Last modified by Mengting Qiu on 2025/06/04 18:42

From version 230.12
edited by Xiaoling
on 2024/12/09 10:15
Change comment: There is no comment for this version
To version 238.1
edited by Dilisi S
on 2024/12/23 05:17
Change comment: Dec 22 - fix lt-33222-l specs

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -98,8 +98,6 @@
98 98  * Automatic RF Sense and CAD with ultra-fast AFC.
99 99  * Packet engine up to 256 bytes with CRC.
100 100  
101 -
102 -
103 103  == 1.3 Features ==
104 104  
105 105  
... ... @@ -111,8 +111,6 @@
111 111  * Firmware upgradable via program port
112 112  * Counting
113 113  
114 -
115 -
116 116  == 1.4 Applications ==
117 117  
118 118  
... ... @@ -123,19 +123,17 @@
123 123  * Smart cities
124 124  * Smart factory
125 125  
126 -
127 -
128 128  == 1.5 Hardware Variants ==
129 129  
130 130  
131 131  (% border="1" cellspacing="3" style="width:510px" %)
132 132  |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
133 -|(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
127 +|(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
134 134  (% style="text-align:center" %)
135 -[[image:lt33222-l.jpg||height="116" width="100"]]
129 +[[image:lt33222-l.jpg||height="110" width="95"]]
136 136  )))|(% style="width:256px" %)(((
137 -* 2 x Digital Input (Bi-direction)
138 -* 2 x Digital Output
131 +* 3 x Digital Input (Bi-direction)
132 +* 3 x Digital Output
139 139  * 2 x Relay Output (5A@250VAC / 30VDC)
140 140  * 2 x 0~~20mA Analog Input (res:0.01mA)
141 141  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -146,6 +146,7 @@
146 146  
147 147  == 2.1 Connecting the antenna ==
148 148  
143 +
149 149  Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
150 150  
151 151  {{warning}}
... ... @@ -152,38 +152,41 @@
152 152  **Warning! Do not power on the device without connecting the antenna.**
153 153  {{/warning}}
154 154  
150 +
155 155  == 2.2 Terminals ==
156 156  
157 -The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
158 158  
154 +The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155 +
159 159  **Upper screw terminal block (from left to right):**
160 160  
161 -(% style="width:634px" %)
162 -|=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
163 -|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
164 -|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
165 -|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
166 -|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
167 -|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
168 -|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
158 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 +|=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 +|(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 +|(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 +|(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 +|(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 +|(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 +|(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
169 169  
170 170  **Lower screw terminal block (from left to right):**
171 171  
172 -(% style="width:633px" %)
173 -|=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
174 -|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
175 -|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
176 -|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
177 -|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
178 -|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
179 -|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
180 -|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
181 -|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
182 -|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
183 -|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 +|=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 +|(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 +|(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 +|(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 +|(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 +|(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 +|(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 +|(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 +|(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 +|(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 +|(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
184 184  
185 185  == 2.3 Connecting LT-22222-L to a Power Source ==
186 186  
184 +
187 187  The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
188 188  
189 189  {{warning}}
... ... @@ -196,23 +196,27 @@
196 196  
197 197  = 3. Registering LT-22222-L with a LoRaWAN Network Server =
198 198  
197 +
199 199  The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
200 200  
201 201  
202 -=== 3.2.1 Prerequisites ===
201 +== 3.1 Prerequisites ==
203 203  
204 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205 205  
204 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205 +
206 206  [[image:image-20230425173427-2.png||height="246" width="530"]]
207 207  
208 208  {{info}}
209 -In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
209 +If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 210  {{/info}}
211 211  
212 212  The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213 213  
214 -=== 3.2.2 The Things Stack ===
215 215  
215 +== 3.2 The Things Stack ==
216 +
217 +
216 216  This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
217 217  
218 218  {{info}}
... ... @@ -223,7 +223,7 @@
223 223  The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
224 224  
225 225  
226 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
228 +[[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
227 227  
228 228  {{info}}
229 229   You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
... ... @@ -230,8 +230,9 @@
230 230  {{/info}}
231 231  
232 232  
233 -==== 3.2.2.1 Setting up ====
235 +=== 3.2.1 Setting up ===
234 234  
237 +
235 235  * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
236 236  * Log in to your The Things Stack Sandbox account.
237 237  * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
... ... @@ -238,8 +238,9 @@
238 238  * Go to your application's page and click on the **End devices** in the left menu.
239 239  * On the End devices page, click on **+ Register end device**. Two registration options are available:
240 240  
241 -==== 3.2.2.2 Using the LoRaWAN Device Repository ====
244 +==== 3.2.1.1 Using the LoRaWAN Device Repository ====
242 242  
246 +
243 243  * On the **Register end device** page:
244 244  ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
245 245  ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
... ... @@ -263,8 +263,9 @@
263 263  [[image:lt-22222-l-dev-repo-reg-p2.png]]
264 264  
265 265  
266 -==== 3.2.2.3 Adding device manually ====
270 +==== 3.2.1.2 Adding device manually ====
267 267  
272 +
268 268  * On the **Register end device** page:
269 269  ** Select the option **Enter end device specifies manually** under **Input method**.
270 270  ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
... ... @@ -294,10 +294,11 @@
294 294  [[image:lt-22222-device-overview.png]]
295 295  
296 296  
297 -==== 3.2.2.4 Joining ====
302 +=== 3.2.2 Joining ===
298 298  
299 -On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
300 300  
305 +On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
306 +
301 301  Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
302 302  
303 303  
... ... @@ -304,18 +304,17 @@
304 304  [[image:lt-22222-l-joining.png]]
305 305  
306 306  
313 +=== 3.2.3 Uplinks ===
307 307  
308 -==== 3.2.2.5 Uplinks ====
309 309  
316 +After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310 310  
311 -After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
318 +Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312 312  
313 -Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
314 -
315 315  [[image:lt-22222-ul-payload-decoded.png]]
316 316  
317 317  
318 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
323 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
319 319  
320 320  {{info}}
321 321  The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
... ... @@ -324,17 +324,18 @@
324 324  [[image:lt-22222-ul-payload-fmt.png]]
325 325  
326 326  
327 -We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
332 +We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
328 328  
329 329  (% class="wikigeneratedid" %)
330 330  [[image:lt-22222-l-js-custom-payload-formatter.png]]
331 331  
332 332  
333 -==== 3.2.2.6 Downlinks ====
338 +=== 3.2.4 Downlinks ===
334 334  
335 -When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
336 336  
341 +When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
337 337  
343 +
338 338  == 3.3 Working Modes and Uplink Payload formats ==
339 339  
340 340  
... ... @@ -354,8 +354,10 @@
354 354  
355 355  The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
356 356  
363 +
357 357  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
358 358  
366 +
359 359  (((
360 360  This is the default mode.
361 361  
... ... @@ -428,6 +428,7 @@
428 428  
429 429  MOD = 1
430 430  
439 +
431 431  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
432 432  
433 433  
... ... @@ -506,6 +506,7 @@
506 506  
507 507  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
508 508  
518 +
509 509  (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
510 510  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
511 511  It starts counting again when it reaches the maximum value.**
... ... @@ -559,6 +559,7 @@
559 559  
560 560  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
561 561  
572 +
562 562  (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
563 563  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
564 564  It starts counting again when it reaches the maximum value.**
... ... @@ -628,6 +628,7 @@
628 628  
629 629  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
630 630  
642 +
631 631  (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
632 632  The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
633 633  It starts counting again when it reaches the maximum value.**
... ... @@ -714,7 +714,7 @@
714 714  
715 715  AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
716 716  
717 -AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
729 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
718 718  
719 719  
720 720  (% style="color:#4f81bd" %)**Trigger based on current**:
... ... @@ -770,7 +770,7 @@
770 770  
771 771  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
772 772  
773 -MOD6 Payload: total of 11 bytes
785 +MOD6 Payload: a total of 11 bytes
774 774  
775 775  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
776 776  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -784,7 +784,7 @@
784 784  MOD(6)
785 785  )))
786 786  
787 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
799 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
788 788  
789 789  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
790 790  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -813,7 +813,7 @@
813 813  10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
814 814  
815 815  
816 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
828 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
817 817  
818 818  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
819 819  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -842,7 +842,7 @@
842 842  10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
843 843  
844 844  
845 -(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
857 +(% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
846 846  
847 847  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
848 848  |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
... ... @@ -852,7 +852,7 @@
852 852  
853 853  **Example:**
854 854  
855 -00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
867 +00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
856 856  
857 857  00000101: This means both DI1 and DI2 triggers are enabled.
858 858  
... ... @@ -863,7 +863,7 @@
863 863  
864 864  **AB 06**
865 865  
866 -When device receives this command, it will send the MOD6 payload.
878 +When the device receives this command, it will send the MOD6 payload.
867 867  
868 868  
869 869  === 3.3.7 Payload Decoder ===
... ... @@ -884,7 +884,7 @@
884 884  
885 885  (((
886 886  (((
887 -There are two tytes of commands:
899 +There are two types of commands:
888 888  )))
889 889  )))
890 890  
... ... @@ -892,12 +892,11 @@
892 892  
893 893  * (% style="color:blue" %)**Sensor-related commands**(%%):
894 894  
895 -
896 896  === 3.4.1 Common commands ===
897 897  
898 898  
899 899  (((
900 -These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
911 +These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
901 901  
902 902  
903 903  )))
... ... @@ -1013,7 +1013,6 @@
1013 1013  Sets the device to working mode 2 (Double DI Counting + DO + RO)
1014 1014  )))
1015 1015  
1016 -
1017 1017  ==== 3.4.2.3 Request an uplink from the device ====
1018 1018  
1019 1019  
... ... @@ -1034,7 +1034,6 @@
1034 1034  Requests an uplink from LT-22222-L.
1035 1035  )))
1036 1036  
1037 -
1038 1038  ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1039 1039  
1040 1040  
... ... @@ -1073,7 +1073,6 @@
1073 1073  Enable trigger mode for the current working mode
1074 1074  )))
1075 1075  
1076 -
1077 1077  ==== 3.4.2.5 Request trigger settings ====
1078 1078  
1079 1079  
... ... @@ -1091,10 +1091,9 @@
1091 1091  |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1092 1092  AB 06
1093 1093  
1094 -Uplinks the trigger settings.
1102 +Uplink the trigger settings.
1095 1095  )))
1096 1096  
1097 -
1098 1098  ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1099 1099  
1100 1100  
... ... @@ -1150,7 +1150,6 @@
1150 1150  Enable DI1 trigger, disable DI2 trigger
1151 1151  )))
1152 1152  
1153 -
1154 1154  ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1155 1155  
1156 1156  
... ... @@ -1190,7 +1190,6 @@
1190 1190  Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1191 1191  )))
1192 1192  
1193 -
1194 1194  ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1195 1195  
1196 1196  
... ... @@ -1225,7 +1225,6 @@
1225 1225  )))
1226 1226  |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1227 1227  
1228 -
1229 1229  ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1230 1230  
1231 1231  
... ... @@ -1276,7 +1276,6 @@
1276 1276  )))
1277 1277  |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1278 1278  
1279 -
1280 1280  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1281 1281  
1282 1282  
... ... @@ -1325,10 +1325,9 @@
1325 1325  )))
1326 1326  |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1327 1327  
1331 +==== 3.4.2.11 Trigger – Set the minimum interval ====
1328 1328  
1329 -==== 3.4.2.11 Trigger – Set minimum interval ====
1330 1330  
1331 -
1332 1332  Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1333 1333  
1334 1334  (% style="color:#037691" %)**AT Command**
... ... @@ -1362,7 +1362,6 @@
1362 1362  )))
1363 1363  |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1364 1364  
1365 -
1366 1366  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1367 1367  
1368 1368  
... ... @@ -1414,130 +1414,143 @@
1414 1414  )))
1415 1415  )))
1416 1416  
1417 -
1418 1418  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1419 1419  
1420 1420  
1421 -* (% style="color:#037691" %)**AT Command**
1421 +(% style="color:#037691" %)**AT command**
1422 1422  
1423 1423  There is no AT command to control the digital output.
1424 1424  
1425 1425  
1426 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1426 +(% style="color:#037691" %)**Downlink payload**
1427 1427  
1428 -(% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1429 1429  
1430 -This is to control the digital output time of DO pin. Include four bytes:
1429 +(% border="2" style="width:500px" %)
1430 +|(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1431 +|(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1432 +**inverter_mode**: 1 byte in hex.
1431 1431  
1432 -(% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1433 -
1434 -(% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1435 -
1436 1436  **01:** DO pins revert to their original state after the timeout.
1437 1437  **00:** DO pins switch to an inverted state after the timeout.
1438 1438  
1439 1439  
1440 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1438 +**DO1_control_method_and_port_status **- 1 byte in hex
1441 1441  
1442 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1443 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1444 -|0x01|DO1 set to low
1445 -|0x00|DO1 set to high
1446 -|0x11|DO1 NO Action
1440 +0x01 : DO1 set to low
1447 1447  
1448 -(% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1442 +0x00 : DO1 set to high
1449 1449  
1450 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1451 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1452 -|0x01|DO2 set to low
1453 -|0x00|DO2 set to high
1454 -|0x11|DO2 NO Action
1444 +0x11 : DO1 NO action
1455 1455  
1456 -(% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1457 1457  
1458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1459 -|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1460 -|0x01|DO3 set to low
1461 -|0x00|DO3 set to high
1462 -|0x11|DO3 NO Action
1447 +**DO2_control_method_and_port_status** - 1 byte in hex
1463 1463  
1464 -(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1449 +0x01 : DO2 set to low
1465 1465  
1451 +0x00 : DO2 set to high
1466 1466  
1467 -(% style="color:red" %)**Note: **
1453 +0x11 : DO2 NO action
1468 1468  
1469 - Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1470 1470  
1471 - Before firmware v1.6.0, the latch time only supported 2 bytes.
1456 +**DO3_control_method_and_port_status **- 1 byte in hex
1472 1472  
1473 -(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1458 +0x01 : DO3 set to low
1474 1474  
1460 +0x00 : DO3 set to high
1475 1475  
1476 -**Example payload:**
1462 +0x11 : DO3 NO action
1477 1477  
1478 -**~1. A9 01 01 01 01 07 D0**
1479 1479  
1465 +**latching_time** : 4 bytes in hex
1466 +
1467 +(% style="color:red" %)**Note: **
1468 +
1469 + Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1470 +
1471 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1472 +
1473 +(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474 +)))
1475 +|(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1476 +|(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1477 +**A9 01 01 01 01 07 D0**
1478 +
1480 1480  DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1481 1481  
1482 -**2. A9 01 00 01 11 07 D0**
1483 1483  
1482 +**A9 01 00 01 11 07 D0**
1483 +
1484 1484  DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1485 1485  
1486 -**3. A9 00 00 00 00 07 D0**
1487 1487  
1487 +**A9 00 00 00 00 07 D0**
1488 +
1488 1488  DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1489 1489  
1490 -**4. A9 00 11 01 00 07 D0**
1491 1491  
1492 -DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1492 +**A9 00 11 01 00 07 D0**
1493 1493  
1494 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1495 +)))
1494 1494  
1495 1495  ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1496 1496  
1497 1497  
1498 -* (% style="color:#037691" %)**AT Command:**
1500 +(% style="color:#037691" %)**AT Command:**
1499 1499  
1500 -There is no AT Command to control the Relay Output
1502 +There is no AT Command to control the Relay Output.
1501 1501  
1502 1502  
1503 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1505 +(% style="color:#037691" %)**Downlink Payload**
1504 1504  
1505 -(% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1507 +(% border="2" style="width:500px" %)
1508 +|(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1509 +|(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1510 +**RO1_status** : 1 byte in hex
1506 1506  
1512 +00: Close
1507 1507  
1508 -(((
1509 -If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1510 -)))
1514 +01: Open
1511 1511  
1512 -(((
1513 -00: Close ,  01: Open , 11: No action
1516 +11: No action
1514 1514  
1515 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1516 -|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1517 -|03  00  11|Open|No Action
1518 -|03  01  11|Close|No Action
1519 -|03  11  00|No Action|Open
1520 -|03  11  01|No Action|Close
1521 -|03  00  00|Open|Open
1522 -|03  01  01|Close|Close
1523 -|03  01  00|Close|Open
1524 -|03  00  01|Open|Close
1525 -)))
1526 1526  
1527 -(% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1519 +**RO2_status** : 1 byte in hex
1528 1528  
1521 +00: Close
1529 1529  
1523 +01: Open
1524 +
1525 +11: No action
1526 +)))
1527 +|(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1528 +|(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1529 +(% border="2" %)
1530 +|=Payload|=RO1|=RO2
1531 +|03  00  11|Open|No action
1532 +|03  01  11|Close|No action
1533 +|03 11  00|No action|Open
1534 +|03 11 10|No action|Close
1535 +|03 00 00|Open|Open
1536 +|03 01 01|Close|Close
1537 +|03 01 00|Close|Open
1538 +|03 00 01|Open|Close
1539 +
1540 +(% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1541 +)))
1542 +
1530 1530  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1531 1531  
1532 1532  
1533 1533  Controls the relay output time.
1534 1534  
1535 -* (% style="color:#037691" %)**AT Command:**
1536 1536  
1549 +(% style="color:#037691" %)**AT Command:**
1550 +
1537 1537  There is no AT Command to control the Relay Output
1538 1538  
1539 1539  
1540 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1554 +(% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1541 1541  
1542 1542  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1543 1543  
... ... @@ -1548,9 +1548,9 @@
1548 1548  
1549 1549  (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1550 1550  
1551 -01: Relays will change back to their original state after timeout.
1565 +01: Relays will change back to their original state after a timeout.
1552 1552  
1553 -00: Relays will change to the inverter state after timeout.
1567 +00: Relays will change to the inverter state after a timeout.
1554 1554  
1555 1555  
1556 1556  (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
... ... @@ -1579,7 +1579,7 @@
1579 1579  
1580 1580  **2. 05 01 10 07 D0**
1581 1581  
1582 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1596 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1583 1583  
1584 1584  **3. 05 00 01 07 D0**
1585 1585  
... ... @@ -1610,7 +1610,7 @@
1610 1610  
1611 1611  **1**: higher than
1612 1612  
1613 -if you leave logic parameter blank, it is considered 0
1627 +if you leave the logic parameter blank, it is considered 0
1614 1614  )))
1615 1615  |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1616 1616  AT+VOLMAX=20000
... ... @@ -1641,7 +1641,7 @@
1641 1641  
1642 1642  **1**: higher than
1643 1643  
1644 -if you leave logic parameter blank, it is considered 1 (higher than)
1658 +if you leave the logic parameter blank, it is considered 1 (higher than)
1645 1645  )))
1646 1646  |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1647 1647  A5 **4E 20**
... ... @@ -1727,7 +1727,6 @@
1727 1727  )))
1728 1728  |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1729 1729  
1730 -
1731 1731  ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1732 1732  
1733 1733  
... ... @@ -1760,7 +1760,6 @@
1760 1760  Sets the device to save its counting results to the memory every 60 seconds.
1761 1761  )))
1762 1762  
1763 -
1764 1764  ==== 3.4.2.20 Reset saved RO and DO states ====
1765 1765  
1766 1766  
... ... @@ -1811,7 +1811,6 @@
1811 1811  After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1812 1812  )))
1813 1813  
1814 -
1815 1815  ==== 3.4.2.21 Encrypted payload ====
1816 1816  
1817 1817  
... ... @@ -1908,7 +1908,7 @@
1908 1908  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1909 1909  
1910 1910  
1911 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1922 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1912 1912  
1913 1913  (% style="color:#037691" %)**AT Command**
1914 1914  
... ... @@ -1951,7 +1951,6 @@
1951 1951  Set DISMACANS=1
1952 1952  )))
1953 1953  
1954 -
1955 1955  ==== 3.4.2.25 Copy downlink to uplink ====
1956 1956  
1957 1957  
... ... @@ -1978,15 +1978,15 @@
1978 1978  There is no downlink option available for this feature.
1979 1979  
1980 1980  
1981 -==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1991 +==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1982 1982  
1983 1983  
1984 -This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1994 +This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1985 1985  
1986 1986  * (((
1987 1987  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1988 1988  
1989 -(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1999 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
1990 1990  
1991 1991  
1992 1992  
... ... @@ -2041,7 +2041,7 @@
2041 2041  * Ensure the following options are turned on.
2042 2042  ** Enable integration
2043 2043  ** Debug mode
2044 -** Allow create devices or assets
2054 +** Allow creating devices or assets
2045 2045  * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2046 2046  
2047 2047  [[image:thingseye-io-step-2.png]]
... ... @@ -2116,7 +2116,7 @@
2116 2116  [[image:thingseye-events.png]]
2117 2117  
2118 2118  
2119 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2129 +* To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2120 2120  
2121 2121  [[image:thingseye-json.png]]
2122 2122  
... ... @@ -2127,12 +2127,16 @@
2127 2127  If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2128 2128  
2129 2129  
2130 -==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2140 +==== 3.5.2.4 Viewing sensor data on a dashboard ====
2131 2131  
2132 2132  
2133 -This will be added soon.
2143 +You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2134 2134  
2135 2135  
2146 +
2147 +[[image:lt-22222-l-dashboard.png]]
2148 +
2149 +
2136 2136  == 3.6 Interface Details ==
2137 2137  
2138 2138  === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
... ... @@ -2347,7 +2347,7 @@
2347 2347  == 3.7 LED Indicators ==
2348 2348  
2349 2349  
2350 -The table below lists the behavior of LED indicators for each port function.
2364 +The table below lists the behaviour of LED indicators for each port function.
2351 2351  
2352 2352  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2353 2353  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
... ... @@ -2354,11 +2354,11 @@
2354 2354  |**PWR**|Always on when there is power
2355 2355  |**TX**|(((
2356 2356  (((
2357 -Device boot: TX blinks 5 times.
2371 +Device booting: TX blinks 5 times.
2358 2358  )))
2359 2359  
2360 2360  (((
2361 -Successful network join: TX remains ON for 5 seconds.
2375 +Successful network joins: TX remains ON for 5 seconds.
2362 2362  )))
2363 2363  
2364 2364  (((
... ... @@ -2377,7 +2377,6 @@
2377 2377  |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2378 2378  |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2379 2379  
2380 -
2381 2381  = 4. Using AT Commands =
2382 2382  
2383 2383  
... ... @@ -2443,13 +2443,13 @@
2443 2443  * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2444 2444  * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2445 2445  * ##**AT+CLASS**##: Get or set the Device Class
2446 -* ##**AT+JOIN**##: Join network
2459 +* ##**AT+JOIN**##: Join Network
2447 2447  * ##**AT+NJS**##: Get OTAA Join Status
2448 2448  * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2449 2449  * ##**AT+SEND**##: Send text data along with the application port
2450 -* ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2451 -* ##**AT+RECV**##: Print last received data in raw format
2452 -* ##**AT+VER**##: Get current image version and Frequency Band
2463 +* ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2464 +* ##**AT+RECV**##: Print the last received data in raw format
2465 +* ##**AT+VER**##: Get the current image version and Frequency Band
2453 2453  * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2454 2454  * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2455 2455  * ##**AT+SNR**##: Get the SNR of the last received packet
... ... @@ -2477,7 +2477,7 @@
2477 2477  )))
2478 2478  
2479 2479  (((
2480 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2493 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2481 2481  )))
2482 2482  
2483 2483  (((
... ... @@ -2485,7 +2485,7 @@
2485 2485  )))
2486 2486  
2487 2487  (((
2488 -(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2501 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2489 2489  )))
2490 2490  
2491 2491  (((
... ... @@ -2516,7 +2516,7 @@
2516 2516  
2517 2517  
2518 2518  (((
2519 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2532 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2520 2520  )))
2521 2521  )))
2522 2522  
... ... @@ -2525,7 +2525,7 @@
2525 2525  )))
2526 2526  
2527 2527  (((
2528 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2541 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2529 2529  )))
2530 2530  
2531 2531  (((
... ... @@ -2607,7 +2607,7 @@
2607 2607  == 5.1 Counting how many objects pass through the flow line ==
2608 2608  
2609 2609  
2610 -See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2623 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2611 2611  
2612 2612  
2613 2613  = 6. FAQ =
... ... @@ -2677,13 +2677,13 @@
2677 2677  )))
2678 2678  
2679 2679  (((
2680 -You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2693 +You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2681 2681  )))
2682 2682  
2683 2683  (((
2684 2684  
2685 2685  
2686 -== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2699 +== 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2687 2687  
2688 2688  
2689 2689  )))
... ... @@ -2785,12 +2785,11 @@
2785 2785  * If the device is not properly shut down and is directly powered off.
2786 2786  * It will default to a power-off state.
2787 2787  * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2788 -* After a restart, the status before the power failure will be read from flash.
2801 +* After a restart, the status before the power failure will be read from Flash.
2789 2789  
2803 +== 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2790 2790  
2791 -== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2792 2792  
2793 -
2794 2794  The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2795 2795  
2796 2796  
... ... @@ -2878,8 +2878,6 @@
2878 2878  * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2879 2879  * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2880 2880  
2881 -
2882 -
2883 2883  = 9. Package information =
2884 2884  
2885 2885  
... ... @@ -2897,8 +2897,6 @@
2897 2897  * Package Size / pcs : 14.5 x 8 x 5 cm
2898 2898  * Weight / pcs : 170 g
2899 2899  
2900 -
2901 -
2902 2902  = 10. Support =
2903 2903  
2904 2904  
lt-22222-l-dashboard.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +352.8 KB
Content