Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Content
-
... ... @@ -27,7 +27,7 @@ 27 27 **This manual is also applicable to the LT-33222-L.** 28 28 {{/info}} 29 29 30 -The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN enddevice designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 31 31 32 32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 33 33 ))) ... ... @@ -40,20 +40,21 @@ 40 40 ((( 41 41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 42 42 43 -* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack CommunityNetwork), you can select a network and register the LT-22222-L I/O controller with it.43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 44 44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 45 45 * Setup your own private LoRaWAN network. 46 + 47 +{{info}} 48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area. 49 +{{/info}} 46 46 ))) 47 47 48 48 ((( 49 - 53 +[[image:1653295757274-912.png]] 50 50 51 - Thenetwork diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.55 + 52 52 ))) 53 53 54 -(% class="wikigeneratedid" %) 55 -[[image:lorawan-nw.jpg||height="354" width="900"]] 56 - 57 57 == 1.2 Specifications == 58 58 59 59 (% style="color:#037691" %)**Hardware System:** ... ... @@ -114,21 +114,6 @@ 114 114 * Smart cities 115 115 * Smart factory 116 116 117 -== 1.5 Hardware Variants == 118 - 119 -(% style="width:524px" %) 120 -|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description** 121 -|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)((( 122 - 123 -)))|(% style="width:329px" %)((( 124 -* 2 x Digital Input (Bi-direction) 125 -* 2 x Digital Output 126 -* 2 x Relay Output (5A@250VAC / 30VDC) 127 -* 2 x 0~~20mA Analog Input (res:0.01mA) 128 -* 2 x 0~~30V Analog Input (res:0.01v) 129 -* 1 x Counting Port 130 -))) 131 - 132 132 == 2. Assembling the device == 133 133 134 134 == 2.1 Connecting the antenna == ... ... @@ -136,17 +136,17 @@ 136 136 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise. 137 137 138 138 {{warning}} 139 - **Warning! Do not power on the device without connecting the antenna.**125 +Warning! Do not power on the device without connecting the antenna. 140 140 {{/warning}} 141 141 142 142 == 2.2 Terminals == 143 143 144 -The LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screwterminals and the lower screw terminal block has 10screwterminals.130 +The LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals. 145 145 146 - **Upper screw terminal block (from left to right):**132 +Upper screw terminal block (from left to right): 147 147 148 148 (% style="width:634px" %) 149 -|=(% style="width: 295px;" %) ScrewTerminal|=(% style="width: 338px;" %)Function135 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 ... ... @@ -154,10 +154,10 @@ 154 154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 156 157 - **Lower screw terminal block (from left to right):**143 +Lower screw terminal block (from left to right): 158 158 159 159 (% style="width:633px" %) 160 -|=(% style="width: 296px;" %) ScrewTerminal|=(% style="width: 334px;" %)Function146 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 ... ... @@ -169,12 +169,14 @@ 169 169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 171 172 -== 2.3 ConnectingLT-22222-Lto a PowerSource ==158 +== 2.3 Powering the device == 173 173 174 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire**to the**VIN**and the**negative wire**to the**GND**screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.160 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered. 175 175 162 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 163 + 176 176 {{warning}} 177 - **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**165 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail. 178 178 {{/warning}} 179 179 180 180 ... ... @@ -181,51 +181,36 @@ 181 181 [[image:1653297104069-180.png]] 182 182 183 183 184 -= 3. Registering LT-22222-Lwith a LoRaWAN Network Server =172 += 3. Registering with a LoRaWAN Network Server = 185 185 186 - The LT-22222-L supportsbothOTAA (Over-the-Air Activation)and ABP (ActivationBy Personalization)methodsto activate with a LoRaWANNetworkServer.However,OTAAis themost securemethodforctivatingadevice with a LoRaWANNetworkServer.OTAAregenerates sessionkeys upon initialregistrationandregenerates new session keys after any subsequent reboots.By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.174 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 187 187 176 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 188 188 178 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 179 + 180 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network. 181 + 182 +[[image:image-20220523172350-1.png||height="266" width="864"]] 183 + 189 189 === 3.2.1 Prerequisites === 190 190 191 - TheLT-22222-Lcomeswith device registration information such as DevEUI, AppEUI, and AppKeythat allows you to register it witha LoRaWAN network. Theseregistration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.186 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 192 192 193 193 [[image:image-20230425173427-2.png||height="246" width="530"]] 194 194 195 -{{info}} 196 -In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 197 -{{/info}} 198 - 199 199 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 200 200 201 -=== 3.2.2 The Things Stack === 192 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 202 202 203 -This section guides you through how to register your LT-22222-L with The Things Stack Sandbox. 204 - 205 -{{info}} 206 206 The Things Stack Sandbox was formally called The Things Stack Community Edition. 207 -{{/info}} 208 208 209 - 210 -The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform. 211 - 212 - 213 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]] 214 - 215 -{{info}} 216 - You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area. 217 -{{/info}} 218 - 219 - 220 -==== 3.2.2.1 Setting up ==== 221 - 222 -* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet. 223 -* Log in to your The Things Stack Sandbox account. 224 -* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs). 225 -* Go to your application's page and click on the **End devices** in the left menu. 196 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 197 +* Create an application with The Things Stack if you do not have one yet. 198 +* Go to your application page and click on the **End devices** in the left menu. 226 226 * On the End devices page, click on **+ Register end device**. Two registration options are available: 227 227 228 -==== 3.2.2. 2Using the LoRaWAN Device Repository ====201 +==== 3.2.2.1 Using the LoRaWAN Device Repository ==== 229 229 230 230 * On the **Register end device** page: 231 231 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**. ... ... @@ -249,8 +249,9 @@ 249 249 250 250 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 251 251 225 +==== ==== 252 252 253 -==== 3.2.2. 3Adding device manually ====227 +==== 3.2.2.2 Adding device manually ==== 254 254 255 255 * On the **Register end device** page: 256 256 ** Select the option **Enter end device specifies manually** under **Input method**. ... ... @@ -265,7 +265,7 @@ 265 265 266 266 267 267 * Register end device page continued... 268 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message ' //**This end device can be registered on the network**//'242 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network' 269 269 ** In the **DevEUI** field, enter the **DevEUI**. 270 270 ** In the **AppKey** field, enter the **AppKey**. 271 271 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application. ... ... @@ -281,27 +281,24 @@ 281 281 [[image:lt-22222-device-overview.png||height="625" width="1000"]] 282 282 283 283 284 -==== 3.2.2. 4Joining ====258 +==== 3.2.2.3 Joining ==== 285 285 286 -On the Device 'spage, click on **Live data** tab. The Live data panel for your device will display.260 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display. 287 287 288 -Now power on your LT-22222-L. The**TX LED**will**fast-blink 5 times** which meansthe LT-22222-L will enter the **work mode** and start to **join**The Things Stacknetwork server.The **TX LED** will be on for **5 seconds** after joining the network.In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.262 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). 289 289 290 290 291 291 [[image:lt-22222-join-network.png||height="625" width="1000"]] 292 292 293 293 294 - ====3.2.2.5Uplinks====268 +By default, you will receive an uplink data message from the device every 10 minutes. 295 295 296 - 297 -After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes. 298 - 299 299 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 300 300 301 301 [[image:lt-22222-ul-payload-decoded.png]] 302 302 303 303 304 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select ** Applications > your application >End devices** > **your end device**275 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes. 305 305 306 306 {{info}} 307 307 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters. ... ... @@ -310,11 +310,6 @@ 310 310 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]] 311 311 312 312 313 -==== 3.2.2.6 Downlinks ==== 314 - 315 -When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**. 316 - 317 - 318 318 == 3.3 Working Modes and Uplink Payload formats == 319 319 320 320 ... ... @@ -590,13 +590,13 @@ 590 590 ))) 591 591 592 592 ((( 593 -AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 559 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 594 594 ))) 595 595 596 596 ((( 597 597 **In addition to that, below are the commands for AVI1 Counting:** 598 598 599 -(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI 1Count to 60)**565 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)** 600 600 601 601 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 602 602 ... ... @@ -1011,7 +1011,7 @@ 1011 1011 (% border="2" style="width:500px" %) 1012 1012 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode> 1013 1013 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)((( 1014 -**prefix** : 0x0A 06 (two bytes in hexadecimal)980 +**prefix** : 0x0A 06 1015 1015 1016 1016 **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal. 1017 1017 ))) ... ... @@ -1033,7 +1033,7 @@ 1033 1033 1034 1034 (% border="2" style="width:500px" %) 1035 1035 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix> 1036 -|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)1002 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 1037 1037 |(% style="width:95px" %)**Example**|(% style="width:403px" %)((( 1038 1038 AB 06 1039 1039 ... ... @@ -1074,7 +1074,7 @@ 1074 1074 (% border="2" style="width:500px" %) 1075 1075 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger> 1076 1076 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)((( 1077 -**prefix :** AA 02 (two bytes in hexadecimal)1043 +**prefix :** AA 02 1078 1078 1079 1079 **DI1_trigger:** 1080 1080 ... ... @@ -1098,7 +1098,20 @@ 1098 1098 1099 1099 Sets DI1 or DI3 (for LT-33222-L) as a trigger. 1100 1100 1067 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b** 1101 1101 1069 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 1070 + 1071 +(% style="color:red" %)**b :** (%%)delay timing. 1072 + 1073 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) 1074 + 1075 + 1076 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):** 1077 + 1078 +(% style="color:blue" %)**0x09 01 aa bb cc ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc) 1079 + 1080 + 1102 1102 (% style="color:#037691" %)**AT Command** 1103 1103 1104 1104 (% border="2" style="width:500px" %) ... ... @@ -1121,7 +1121,7 @@ 1121 1121 (% border="2" style="width:500px" %) 1122 1122 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration> 1123 1123 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)((( 1124 -**prefix** : 09 01 (hexadecimal)1103 +**prefix** : 09 01 1125 1125 1126 1126 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal. 1127 1127 ... ... @@ -1137,7 +1137,20 @@ 1137 1137 1138 1138 Sets DI2 as a trigger. 1139 1139 1119 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 1140 1140 1121 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 1122 + 1123 +(% style="color:red" %)**b :** (%%)delay timing. 1124 + 1125 +**Example:** AT+TRIG2=0,100 (Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms) 1126 + 1127 + 1128 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** 1129 + 1130 +(% style="color:blue" %)**0x09 02 aa bb cc ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc) 1131 + 1132 + 1141 1141 (% style="color:#037691" %)**AT Command** 1142 1142 1143 1143 (% border="2" style="width:500px" %) ... ... @@ -1159,7 +1159,7 @@ 1159 1159 (% border="2" style="width:500px" %) 1160 1160 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration> 1161 1161 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)((( 1162 -**prefix** : 09 02 (hexadecimal)1154 +**prefix** : 09 02 1163 1163 1164 1164 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal. 1165 1165 ... ... @@ -1167,12 +1167,16 @@ 1167 1167 ))) 1168 1168 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64** 1169 1169 1170 - 1171 - 1172 1172 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ==== 1173 1173 1174 1174 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1175 1175 1166 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM** 1167 + 1168 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )** 1169 + 1170 +(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1171 + 1176 1176 (% style="color:#037691" %)**AT Command** 1177 1177 1178 1178 (% border="2" style="width:500px" %) ... ... @@ -1181,13 +1181,13 @@ 1181 1181 ))) 1182 1182 |(% style="width:104px" %)**Response**|(% style="width:394px" %) 1183 1183 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1184 -**AC1_LIMIT_LOW** : lower limit of the current to be checked 1180 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold 1185 1185 1186 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked 1182 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold 1187 1187 1188 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked 1184 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold 1189 1189 1190 -**AC2_LIMIT_LOW** : higher limit of the current to be checked 1186 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold 1191 1191 ))) 1192 1192 |(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1193 1193 AT+ACLIM=10000,15000,0,0 ... ... @@ -1194,7 +1194,6 @@ 1194 1194 1195 1195 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA 1196 1196 ))) 1197 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1198 1198 1199 1199 (% style="color:#037691" %)**Downlink Payload** 1200 1200 ... ... @@ -1201,15 +1201,15 @@ 1201 1201 (% border="2" style="width:500px" %) 1202 1202 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 1203 1203 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1204 -**prefix **: AA 01 (hexadecimal)1199 +**prefix **: AA 01 - two bytes in hexadecimal 1205 1205 1206 -**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal 1201 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold, two bytes in hexadecimal 1207 1207 1208 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal 1203 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold, two bytes in hexadecimal 1209 1209 1210 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal 1205 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold, two bytes in hexadecimal 1211 1211 1212 -**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal 1207 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold, two bytes in hexadecimal 1213 1213 ))) 1214 1214 |(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1215 1215 AA 01 **27** **10 3A** **98** 00 00 00 00 ... ... @@ -1216,121 +1216,69 @@ 1216 1216 1217 1217 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits. 1218 1218 ))) 1219 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1220 1220 1221 1221 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ==== 1222 1222 1223 1223 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1224 1224 1225 -(% style="color:#037691" %)**AT Command** 1219 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]** 1226 1226 1227 -(% border="2" style="width:500px" %) 1228 -|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 1229 -|(% style="width:104px" %)**Response**|(% style="width:387px" %) 1230 -|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)((( 1231 -**AC1_LIMIT_LOW** : lower limit of the current to be checked 1221 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )** 1232 1232 1233 -**A C1_LIMIT_HIGH**:higherlimitof theurrenttobe checked1223 +(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1234 1234 1235 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked 1236 1236 1237 -**AC2_LIMIT_LOW** : higher limit of the current to be checked 1238 -))) 1239 -|(% style="width:104px" %)**Example**|(% style="width:387px" %)((( 1240 -AT+AVLIM=3000,6000,0,2000 1241 - 1242 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V 1243 -))) 1244 -|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1245 - 1246 -(% style="color:#037691" %)**Downlink Payload** 1247 - 1248 1248 (% border="2" style="width:500px" %) 1249 -|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 1250 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1251 -**prefix **: AA 00 (hexadecimal) 1227 +|(% style="width:104px" %)Command|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 1228 +|(% style="width:104px" %)Response|(% style="width:387px" %) 1229 +|(% style="width:104px" %)Parameters|(% style="width:387px" %)((( 1230 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold, two bytes in hexadecimal 1252 1252 1253 -**A V1_LIMIT_LOW**lower limit of thevoltage to be checked,two bytes in hexadecimal1232 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold, two bytes in hexadecimal 1254 1254 1255 -**A V1_LIMIT_HIGH **:higher limit of thevoltage to be checked, two bytes in hexadecimal1234 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold, two bytes in hexadecimal 1256 1256 1257 -**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal 1258 - 1259 -**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal 1236 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold, two bytes in hexadecimal 1260 1260 ))) 1261 -|(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1262 -AA 00 **0B B8 17 70 00 00 07 D0** 1238 +|(% style="width:104px" %)Example|(% style="width:387px" %) 1263 1263 1264 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V. 1265 -))) 1266 -|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1267 1267 1241 + 1268 1268 ==== 3.4.2.11 Trigger – Set minimum interval ==== 1269 1269 1270 -Sets theAV and AC trigger minimum interval.Thedevice won't respondtoasecond trigger within this set time after the first trigger.1244 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 1271 1271 1272 -(% style="color:#037691" %)**AT Command** 1246 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 1273 1273 1274 -(% border="2" style="width:500px" %) 1275 -|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time> 1276 -|(% style="width:113px" %)**Response**|(% style="width:385px" %) 1277 -|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)((( 1278 -**time** : in minutes 1279 -))) 1280 -|(% style="width:113px" %)**Example**|(% style="width:385px" %)((( 1281 -AT+ATDC=5 1248 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )** 1282 1282 1283 -The device won't respond to the second trigger within 5 minutes after the first trigger. 1284 -))) 1285 -|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1250 +(% style="color:blue" %)**0x AC aa bb **(%%) ~/~/ same as AT+ATDC=0x(aa bb) . Unit (min) 1286 1286 1287 -(% style="color:#037691" %)**Downlink Payload** 1288 - 1289 -(% border="2" style="width:500px" %) 1290 -|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time> 1291 -|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)((( 1292 -**prefix** : AC (hexadecimal) 1293 - 1294 -**time **: in minutes (two bytes in hexadecimal) 1252 +((( 1253 +(% style="color:red" %)**Note: ATDC setting must be more than 5min** 1295 1295 ))) 1296 -|(% style="width:112px" %)**Example**|(% style="width:386px" %)((( 1297 -AC **00 05** 1298 1298 1299 -The device won't respond to the second trigger within 5 minutes after the first trigger. 1300 -))) 1301 -|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1302 1302 1257 + 1303 1303 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ==== 1304 1304 1305 1305 Controls the digital outputs DO1, DO2, and DO3 1306 1306 1307 -(% style="color:#037691" %)**AT Command** 1262 +* (% style="color:#037691" %)**AT Command** 1308 1308 1309 -There is no AT Command to control theDigital Output.1264 +There is no AT Command to control Digital Output 1310 1310 1311 1311 1312 -(% style="color:#037691" %)**Downlink Payload** 1267 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)** 1313 1313 1314 -(% border="2" style="width:500px" %) 1315 -|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3> 1316 -|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)((( 1317 -**prefix** : 02 (hexadecimal) 1269 +(% style="color:blue" %)**0x02 aa bb cc ** (%%)~/~/ Set DO1/DO2/DO3 output 1318 1318 1319 -**DOI** : 01: Low, 00: High, 11: No action (1 byte in hex) 1320 - 1321 -**DO2** : 01: Low, 00: High, 11: No action (1 byte in hex) 1322 - 1323 -**DO3 **: 01: Low, 00: High, 11: No action (1 byte in hex) 1271 +((( 1272 +If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low. 1324 1324 ))) 1325 -|(% style="width:115px" %)**Examples**|(% style="width:383px" %)((( 1326 -02 **01 00 01** 1327 1327 1328 -If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low. 1329 - 1330 -**More examples:** 1331 - 1332 1332 ((( 1333 -01: Low, 00: High, 11: No action 1276 +01: Low, 00: High , 11: No action 1334 1334 1335 1335 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1336 1336 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** ... ... @@ -1340,15 +1340,12 @@ 1340 1340 ))) 1341 1341 1342 1342 ((( 1343 -((( 1344 -(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.** 1286 +(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.** 1345 1345 ))) 1346 1346 1347 1347 ((( 1348 -(% style="color:red" %)** Thedevice will upload a packet if downlink code executes successfully.**1290 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1349 1349 ))) 1350 -))) 1351 -))) 1352 1352 1353 1353 1354 1354 ... ... @@ -1376,7 +1376,7 @@ 1376 1376 00: DO pins will change to an inverter state after timeout 1377 1377 1378 1378 1379 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status: 1319 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1380 1380 1381 1381 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1382 1382 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1384,7 +1384,7 @@ 1384 1384 |0x00|DO1 set to high 1385 1385 |0x11|DO1 NO Action 1386 1386 1387 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status: 1327 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1388 1388 1389 1389 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1390 1390 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1392,7 +1392,7 @@ 1392 1392 |0x00|DO2 set to high 1393 1393 |0x11|DO2 NO Action 1394 1394 1395 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status: 1335 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1396 1396 1397 1397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1398 1398 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1400,16 +1400,16 @@ 1400 1400 |0x00|DO3 set to high 1401 1401 |0x11|DO3 NO Action 1402 1402 1403 -(% style="color:#4f81bd" %)**Sixth ,Seventh,Eighth,and Ninth Bytes**:(%%) Latching time(Unit: ms)1343 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms 1404 1404 1405 1405 1406 1406 (% style="color:red" %)**Note: ** 1407 1407 1408 - Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes1348 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes 1409 1409 1410 - Before firmware v1.6.0,the latch time only supported2 bytes.1350 + Before Firmwre v1.6.0 the latch time only suport 2 bytes. 1411 1411 1412 -(% style="color:red" %)**Device will upload a packet if thedownlink code executes successfully.**1352 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1413 1413 1414 1414 1415 1415 **Example payload:** ... ... @@ -1416,21 +1416,22 @@ 1416 1416 1417 1417 **~1. A9 01 01 01 01 07 D0** 1418 1418 1419 -DO1 pin ,DO2 pin,andDO3 pin will be set tolow, lastfor2 seconds,andthenreverttotheiroriginal state.1359 +DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state. 1420 1420 1421 1421 **2. A9 01 00 01 11 07 D0** 1422 1422 1423 -DO1 pin issettohigh, DO2 pinissettolow,andDO3 pintakesno action.Thislastsfor2 secondsandthenrevertstotheoriginal state.1363 +DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state. 1424 1424 1425 1425 **3. A9 00 00 00 00 07 D0** 1426 1426 1427 -DO1 pin ,DO2 pin,andDO3 pin will be set to high, lastfor2 seconds,andthenallchange to low.1367 +DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low. 1428 1428 1429 1429 **4. A9 00 11 01 00 07 D0** 1430 1430 1431 -DO1 pin takesno action, DO2 pinissettolow,andDO3 pinissettohigh.Thislastsfor2 seconds,afterwhichDO1 pintakesno action, DO2 pinissettohigh,andDO3 pinissettolow.1371 +DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low 1432 1432 1433 1433 1374 + 1434 1434 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1435 1435 1436 1436 ... ... @@ -1445,11 +1445,11 @@ 1445 1445 1446 1446 1447 1447 ((( 1448 -If payload is0x030100, it means settingRO1 to close and RO2 to open.1389 +If payload = 0x030100, it means set RO1 to close and RO2 to open. 1449 1449 ))) 1450 1450 1451 1451 ((( 1452 -00: Close , 01: Open , 11: No action 1393 +00: Closed , 01: Open , 11: No action 1453 1453 1454 1454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1455 1455 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** ... ... @@ -1466,9 +1466,9 @@ 1466 1466 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1467 1467 1468 1468 1410 + 1469 1469 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ==== 1470 1470 1471 -Controls the relay output time. 1472 1472 1473 1473 * (% style="color:#037691" %)**AT Command:** 1474 1474 ... ... @@ -1480,15 +1480,15 @@ 1480 1480 (% style="color:blue" %)**0x05 aa bb cc dd ** (%%)~/~/ Set RO1/RO2 relay with time control 1481 1481 1482 1482 1483 -This is to control the relay output time. I t includesfour bytes:1424 +This is to control the relay output time of relay. Include four bytes: 1484 1484 1485 1485 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05) 1486 1486 1487 1487 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode 1488 1488 1489 -01: Relays will change back to theiroriginal state after timeout.1430 +01: Relays will change back to original state after timeout. 1490 1490 1491 -00: Relays will change to theinverter state after timeout.1432 +00: Relays will change to an inverter state after timeout 1492 1492 1493 1493 1494 1494 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status: ... ... @@ -1501,12 +1501,12 @@ 1501 1501 1502 1502 (% style="color:red" %)**Note:** 1503 1503 1504 - Since firmware v1.6.0, the latch time supportsboth4 bytes and 2 bytes.1445 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes 1505 1505 1506 - Before firmware v1.6.0,the latch time only supported2 bytes.1447 + Before Firmwre v1.6.0 the latch time only suport 2 bytes. 1507 1507 1508 1508 1509 -(% style="color:red" %)**Device will upload a packet if thedownlink code executes successfully.**1450 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1510 1510 1511 1511 1512 1512 **Example payload:** ... ... @@ -1513,19 +1513,19 @@ 1513 1513 1514 1514 **~1. 05 01 11 07 D0** 1515 1515 1516 -Relay1 and Relay2 will be set to NC, last ing2 seconds, thenreverttotheiroriginal state1457 +Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state. 1517 1517 1518 1518 **2. 05 01 10 07 D0** 1519 1519 1520 -Relay1 will change to NC, Relay2 will change to NO, last ing2 seconds, then bothwill reverttotheiroriginal state.1461 +Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state. 1521 1521 1522 1522 **3. 05 00 01 07 D0** 1523 1523 1524 -Relay1 will change to NO, Relay2 will change to NC, last ing2 seconds, thenRelay1willchange to NC,andRelay2willchange to NO.1465 +Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO. 1525 1525 1526 1526 **4. 05 00 00 07 D0** 1527 1527 1528 -Relay1 andRelay2 will change to NO, lasting2 seconds, then bothwillchange to NC.1469 +Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC. 1529 1529 1530 1530 1531 1531 ... ... @@ -1532,7 +1532,7 @@ 1532 1532 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ==== 1533 1533 1534 1534 1535 -When thevoltage exceedsthe threshold, counting begins. For details,see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]1476 +When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1536 1536 1537 1537 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1538 1538 ... ... @@ -1541,76 +1541,15 @@ 1541 1541 (% style="color:blue" %)**0xA5 aa bb cc ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc 1542 1542 1543 1543 1544 -(% style="color:#037691" %)**AT Command** 1545 1545 1546 -(% border="2" style="width:500px" %) 1547 -|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic> 1548 -|(% style="width:137px" %)**Response**|(% style="width:361px" %) 1549 -|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)((( 1550 -**voltage** : voltage threshold in mV 1551 - 1552 -**logic**: 1553 - 1554 -0 : lower than 1555 - 1556 -1: higher than 1557 - 1558 -if you leave logic parameter blank, it is considered 0 1559 -))) 1560 -|(% style="width:137px" %)**Examples**|(% style="width:361px" %)((( 1561 -AT+VOLMAX=20000 1562 - 1563 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1564 - 1565 -AT+VOLMAX=20000,0 1566 - 1567 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1 1568 - 1569 -AT+VOLMAX=20000,1 1570 - 1571 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1572 -))) 1573 - 1574 -(% style="color:#037691" %)**Downlink Payload** 1575 - 1576 -(% border="2" style="width:500px" %) 1577 -|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic> 1578 -|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)((( 1579 -**prefix** : A5 (hex) 1580 - 1581 -**voltage** : voltage threshold in mV (2 bytes in hex) 1582 - 1583 -**logic**: (1 byte in hexadecimal) 1584 - 1585 -0 : lower than 1586 - 1587 -1: higher than 1588 - 1589 -if you leave logic parameter blank, it is considered 1 (higher than) 1590 -))) 1591 -|(% style="width:140px" %)**Example**|(% style="width:358px" %)((( 1592 -A5 **4E 20** 1593 - 1594 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1595 - 1596 -A5 **4E 20 00** 1597 - 1598 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1 1599 - 1600 -A5 **4E 20 01** 1601 - 1602 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1603 -))) 1604 - 1605 1605 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ==== 1606 1606 1607 -This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration. 1608 1608 1609 1609 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) ** 1610 1610 1611 1611 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count 1612 1612 1613 -(% style="color:red" %)**bb cc dd ee: **(%%) Thenumber to be set1493 +(% style="color:red" %)**bb cc dd ee: **(%%)number to be set 1614 1614 1615 1615 1616 1616 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):** ... ... @@ -1618,55 +1618,12 @@ 1618 1618 (% style="color:blue" %)**0x A8 aa bb cc dd ee ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee) 1619 1619 1620 1620 1621 -(% style="color:#037691" %)**AT Command** 1622 1622 1623 -(% border="2" style="width:500px" %) 1624 -|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number> 1625 -|(% style="width:134px" %)**Response**|(% style="width:364px" %) 1626 -|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)((( 1627 -**counting_parameter** : 1628 - 1629 -1: COUNT1 1630 - 1631 -2: COUNT2 1632 - 1633 -3: AVI1 Count 1634 - 1635 -**number** : Start number 1636 -))) 1637 -|(% style="width:134px" %)**Example**|(% style="width:364px" %)((( 1638 -AT+SETCNT=1,10 1639 - 1640 -Sets the COUNT1 to 10. 1641 -))) 1642 - 1643 -(% style="color:#037691" %)**Downlink Payload** 1644 - 1645 -(% border="2" style="width:500px" %) 1646 -|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number> 1647 -|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)((( 1648 -prefix : A8 (hex) 1649 - 1650 -**counting_parameter** : (1 byte in hexadecimal) 1651 - 1652 -1: COUNT1 1653 - 1654 -2: COUNT2 1655 - 1656 -3: AVI1 Count 1657 - 1658 -**number** : Start number, 4 bytes in hexadecimal 1659 -))) 1660 -|(% style="width:135px" %)**Example**|(% style="width:363px" %)((( 1661 -A8 **01 00 00 00 0A** 1662 - 1663 -Sets the COUNT1 to 10. 1664 -))) 1665 - 1666 1666 ==== 3.4.2.18 Counting ~-~- Clear Counting ==== 1667 1667 1668 -This command clears the counting in counting mode. 1669 1669 1505 +Clear counting for counting mode 1506 + 1670 1670 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting 1671 1671 1672 1672 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):** ... ... @@ -1673,30 +1673,14 @@ 1673 1673 1674 1674 (% style="color:blue" %)**0x A6 01 ** (%%)~/~/ clear all counting 1675 1675 1676 -(% style="color:#037691" %)**AT Command** 1677 1677 1678 -(% border="2" style="width:500px" %) 1679 -|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT 1680 -|(% style="width:142px" %)**Response**|(% style="width:356px" %)- 1681 1681 1682 -(% style="color:#037691" %)**Downlink Payload** 1683 - 1684 -(% border="2" style="width:500px" %) 1685 -|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?> 1686 -|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)((( 1687 -prefix : A6 (hex) 1688 - 1689 -clear? : 01 (hex) 1690 -))) 1691 -|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01** 1692 - 1693 1693 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1694 1694 1695 -This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds. 1696 1696 1697 1697 * (% style="color:#037691" %)**AT Command:** 1698 1698 1699 -(% style="color:blue" %)**AT+COUTIME=60 **(%%)~/~/ sthesave time to 60 seconds.Thedevice will save the counting result in internal flash every 60 seconds. (Min value: 30seconds)1520 +(% style="color:blue" %)**AT+COUTIME=60 **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30) 1700 1700 1701 1701 1702 1702 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):** ... ... @@ -1704,46 +1704,19 @@ 1704 1704 (% style="color:blue" %)**0x A7 aa bb cc ** (%%)~/~/ same as AT+COUTIME =aa bb cc, 1705 1705 1706 1706 ((( 1707 - Range: aa bb cc:0 to 16777215, (unit:s)1528 +range: aa bb cc:0 to 16777215, (unit:second) 1708 1708 ))) 1709 1709 1710 1710 1711 -(% style="color:#037691" %)**AT Command** 1712 1712 1713 -(% border="2" style="width:500px" %) 1714 -|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time> 1715 -|(% style="width:124px" %)**Response**|(% style="width:374px" %) 1716 -|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215) 1717 -|(% style="width:124px" %)**Example**|(% style="width:374px" %)((( 1718 -AT+COUTIME=60 1719 - 1720 -Sets the device to save its counting results to the memory every 60 seconds. 1721 -))) 1722 - 1723 -(% style="color:#037691" %)**Downlink Payload** 1724 - 1725 -(% border="2" style="width:500px" %) 1726 -|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time> 1727 -|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)((( 1728 -prefix : A7 1729 - 1730 -time : seconds, 3 bytes in hexadecimal 1731 -))) 1732 -|(% style="width:123px" %)**Example**|(% style="width:375px" %)((( 1733 -A7 **00 00 3C** 1734 - 1735 -Sets the device to save its counting results to the memory every 60 seconds. 1736 -))) 1737 - 1738 1738 ==== 3.4.2.20 Reset save RO DO state ==== 1739 1739 1740 -This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network. 1741 1741 1742 1742 * (% style="color:#037691" %)**AT Command:** 1743 1743 1744 1744 (% style="color:blue" %)**AT+RODORESET=1 **(%%)~/~/ RODO will close when the device joining the network. (default) 1745 1745 1746 -(% style="color:blue" %)**AT+RODORESET=0 **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state willnot change when thedevicereconnectsto the network.1540 +(% style="color:blue" %)**AT+RODORESET=0 **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network. 1747 1747 1748 1748 1749 1749 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):** ... ... @@ -1751,50 +1751,9 @@ 1751 1751 (% style="color:blue" %)**0x AD aa ** (%%)~/~/ same as AT+RODORET =aa 1752 1752 1753 1753 1754 -(% border="2" style="width:500px" %) 1755 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state> 1756 -|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1757 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1758 -**state** : 1759 1759 1760 -**0** : RODO will close when the device joins the network. (default) 1761 - 1762 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1763 -))) 1764 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1765 -(% style="color:blue" %)**AT+RODORESET=1 ** 1766 - 1767 -RODO will close when the device joins the network. (default) 1768 - 1769 -(% style="color:blue" %)**AT+RODORESET=0 ** 1770 - 1771 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1772 -))) 1773 - 1774 -(% border="2" style="width:500px" %) 1775 -|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state> 1776 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1777 -**prefix** : AD 1778 - 1779 -**state** : 1780 - 1781 -**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal. 1782 - 1783 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal 1784 -))) 1785 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1786 -AD **01** 1787 - 1788 -RODO will close when the device joins the network. (default) 1789 - 1790 -AD **00** 1791 - 1792 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1793 -))) 1794 - 1795 1795 ==== 3.4.2.21 Encrypted payload ==== 1796 1796 1797 -This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption. 1798 1798 1799 1799 * (% style="color:#037691" %)**AT Command:** 1800 1800 ... ... @@ -1803,67 +1803,21 @@ 1803 1803 (% style="color:blue" %)**AT+DECRYPT=0 **(%%)~/~/ Encrypt when uploading payload (default) 1804 1804 1805 1805 1806 -(% border="2" style="width:500px" %) 1807 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state> 1808 -|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1809 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1810 -state : 1811 1811 1812 -1 : The payload is uploaded without encryption 1813 - 1814 -0 : The payload is encrypted when uploaded (default) 1815 -))) 1816 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1817 -AT+DECRYPT=1 1818 - 1819 -The payload is uploaded without encryption 1820 - 1821 -AT+DECRYPT=0 1822 - 1823 -The payload is encrypted when uploaded (default) 1824 -))) 1825 - 1826 -There is no downlink payload for this configuration. 1827 - 1828 - 1829 1829 ==== 3.4.2.22 Get sensor value ==== 1830 1830 1831 -This command allows you to retrieve and optionally uplink sensor readings through the serial port. 1832 1832 1833 1833 * (% style="color:#037691" %)**AT Command:** 1834 1834 1835 -(% style="color:blue" %)**AT+GETSENSORVALUE=0 **(%%)~/~/ The serial port retrieves the reading of the current sensor.1565 +(% style="color:blue" %)**AT+GETSENSORVALUE=0 **(%%)~/~/ The serial port gets the reading of the current sensor 1836 1836 1837 -(% style="color:blue" %)**AT+GETSENSORVALUE=1 **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.1567 +(% style="color:blue" %)**AT+GETSENSORVALUE=1 **(%%)~/~/ The serial port gets the current sensor reading and uploads it. 1838 1838 1839 1839 1840 -(% border="2" style="width:500px" %) 1841 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state> 1842 -|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1843 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1844 -**state** : 1845 1845 1846 - **0**:Retrieves thecurrent sensor readingviatheserial port.1571 +==== 3.4.2.23 Resets the downlink packet count ==== 1847 1847 1848 -**1 **: Retrieves and uploads the current sensor reading via the serial port. 1849 -))) 1850 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1851 -AT+GETSENSORVALUE=0 1852 1852 1853 -Retrieves the current sensor reading via the serial port. 1854 - 1855 -AT+GETSENSORVALUE=1 1856 - 1857 -Retrieves and uplinks the current sensor reading via the serial port. 1858 -))) 1859 - 1860 -There is no downlink payload for this configuration. 1861 - 1862 - 1863 -==== 3.4.2.23 Resetting the downlink packet count ==== 1864 - 1865 -This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication. 1866 - 1867 1867 * (% style="color:#037691" %)**AT Command:** 1868 1868 1869 1869 (% style="color:blue" %)**AT+DISFCNTCHECK=0 **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default) ... ... @@ -1871,37 +1871,10 @@ 1871 1871 (% style="color:blue" %)**AT+DISFCNTCHECK=1 **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count. 1872 1872 1873 1873 1874 -(% border="2" style="width:500px" %) 1875 -|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state> 1876 -|(% style="width:130px" %)**Response**|(% style="width:368px" %)((( 1877 - 1878 -))) 1879 -|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)((( 1880 -**state **: 1881 1881 1882 -**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default). 1883 - 1884 - 1885 -**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency. 1886 -))) 1887 -|(% style="width:130px" %)**Example**|(% style="width:368px" %)((( 1888 -AT+DISFCNTCHECK=0 1889 - 1890 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default). 1891 - 1892 -AT+DISFCNTCHECK=1 1893 - 1894 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency. 1895 -))) 1896 - 1897 -There is no downlink payload for this configuration. 1898 - 1899 - 1900 1900 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ==== 1901 1901 1902 1902 1903 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow. 1904 - 1905 1905 * (% style="color:#037691" %)**AT Command:** 1906 1906 1907 1907 (% style="color:blue" %)**AT+DISMACANS=0** (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default) ... ... @@ -1913,50 +1913,10 @@ 1913 1913 1914 1914 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set the DISMACANS=1 1915 1915 1916 -(% style="color:#037691" %)**AT Command** 1917 1917 1918 -(% border="2" style="width:500px" %) 1919 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state> 1920 -|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1921 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1922 -**state** : 1923 1923 1924 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1925 - 1926 -**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1927 -))) 1928 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1929 -AT+DISMACANS=0 1930 - 1931 -When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1932 - 1933 -AT+DISMACANS=1 1934 - 1935 -When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1936 -))) 1937 - 1938 -(% style="color:#037691" %)**Downlink Payload** 1939 - 1940 -(% border="2" style="width:500px" %) 1941 -|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state> 1942 -|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)((( 1943 -**prefix** : 21 1944 - 1945 -**state** : (2 bytes in hexadecimal) 1946 - 1947 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1948 - 1949 -**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1950 -))) 1951 -|(% style="width:126px" %)**Example**|(% style="width:372px" %)((( 1952 -21 **00 01** 1953 - 1954 -Set DISMACANS=1 1955 -))) 1956 - 1957 1957 ==== 3.4.2.25 Copy downlink to uplink ==== 1958 1958 1959 -This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100. 1960 1960 1961 1961 * (% style="color:#037691" %)**AT Command**(%%)**:** 1962 1962 ... ... @@ -1969,22 +1969,8 @@ 1969 1969 1970 1970 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77. 1971 1971 1972 -(% border="2" style="width:500px" %) 1973 -|(% style="width:122px" %)**Command**|(% style="width:376px" %)((( 1974 -AT+RPL=5 1975 1975 1976 -After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100. 1977 -))) 1978 -|(% style="width:122px" %)**Example**|(% style="width:376px" %)((( 1979 -Downlink: 1980 1980 1981 -01 00 02 58 1982 - 1983 -Uplink: 1984 - 1985 -01 01 00 02 58 1986 -))) 1987 - 1988 1988 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]] 1989 1989 1990 1990 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned. ... ... @@ -1991,16 +1991,14 @@ 1991 1991 1992 1992 1993 1993 1994 -==== 3.4.2.26 Query firmwareversion,frequency band,sub band, andTDCtime====1620 +==== 3.4.2.26 Query version number and frequency band 、TDC ==== 1995 1995 1996 -This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device. 1997 1997 1998 1998 * ((( 1999 1999 (% style="color:#037691" %)**Downlink Payload**(%%)**:** 2000 2000 2001 -(% style="color:blue" %)**26 01 ** (%%) ~/~/ The downlinkpayload26 01isusedtoquerythedevice'sfirmwareversion, frequency band, sub band,andTDC time.1626 +(% style="color:blue" %)**26 01 ** (%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time. 2002 2002 2003 - 2004 2004 2005 2005 ))) 2006 2006 ... ... @@ -2030,8 +2030,6 @@ 2030 2030 2031 2031 === 3.5.2 Configuring ThingsEye.io === 2032 2032 2033 -The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you. 2034 - 2035 2035 * Login to your [[ThingsEye.io >>https://thingseye.io]]account. 2036 2036 * Under the **Integrations center**, click **Integrations**. 2037 2037 * Click the **Add integration** button (the button with the **+** symbol). ... ... @@ -2080,7 +2080,7 @@ 2080 2080 2081 2081 * Choose **Region** from the **Host type**. 2082 2082 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...). 2083 -* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1Configuring The Things Stack**).1705 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack). 2084 2084 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**. 2085 2085 2086 2086 [[image:message-1.png]] ... ... @@ -2091,7 +2091,7 @@ 2091 2091 [[image:thingseye-io-step-5.png||height="625" width="1000"]] 2092 2092 2093 2093 2094 -Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.1716 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings. 2095 2095 2096 2096 2097 2097 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]] ... ... @@ -2107,7 +2107,7 @@ 2107 2107 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button. 2108 2108 2109 2109 {{info}} 2110 -See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].1732 +See also ThingsEye documentation. 2111 2111 {{/info}} 2112 2112 2113 2113 ==== **3.5.2.2 Viewing events** ==== ... ... @@ -2120,7 +2120,7 @@ 2120 2120 [[image:thingseye-events.png||height="686" width="1000"]] 2121 2121 2122 2122 2123 -* To view the **JSON payload**of a message, click on the**three dots (...)**in the Message column of the desired message.1745 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message. 2124 2124 2125 2125 [[image:thingseye-json.png||width="1000"]] 2126 2126 ... ... @@ -2130,14 +2130,9 @@ 2130 2130 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page. 2131 2131 2132 2132 2133 -==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ==== 2134 - 2135 -This will be added soon. 2136 - 2137 - 2138 2138 == 3.6 Interface Details == 2139 2139 2140 -=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) === 1757 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active ) === 2141 2141 2142 2142 2143 2143 Supports NPN-type sensors.
- dragino-lorawan-nw-lt-22222-n.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.pradeeka - Size
-
... ... @@ -1,1 +1,0 @@ 1 -267.3 KB - Content
- dragino-ttn-te.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.pradeeka - Size
-
... ... @@ -1,1 +1,0 @@ 1 -273.8 KB - Content
- lorawan-nw.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.pradeeka - Size
-
... ... @@ -1,1 +1,0 @@ 1 -250.6 KB - Content