Enter end device specifies manually** under **Input method**. 271 271 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list. ... ... @@ -295,10 +295,11 @@ 295 295 [[image:lt-22222-device-overview.png]] 296 296 297 297 298 -=== =3.2.2.4Joining ====302 +=== 3.2.2 Joining === 299 299 300 -On the Device's page, click on **Live data** tab. The Live data panel for your device will display. 301 301 305 +On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank. 306 + 302 302 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. 303 303 304 304 ... ... @@ -305,18 +305,17 @@ 305 305 [[image:lt-22222-l-joining.png]] 306 306 307 307 313 +=== 3.2.3 Uplinks === 308 308 309 -==== 3.2.2.5 Uplinks ==== 310 310 316 +After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes. 311 311 312 - After successfullyjoining,thedevicewill sendits first **uplink data message**theapplicationitbelongsto(in thisexample, **dragino-docs**). WhenheLT-22222-Lsendsan uplink message to theserver,theTX LED** turns on for **1 second**. By default,you will receivean uplinkdatamessagefrom thedevice every 10 minutes.318 +Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object. 313 313 314 -Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 315 - 316 316 [[image:lt-22222-ul-payload-decoded.png]] 317 317 318 318 319 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then 323 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes. 320 320 321 321 {{info}} 322 322 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters. ... ... @@ -325,17 +325,18 @@ 325 325 [[image:lt-22222-ul-payload-fmt.png]] 326 326 327 327 328 -We alsohave a payload formatter that resolves some decoding issues present inthe Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:332 +We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]: 329 329 330 330 (% class="wikigeneratedid" %) 331 331 [[image:lt-22222-l-js-custom-payload-formatter.png]] 332 332 333 333 334 -=== =3.2.2.6Downlinks ====338 +=== 3.2.4 Downlinks === 335 335 336 -When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**. 337 337 341 +When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**. 338 338 343 + 339 339 == 3.3 Working Modes and Uplink Payload formats == 340 340 341 341 ... ... @@ -355,8 +355,10 @@ 355 355 356 356 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes. 357 357 363 + 358 358 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 359 359 366 + 360 360 ((( 361 361 This is the default mode. 362 362 ... ... @@ -429,6 +429,7 @@ 429 429 430 430 MOD = 1 431 431 439 + 432 432 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 433 433 434 434 ... ... @@ -507,6 +507,7 @@ 507 507 508 508 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 509 509 518 + 510 510 (% style="color:red" %)**Note: The maximum count depends on the bytes it is. 511 511 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 512 512 It starts counting again when it reaches the maximum value.** ... ... @@ -560,6 +560,7 @@ 560 560 561 561 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting === 562 562 572 + 563 563 (% style="color:red" %)**Note:The maximum count depends on the bytes it is. 564 564 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 565 565 It starts counting again when it reaches the maximum value.** ... ... @@ -629,6 +629,7 @@ 629 629 630 630 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 631 631 642 + 632 632 (% style="color:red" %)**Note:The maximum count depends on the bytes it is. 633 633 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec). 634 634 It starts counting again when it reaches the maximum value.** ... ... @@ -715,7 +715,7 @@ 715 715 716 716 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 717 717 718 -AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 729 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use) 719 719 720 720 721 721 (% style="color:#4f81bd" %)**Trigger based on current**: ... ... @@ -771,7 +771,7 @@ 771 771 772 772 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 773 773 774 -MOD6 Payload: total of 11 bytes 785 +MOD6 Payload: a total of 11 bytes 775 775 776 776 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 777 777 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -785,7 +785,7 @@ 785 785 MOD(6) 786 786 ))) 787 787 788 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total ly1 byte as below799 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below. 789 789 790 790 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 791 791 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** ... ... @@ -814,7 +814,7 @@ 814 814 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW. 815 815 816 816 817 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Total ly1 byte as below828 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below. 818 818 819 819 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 820 820 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** ... ... @@ -843,7 +843,7 @@ 843 843 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low. 844 844 845 845 846 -(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Total ly1byte as below857 +(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below. 847 847 848 848 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 849 849 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0** ... ... @@ -853,7 +853,7 @@ 853 853 854 854 **Example:** 855 855 856 -00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1. 867 +00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1. 857 857 858 858 00000101: This means both DI1 and DI2 triggers are enabled. 859 859 ... ... @@ -864,7 +864,7 @@ 864 864 865 865 **AB 06** 866 866 867 -When device receives this command, it will send the MOD6 payload. 878 +When the device receives this command, it will send the MOD6 payload. 868 868 869 869 870 870 === 3.3.7 Payload Decoder === ... ... @@ -885,7 +885,7 @@ 885 885 886 886 ((( 887 887 ((( 888 -There are two ty tes of commands:899 +There are two types of commands: 889 889 ))) 890 890 ))) 891 891 ... ... @@ -897,7 +897,7 @@ 897 897 898 898 899 899 ((( 900 -These are available for each sensor sand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.911 +These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s. 901 901 902 902 903 903 ))) ... ... @@ -1088,7 +1088,7 @@ 1088 1088 |(% style="width:95px" %)**Example**|(% style="width:403px" %)((( 1089 1089 AB 06 1090 1090 1091 -Uplink sthe trigger settings.1102 +Uplink the trigger settings. 1092 1092 ))) 1093 1093 1094 1094 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ==== ... ... @@ -1317,7 +1317,7 @@ 1317 1317 ))) 1318 1318 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1319 1319 1320 -==== 3.4.2.11 Trigger – Set minimum interval ==== 1331 +==== 3.4.2.11 Trigger – Set the minimum interval ==== 1321 1321 1322 1322 1323 1323 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger. ... ... @@ -1407,126 +1407,140 @@ 1407 1407 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ==== 1408 1408 1409 1409 1410 - *(% style="color:#037691" %)**ATCommand**1421 +(% style="color:#037691" %)**AT command** 1411 1411 1412 1412 There is no AT command to control the digital output. 1413 1413 1414 1414 1415 - *(% style="color:#037691" %)**DownlinkPayload(prefix 0xA9)**1426 +(% style="color:#037691" %)**Downlink payload** 1416 1416 1417 -(% style="color:blue" %)**0xA9 aa bb cc **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control 1418 1418 1419 -This is to control the digital output time of DO pin. Include four bytes: 1429 +(% border="2" style="width:500px" %) 1430 +|(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9 1431 +|(% style="width:116px" %)**Parameters**|(% style="width:382px" %)((( 1432 +**inverter_mode**: 1 byte in hex. 1420 1420 1421 -(% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9) 1422 - 1423 -(% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode 1424 - 1425 1425 **01:** DO pins revert to their original state after the timeout. 1426 1426 **00:** DO pins switch to an inverted state after the timeout. 1427 1427 1428 1428 1429 - (% style="color:#4f81bd" %)**Third Byte**(%%): ControlMethodPort:1438 +**DO1_control_method_and_port_status **- 1 byte in hex 1430 1430 1431 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1432 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1433 -|0x01|DO1 set to low 1434 -|0x00|DO1 set to high 1435 -|0x11|DO1 NO Action 1440 +0x01 : DO1 set to low 1436 1436 1437 - (%style="color:#4f81bd"%)**Fourthbyte**(%%):ControlMethodand Port status:1442 +0x00 : DO1 set to high 1438 1438 1439 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1440 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1441 -|0x01|DO2 set to low 1442 -|0x00|DO2 set to high 1443 -|0x11|DO2 NO Action 1444 +0x11 : DO1 NO action 1444 1444 1445 -(% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status: 1446 1446 1447 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1448 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1449 -|0x01|DO3 set to low 1450 -|0x00|DO3 set to high 1451 -|0x11|DO3 NO Action 1447 +**DO2_control_method_and_port_status** - 1 byte in hex 1452 1452 1453 - (%style="color:#4f81bd"%)**Sixth,Seventh,Eighth, and Ninth bytes**:(%%) Latchingtime(Unit: ms)1449 +0x01 : DO2 set to low 1454 1454 1451 +0x00 : DO2 set to high 1455 1455 1456 - (%style="color:red"%)**Note:**1453 +0x11 : DO2 NO action 1457 1457 1458 - Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes 1459 1459 1460 - Before firmwarev1.6.0,the latch timeonly supported2bytes.1456 +**DO3_control_method_and_port_status **- 1 byte in hex 1461 1461 1462 - (%style="color:red"%)**Thedevicewill uplink a packetifthe downlinkcode executes successfully.**1458 +0x01 : DO3 set to low 1463 1463 1460 +0x00 : DO3 set to high 1464 1464 1465 - **Examplepayload:**1462 +0x11 : DO3 NO action 1466 1466 1467 -**~1. A9 01 01 01 01 07 D0** 1468 1468 1465 +**latching_time** : 4 bytes in hex 1466 + 1467 +(% style="color:red" %)**Note: ** 1468 + 1469 + Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes 1470 + 1471 + Before firmware v1.6.0, the latch time only supported 2 bytes. 1472 + 1473 +(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.** 1474 +))) 1475 +|(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time> 1476 +|(% style="width:116px" %)**Example**|(% style="width:382px" %)((( 1477 +**A9 01 01 01 01 07 D0** 1478 + 1469 1469 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state. 1470 1470 1471 -**2. A9 01 00 01 11 07 D0** 1472 1472 1482 +**A9 01 00 01 11 07 D0** 1483 + 1473 1473 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state. 1474 1474 1475 -**3. A9 00 00 00 00 07 D0** 1476 1476 1487 +**A9 00 00 00 00 07 D0** 1488 + 1477 1477 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low. 1478 1478 1479 -**4. A9 00 11 01 00 07 D0** 1480 1480 1481 - DO1pintakesno action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1pintakesno action,DO2 pin is set to high, and DO3 pin is set to low.1492 +**A9 00 11 01 00 07 D0** 1482 1482 1494 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low. 1495 +))) 1483 1483 1484 1484 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1485 1485 1486 1486 1487 - *(% style="color:#037691" %)**AT Command:**1500 +(% style="color:#037691" %)**AT Command:** 1488 1488 1489 -There is no AT Command to control the Relay Output 1502 +There is no AT Command to control the Relay Output. 1490 1490 1491 1491 1492 - *(% style="color:#037691" %)**Downlink Payload(prefix 0x03):**1505 +(% style="color:#037691" %)**Downlink Payload** 1493 1493 1494 -(% style="color:blue" %)**0x03 aa bb ** (%%)~/~/ Sets RO1/RO2 output 1507 +(% border="2" style="width:500px" %) 1508 +|(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03 1509 +|(% style="width:113px" %)**Parameters**|(% style="width:384px" %)((( 1510 +**RO1_status** : 1 byte in hex 1495 1495 1512 +00: Close 1496 1496 1497 -((( 1498 -If the payload is 0x030100, it means setting RO1 to close and RO2 to open. 1499 -))) 1514 +01: Open 1500 1500 1501 -((( 1502 -00: Close , 01: Open , 11: No action 1516 +11: No action 1503 1503 1504 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1505 -|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1506 -|03 00 11|Open|No Action 1507 -|03 01 11|Close|No Action 1508 -|03 11 00|No Action|Open 1509 -|03 11 01|No Action|Close 1510 -|03 00 00|Open|Open 1511 -|03 01 01|Close|Close 1512 -|03 01 00|Close|Open 1513 -|03 00 01|Open|Close 1514 -))) 1515 1515 1516 - (%style="color:red" %)**Thedevicewilluplink a packetif thedownlinkcodeexecutes successfully.**1519 +**RO2_status** : 1 byte in hex 1517 1517 1521 +00: Close 1518 1518 1523 +01: Open 1524 + 1525 +11: No action 1526 +))) 1527 +|(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status> 1528 +|(% style="width:113px" %)**Example**|(% style="width:384px" %)((( 1529 +(% border="2" %) 1530 +|=Payload|=RO1|=RO2 1531 +|03 00 11|Open|No action 1532 +|03 01 11|Close|No action 1533 +|03 11 00|No action|Open 1534 +|03 11 10|No action|Close 1535 +|03 00 00|Open|Open 1536 +|03 01 01|Close|Close 1537 +|03 01 00|Close|Open 1538 +|03 00 01|Open|Close 1539 + 1540 +(% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.** 1541 +))) 1542 + 1519 1519 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ==== 1520 1520 1521 1521 1522 1522 Controls the relay output time. 1523 1523 1524 -* (% style="color:#037691" %)**AT Command:** 1525 1525 1549 +(% style="color:#037691" %)**AT Command:** 1550 + 1526 1526 There is no AT Command to control the Relay Output 1527 1527 1528 1528 1529 - *(% style="color:#037691" %)**Downlink Payload (prefix 0x05):**1554 +(% style="color:#037691" %)**Downlink Payload (prefix 0x05):** 1530 1530 1531 1531 (% style="color:blue" %)**0x05 aa bb cc dd ** (%%)~/~/ Sets RO1/RO2 relays with time control 1532 1532 ... ... @@ -1537,9 +1537,9 @@ 1537 1537 1538 1538 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode 1539 1539 1540 -01: Relays will change back to their original state after timeout. 1565 +01: Relays will change back to their original state after a timeout. 1541 1541 1542 -00: Relays will change to the inverter state after timeout. 1567 +00: Relays will change to the inverter state after a timeout. 1543 1543 1544 1544 1545 1545 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status: ... ... @@ -1568,7 +1568,7 @@ 1568 1568 1569 1569 **2. 05 01 10 07 D0** 1570 1570 1571 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state. 1596 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state. 1572 1572 1573 1573 **3. 05 00 01 07 D0** 1574 1574 ... ... @@ -1599,7 +1599,7 @@ 1599 1599 1600 1600 **1**: higher than 1601 1601 1602 -if you leave logic parameter blank, it is considered 0 1627 +if you leave the logic parameter blank, it is considered 0 1603 1603 ))) 1604 1604 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)((( 1605 1605 AT+VOLMAX=20000 ... ... @@ -1630,7 +1630,7 @@ 1630 1630 1631 1631 **1**: higher than 1632 1632 1633 -if you leave logic parameter blank, it is considered 1 (higher than) 1658 +if you leave the logic parameter blank, it is considered 1 (higher than) 1634 1634 ))) 1635 1635 |(% style="width:140px" %)**Example**|(% style="width:358px" %)((( 1636 1636 A5 **4E 20** ... ... @@ -1894,7 +1894,7 @@ 1894 1894 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ==== 1895 1895 1896 1896 1897 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed sthe allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.1922 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow. 1898 1898 1899 1899 (% style="color:#037691" %)**AT Command** 1900 1900 ... ... @@ -1963,15 +1963,15 @@ 1963 1963 There is no downlink option available for this feature. 1964 1964 1965 1965 1966 -==== 3.4.2.26 Query firmware version, frequency band, sub 1991 +==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ==== 1967 1967 1968 1968 1969 -This command is used to query key information about the device, including its firmware version, frequency band, sub 1994 +This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device. 1970 1970 1971 1971 * ((( 1972 1972 (% style="color:#037691" %)**Downlink Payload**(%%)**:** 1973 1973 1974 -(% style="color:blue" %)**26 01 ** (%%) ~/~/ The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub 1999 +(% style="color:blue" %)**26 01 ** (%%) ~/~/ The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time. 1975 1975 1976 1976 1977 1977 ... ... @@ -2026,7 +2026,7 @@ 2026 2026 * Ensure the following options are turned on. 2027 2027 ** Enable integration 2028 2028 ** Debug mode 2029 -** Allow creat edevices or assets2054 +** Allow creating devices or assets 2030 2030 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 2031 2031 2032 2032 [[image:thingseye-io-step-2.png]] ... ... @@ -2101,7 +2101,7 @@ 2101 2101 [[image:thingseye-events.png]] 2102 2102 2103 2103 2104 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message. 2129 +* To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message. 2105 2105 2106 2106 [[image:thingseye-json.png]] 2107 2107 ... ... @@ -2112,12 +2112,16 @@ 2112 2112 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page. 2113 2113 2114 2114 2115 -==== 3.5.2.4 Creatinga Dashboardto DisplayandAnalyzeLT-22222-L Data ====2140 +==== 3.5.2.4 Viewing sensor data on a dashboard ==== 2116 2116 2117 2117 2118 -This willbe added soon.2143 +You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information. 2119 2119 2120 2120 2146 + 2147 +[[image:lt-22222-l-dashboard.png]] 2148 + 2149 + 2121 2121 == 3.6 Interface Details == 2122 2122 2123 2123 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) === ... ... @@ -2332,7 +2332,7 @@ 2332 2332 == 3.7 LED Indicators == 2333 2333 2334 2334 2335 -The table below lists the behavior of LED indicators for each port function. 2364 +The table below lists the behaviour of LED indicators for each port function. 2336 2336 2337 2337 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 2338 2338 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** ... ... @@ -2339,11 +2339,11 @@ 2339 2339 |**PWR**|Always on when there is power 2340 2340 |**TX**|((( 2341 2341 ((( 2342 -Device boot: TX blinks 5 times. 2371 +Device booting: TX blinks 5 times. 2343 2343 ))) 2344 2344 2345 2345 ((( 2346 -Successful network join: TX remains ON for 5 seconds. 2375 +Successful network joins: TX remains ON for 5 seconds. 2347 2347 ))) 2348 2348 2349 2349 ((( ... ... @@ -2427,13 +2427,13 @@ 2427 2427 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp) 2428 2428 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown) 2429 2429 * ##**AT+CLASS**##: Get or set the Device Class 2430 -* ##**AT+JOIN**##: Join network2459 +* ##**AT+JOIN**##: Join Network 2431 2431 * ##**AT+NJS**##: Get OTAA Join Status 2432 2432 * ##**AT+SENDB**##: Send hexadecimal data along with the application port 2433 2433 * ##**AT+SEND**##: Send text data along with the application port 2434 -* ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values) 2435 -* ##**AT+RECV**##: Print last received data in raw format 2436 -* ##**AT+VER**##: Get current image version and Frequency Band 2463 +* ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values) 2464 +* ##**AT+RECV**##: Print the last received data in raw format 2465 +* ##**AT+VER**##: Get the current image version and Frequency Band 2437 2437 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1) 2438 2438 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1) 2439 2439 * ##**AT+SNR**##: Get the SNR of the last received packet ... ... @@ -2461,7 +2461,7 @@ 2461 2461 ))) 2462 2462 2463 2463 ((( 2464 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command saccess**##2493 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**## 2465 2465 ))) 2466 2466 2467 2467 ((( ... ... @@ -2469,7 +2469,7 @@ 2469 2469 ))) 2470 2470 2471 2471 ((( 2472 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command saccess**##2501 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**## 2473 2473 ))) 2474 2474 2475 2475 ((( ... ... @@ -2500,7 +2500,7 @@ 2500 2500 2501 2501 2502 2502 ((( 2503 -(% style="background-color:#dcdcdc" %)**123456**(%%) ~/~/ Enter password to enable AT commands access 2532 +(% style="background-color:#dcdcdc" %)**123456**(%%) ~/~/ Enter the password to enable AT commands access 2504 2504 ))) 2505 2505 ))) 2506 2506 ... ... @@ -2509,7 +2509,7 @@ 2509 2509 ))) 2510 2510 2511 2511 ((( 2512 -(% style="background-color:#dcdcdc" %)** 123456**(%%) ~/~/ Enter password to enable AT command saccess2541 +(% style="background-color:#dcdcdc" %)** 123456**(%%) ~/~/ Enter the password to enable AT command access 2513 2513 ))) 2514 2514 2515 2515 ((( ... ... @@ -2591,7 +2591,7 @@ 2591 2591 == 5.1 Counting how many objects pass through the flow line == 2592 2592 2593 2593 2594 -See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]] ?2623 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]. 2595 2595 2596 2596 2597 2597 = 6. FAQ = ... ... @@ -2661,13 +2661,13 @@ 2661 2661 ))) 2662 2662 2663 2663 ((( 2664 -You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2693 +You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2665 2665 ))) 2666 2666 2667 2667 ((( 2668 2668 2669 2669 2670 -== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? == 2699 +== 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? == 2671 2671 2672 2672 2673 2673 ))) ... ... @@ -2769,9 +2769,9 @@ 2769 2769 * If the device is not properly shut down and is directly powered off. 2770 2770 * It will default to a power-off state. 2771 2771 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory. 2772 -* After a restart, the status before the power failure will be read from flash.2801 +* After a restart, the status before the power failure will be read from Flash. 2773 2773 2774 -== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? == 2803 +== 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? == 2775 2775 2776 2776 2777 2777 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below: ... ... @@ -2861,7 +2861,6 @@ 2861 2861 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865 2862 2862 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779 2863 2863 2864 - 2865 2865 = 9. Package information = 2866 2866 2867 2867 ... ... @@ -2879,7 +2879,6 @@ 2879 2879 * Package Size / pcs : 14.5 x 8 x 5 cm 2880 2880 * Weight / pcs : 170 g 2881 2881 2882 - 2883 2883 = 10. Support = 2884 2884 2885 2885
- lt-22222-l-dashboard.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +352.8 KB - Content