<
From version < 209.1 >
edited by Dilisi S
on 2024/11/22 19:34
To version < 206.1 >
edited by Dilisi S
on 2024/11/20 05:04
>
Change comment: Nov 19 Edits - part 2

Summary

Details

Page properties
Content
... ... @@ -43,12 +43,16 @@
43 43  * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 44  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 45  * Setup your own private LoRaWAN network.
46 +
47 +{{info}}
48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 +{{/info}}
46 46  )))
47 47  
48 48  (((
49 49  
50 50  
51 -The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
55 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
52 52  )))
53 53  
54 54  (% class="wikigeneratedid" %)
... ... @@ -136,17 +136,17 @@
136 136  Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
137 137  
138 138  {{warning}}
139 -**Warning! Do not power on the device without connecting the antenna.**
143 +Warning! Do not power on the device without connecting the antenna.
140 140  {{/warning}}
141 141  
142 142  == 2.2 Terminals ==
143 143  
144 -The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
148 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
145 145  
146 -**Upper screw terminal block (from left to right):**
150 +Upper screw terminal block (from left to right):
147 147  
148 148  (% style="width:634px" %)
149 -|=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
153 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 150  |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 151  |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 152  |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
... ... @@ -154,10 +154,10 @@
154 154  |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 155  |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 156  
157 -**Lower screw terminal block (from left to right):**
161 +Lower screw terminal block (from left to right):
158 158  
159 159  (% style="width:633px" %)
160 -|=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
164 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 161  |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 162  |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 163  |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
... ... @@ -209,14 +209,10 @@
209 209  
210 210  The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
211 211  
216 +[[image:dragino-ttn-te.jpg]]
212 212  
213 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
214 214  
215 -{{info}}
216 - You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
217 -{{/info}}
218 218  
219 -
220 220  ==== 3.2.2.1 Setting up ====
221 221  
222 222  * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
... ... @@ -225,6 +225,7 @@
225 225  * Go to your application's page and click on the **End devices** in the left menu.
226 226  * On the End devices page, click on **+ Register end device**. Two registration options are available:
227 227  
228 +
228 228  ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
229 229  
230 230  * On the **Register end device** page:
... ... @@ -284,7 +284,7 @@
284 284  
285 285  ==== 3.2.2.4 Joining ====
286 286  
287 -On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
288 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
288 288  
289 289  Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
290 290  
... ... @@ -302,7 +302,7 @@
302 302  [[image:lt-22222-ul-payload-decoded.png]]
303 303  
304 304  
305 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
306 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
306 306  
307 307  {{info}}
308 308  The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
... ... @@ -1605,7 +1605,7 @@
1605 1605  
1606 1606  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1607 1607  
1608 -This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1609 +This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1609 1609  
1610 1610  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1611 1611  
... ... @@ -1666,7 +1666,7 @@
1666 1666  
1667 1667  ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1668 1668  
1669 -This command clears the counting in counting mode.
1670 +This feature clears the counting in counting mode.
1670 1670  
1671 1671  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1672 1672  
... ... @@ -1693,7 +1693,7 @@
1693 1693  
1694 1694  ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1695 1695  
1696 -This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1697 +This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1697 1697  
1698 1698  * (% style="color:#037691" %)**AT Command:**
1699 1699  
... ... @@ -1736,9 +1736,10 @@
1736 1736  Sets the device to save its counting results to the memory every 60 seconds.
1737 1737  )))
1738 1738  
1740 +
1739 1739  ==== 3.4.2.20 Reset save RO DO state ====
1740 1740  
1741 -This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1743 +This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1742 1742  
1743 1743  * (% style="color:#037691" %)**AT Command:**
1744 1744  
... ... @@ -1756,11 +1756,11 @@
1756 1756  |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1757 1757  |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1758 1758  |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1759 -**state** :
1761 +state :
1760 1760  
1761 -**0** : RODO will close when the device joins the network. (default)
1763 +0 : RODO will close when the device joins the network. (default)
1762 1762  
1763 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1765 +1: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1764 1764  )))
1765 1765  |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1766 1766  (% style="color:blue" %)**AT+RODORESET=1 **
... ... @@ -1772,16 +1772,17 @@
1772 1772  After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1773 1773  )))
1774 1774  
1777 +
1775 1775  (% border="2" style="width:500px" %)
1776 1776  |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1777 1777  |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1778 -**prefix** : AD
1781 +prefix : AD
1779 1779  
1780 -**state** :
1783 +state :
1781 1781  
1782 -**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1785 +0 : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1783 1783  
1784 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1787 +1: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1785 1785  )))
1786 1786  |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1787 1787  AD **01**
... ... @@ -1793,9 +1793,10 @@
1793 1793  After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1794 1794  )))
1795 1795  
1799 +
1796 1796  ==== 3.4.2.21 Encrypted payload ====
1797 1797  
1798 -This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1802 +This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1799 1799  
1800 1800  * (% style="color:#037691" %)**AT Command:**
1801 1801  
... ... @@ -1804,32 +1804,9 @@
1804 1804  (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1805 1805  
1806 1806  
1807 -(% border="2" style="width:500px" %)
1808 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1809 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1810 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1811 -state :
1812 1812  
1813 -1 : The payload is uploaded without encryption
1814 -
1815 -0 : The payload is encrypted when uploaded (default)
1816 -)))
1817 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1818 -AT+DECRYPT=1
1819 -
1820 -The payload is uploaded without encryption
1821 -
1822 -AT+DECRYPT=0
1823 -
1824 -The payload is encrypted when uploaded (default)
1825 -)))
1826 -
1827 -There is no downlink payload for this configuration.
1828 -
1829 -
1830 1830  ==== 3.4.2.22 Get sensor value ====
1831 1831  
1832 -This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1833 1833  
1834 1834  * (% style="color:#037691" %)**AT Command:**
1835 1835  
... ... @@ -1838,33 +1838,10 @@
1838 1838  (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1839 1839  
1840 1840  
1841 -(% border="2" style="width:500px" %)
1842 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1843 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1844 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1845 -**state** :
1846 1846  
1847 -**0 **: Retrieves the current sensor reading via the serial port.
1823 +==== 3.4.2.23 Resets the downlink packet count ====
1848 1848  
1849 -**1 **: Retrieves and uploads the current sensor reading via the serial port.
1850 -)))
1851 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1852 -AT+GETSENSORVALUE=0
1853 1853  
1854 -Retrieves the current sensor reading via the serial port.
1855 -
1856 -AT+GETSENSORVALUE=1
1857 -
1858 -Retrieves and uplinks the current sensor reading via the serial port.
1859 -)))
1860 -
1861 -There is no downlink payload for this configuration.
1862 -
1863 -
1864 -==== 3.4.2.23 Resetting the downlink packet count ====
1865 -
1866 -This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1867 -
1868 1868  * (% style="color:#037691" %)**AT Command:**
1869 1869  
1870 1870  (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
... ... @@ -1872,37 +1872,10 @@
1872 1872  (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1873 1873  
1874 1874  
1875 -(% border="2" style="width:500px" %)
1876 -|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1877 -|(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1878 -
1879 -)))
1880 -|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1881 -**state **:
1882 1882  
1883 -**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1884 -
1885 -
1886 -**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1887 -)))
1888 -|(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1889 -AT+DISFCNTCHECK=0
1890 -
1891 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1892 -
1893 -AT+DISFCNTCHECK=1
1894 -
1895 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1896 -)))
1897 -
1898 -There is no downlink payload for this configuration.
1899 -
1900 -
1901 1901  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1902 1902  
1903 1903  
1904 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1905 -
1906 1906  * (% style="color:#037691" %)**AT Command:**
1907 1907  
1908 1908  (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
... ... @@ -1914,50 +1914,10 @@
1914 1914  
1915 1915  (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1916 1916  
1917 -(% style="color:#037691" %)**AT Command**
1918 1918  
1919 -(% border="2" style="width:500px" %)
1920 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1921 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1922 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1923 -**state** :
1924 1924  
1925 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1926 -
1927 -**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1928 -)))
1929 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1930 -AT+DISMACANS=0
1931 -
1932 -When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1933 -
1934 -AT+DISMACANS=1
1935 -
1936 -When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1937 -)))
1938 -
1939 -(% style="color:#037691" %)**Downlink Payload**
1940 -
1941 -(% border="2" style="width:500px" %)
1942 -|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1943 -|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1944 -**prefix** : 21
1945 -
1946 -**state** : (2 bytes in hexadecimal)
1947 -
1948 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1949 -
1950 -**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1951 -)))
1952 -|(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1953 -21 **00 01**
1954 -
1955 -Set DISMACANS=1
1956 -)))
1957 -
1958 1958  ==== 3.4.2.25 Copy downlink to uplink ====
1959 1959  
1960 -This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1961 1961  
1962 1962  * (% style="color:#037691" %)**AT Command**(%%)**:**
1963 1963  
... ... @@ -1970,22 +1970,8 @@
1970 1970  
1971 1971  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1972 1972  
1973 -(% border="2" style="width:500px" %)
1974 -|(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1975 -AT+RPL=5
1976 1976  
1977 -After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1978 -)))
1979 -|(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1980 -Downlink:
1981 1981  
1982 -01 00 02 58
1983 -
1984 -Uplink:
1985 -
1986 -01 01 00 02 58
1987 -)))
1988 -
1989 1989  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1990 1990  
1991 1991  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
... ... @@ -1992,16 +1992,14 @@
1992 1992  
1993 1993  
1994 1994  
1995 -==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1872 +==== 3.4.2.26 Query version number and frequency band TDC ====
1996 1996  
1997 -This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1998 1998  
1999 1999  * (((
2000 2000  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2001 2001  
2002 -(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1878 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
2003 2003  
2004 -
2005 2005  
2006 2006  )))
2007 2007  
... ... @@ -2031,8 +2031,6 @@
2031 2031  
2032 2032  === 3.5.2 Configuring ThingsEye.io ===
2033 2033  
2034 -The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2035 -
2036 2036  * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2037 2037  * Under the **Integrations center**, click **Integrations**.
2038 2038  * Click the **Add integration** button (the button with the **+** symbol).
... ... @@ -2081,7 +2081,7 @@
2081 2081  
2082 2082  * Choose **Region** from the **Host type**.
2083 2083  * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2084 -* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
1957 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
2085 2085  * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2086 2086  
2087 2087  [[image:message-1.png]]
... ... @@ -2092,7 +2092,7 @@
2092 2092  [[image:thingseye-io-step-5.png||height="625" width="1000"]]
2093 2093  
2094 2094  
2095 -Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
1968 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
2096 2096  
2097 2097  
2098 2098  [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
... ... @@ -2108,7 +2108,7 @@
2108 2108  If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2109 2109  
2110 2110  {{info}}
2111 -See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
1984 +See also ThingsEye documentation.
2112 2112  {{/info}}
2113 2113  
2114 2114  ==== **3.5.2.2 Viewing events** ====
... ... @@ -2121,7 +2121,7 @@
2121 2121  [[image:thingseye-events.png||height="686" width="1000"]]
2122 2122  
2123 2123  
2124 -* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
1997 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
2125 2125  
2126 2126  [[image:thingseye-json.png||width="1000"]]
2127 2127  
... ... @@ -2131,11 +2131,6 @@
2131 2131  If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2132 2132  
2133 2133  
2134 -==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2135 -
2136 -This will be added soon.
2137 -
2138 -
2139 2139  == 3.6 Interface Details ==
2140 2140  
2141 2141  === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
dragino-lorawan-nw-lt-22222-n.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -267.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0