<
From version < 208.1 >
edited by Dilisi S
on 2024/11/22 05:35
To version < 202.1 >
edited by Dilisi S
on 2024/11/19 19:08
>
Change comment: Uploaded new attachment "dragino-ttn-te.jpg", version {1}

Summary

Details

Page properties
Content
... ... @@ -27,7 +27,7 @@
27 27  **This manual is also applicable to the LT-33222-L.**
28 28  {{/info}}
29 29  
30 -The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 32  The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 33  )))
... ... @@ -40,24 +40,21 @@
40 40  (((
41 41  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42 42  
43 -* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
44 44  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 45  * Setup your own private LoRaWAN network.
46 46  
47 47  {{info}}
48 - You can use a LoRaWAN gateway, such as the Dragino LPS8N, to expand or create LoRaWAN coverage in your area.
48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 49  {{/info}}
50 50  )))
51 51  
52 52  (((
53 -
53 +[[image:1653295757274-912.png]]
54 54  
55 -The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
55 +
56 56  )))
57 57  
58 -(% class="wikigeneratedid" %)
59 -[[image:lorawan-nw.jpg||height="354" width="900"]]
60 -
61 61  == 1.2 Specifications ==
62 62  
63 63  (% style="color:#037691" %)**Hardware System:**
... ... @@ -123,7 +123,7 @@
123 123  (% style="width:524px" %)
124 124  |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
125 125  |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
126 -
123 +[[image:/xwiki/bin/downloadrev/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/image-20230424115112-1.png?rev=1.1&width=58&height=106||alt="image-20230424115112-1.png" height="106" width="58"]]
127 127  )))|(% style="width:329px" %)(((
128 128  * 2 x Digital Input (Bi-direction)
129 129  * 2 x Digital Output
... ... @@ -133,6 +133,8 @@
133 133  * 1 x Counting Port
134 134  )))
135 135  
133 +
134 +
136 136  == 2. Assembling the device ==
137 137  
138 138  == 2.1 Connecting the antenna ==
... ... @@ -173,12 +173,14 @@
173 173  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 174  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175 175  
176 -== 2.3 Connecting LT-22222-L to a Power Source ==
175 +== 2.3 Powering the device ==
177 177  
178 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
177 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179 179  
179 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
180 +
180 180  {{warning}}
181 -**We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
182 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
182 182  {{/warning}}
183 183  
184 184  
... ... @@ -185,49 +185,36 @@
185 185  [[image:1653297104069-180.png]]
186 186  
187 187  
188 -= 3. Registering LT-22222-L with a LoRaWAN Network Server =
189 += 3. Registering with a LoRaWAN Network Server =
189 189  
190 -The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
191 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
191 191  
193 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
192 192  
195 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
196 +
197 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
198 +
199 +[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +
193 193  === 3.2.1 Prerequisites ===
194 194  
195 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
203 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196 196  
197 197  [[image:image-20230425173427-2.png||height="246" width="530"]]
198 198  
199 -{{info}}
200 -In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 -{{/info}}
202 -
203 203  The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204 204  
205 -=== 3.2.2 The Things Stack ===
209 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
206 206  
207 -This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208 -
209 -{{info}}
210 210  The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 -{{/info}}
212 212  
213 -
214 -The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215 -
216 -
217 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
218 -
219 -
220 -
221 -
222 -==== 3.2.2.1 Setting up ====
223 -
224 -* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
225 -* Log in to your The Things Stack Sandbox account.
226 -* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
227 -* Go to your application's page and click on the **End devices** in the left menu.
213 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
214 +* Create an application with The Things Stack if you do not have one yet.
215 +* Go to your application page and click on the **End devices** in the left menu.
228 228  * On the End devices page, click on **+ Register end device**. Two registration options are available:
229 229  
230 -==== 3.2.2.2 Using the LoRaWAN Device Repository ====
218 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
231 231  
232 232  * On the **Register end device** page:
233 233  ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
... ... @@ -253,7 +253,7 @@
253 253  
254 254  ==== ====
255 255  
256 -==== 3.2.2.3 Adding device manually ====
244 +==== 3.2.2.2 Adding device manually ====
257 257  
258 258  * On the **Register end device** page:
259 259  ** Select the option **Enter end device specifies manually** under **Input method**.
... ... @@ -268,7 +268,7 @@
268 268  
269 269  
270 270  * Register end device page continued...
271 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
259 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
272 272  ** In the **DevEUI** field, enter the **DevEUI**.
273 273  ** In the **AppKey** field, enter the **AppKey**.
274 274  ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
... ... @@ -284,21 +284,18 @@
284 284  [[image:lt-22222-device-overview.png||height="625" width="1000"]]
285 285  
286 286  
287 -==== 3.2.2.4 Joining ====
275 +==== 3.2.2.3 Joining ====
288 288  
289 289  On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
290 290  
291 -Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
279 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
292 292  
293 293  
294 294  [[image:lt-22222-join-network.png||height="625" width="1000"]]
295 295  
296 296  
297 -==== 3.2.2.5 Uplinks ====
285 +By default, you will receive an uplink data message from the device every 10 minutes.
298 298  
299 -
300 -After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
301 -
302 302  Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
303 303  
304 304  [[image:lt-22222-ul-payload-decoded.png]]
... ... @@ -313,11 +313,6 @@
313 313  [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
314 314  
315 315  
316 -==== 3.2.2.6 Downlinks ====
317 -
318 -When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
319 -
320 -
321 321  == 3.3 Working Modes and Uplink Payload formats ==
322 322  
323 323  
... ... @@ -1607,7 +1607,7 @@
1607 1607  
1608 1608  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1609 1609  
1610 -This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1590 +This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1611 1611  
1612 1612  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1613 1613  
... ... @@ -1668,7 +1668,7 @@
1668 1668  
1669 1669  ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1670 1670  
1671 -This command clears the counting in counting mode.
1651 +This feature clears the counting in counting mode.
1672 1672  
1673 1673  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1674 1674  
... ... @@ -1695,7 +1695,7 @@
1695 1695  
1696 1696  ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1697 1697  
1698 -This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1678 +This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1699 1699  
1700 1700  * (% style="color:#037691" %)**AT Command:**
1701 1701  
... ... @@ -1711,36 +1711,10 @@
1711 1711  )))
1712 1712  
1713 1713  
1714 -(% style="color:#037691" %)**AT Command**
1715 1715  
1716 -(% border="2" style="width:500px" %)
1717 -|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1718 -|(% style="width:124px" %)**Response**|(% style="width:374px" %)
1719 -|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1720 -|(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1721 -AT+COUTIME=60
1722 -
1723 -Sets the device to save its counting results to the memory every 60 seconds.
1724 -)))
1725 -
1726 -(% style="color:#037691" %)**Downlink Payload**
1727 -
1728 -(% border="2" style="width:500px" %)
1729 -|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1730 -|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1731 -prefix : A7
1732 -
1733 -time : seconds, 3 bytes in hexadecimal
1734 -)))
1735 -|(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1736 -A7 **00 00 3C**
1737 -
1738 -Sets the device to save its counting results to the memory every 60 seconds.
1739 -)))
1740 -
1741 1741  ==== 3.4.2.20 Reset save RO DO state ====
1742 1742  
1743 -This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1697 +This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1744 1744  
1745 1745  * (% style="color:#037691" %)**AT Command:**
1746 1746  
... ... @@ -1754,50 +1754,10 @@
1754 1754  (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1755 1755  
1756 1756  
1757 -(% border="2" style="width:500px" %)
1758 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1759 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1760 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1761 -**state** :
1762 1762  
1763 -**0** : RODO will close when the device joins the network. (default)
1764 -
1765 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1766 -)))
1767 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1768 -(% style="color:blue" %)**AT+RODORESET=1 **
1769 -
1770 -RODO will close when the device joins the network. (default)
1771 -
1772 -(% style="color:blue" %)**AT+RODORESET=0 **
1773 -
1774 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1775 -)))
1776 -
1777 -(% border="2" style="width:500px" %)
1778 -|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1779 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1780 -**prefix** : AD
1781 -
1782 -**state** :
1783 -
1784 -**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1785 -
1786 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1787 -)))
1788 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1789 -AD **01**
1790 -
1791 -RODO will close when the device joins the network. (default)
1792 -
1793 -AD **00**
1794 -
1795 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1796 -)))
1797 -
1798 1798  ==== 3.4.2.21 Encrypted payload ====
1799 1799  
1800 -This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1714 +This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1801 1801  
1802 1802  * (% style="color:#037691" %)**AT Command:**
1803 1803  
... ... @@ -1806,32 +1806,9 @@
1806 1806  (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1807 1807  
1808 1808  
1809 -(% border="2" style="width:500px" %)
1810 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1811 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1812 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1813 -state :
1814 1814  
1815 -1 : The payload is uploaded without encryption
1816 -
1817 -0 : The payload is encrypted when uploaded (default)
1818 -)))
1819 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1820 -AT+DECRYPT=1
1821 -
1822 -The payload is uploaded without encryption
1823 -
1824 -AT+DECRYPT=0
1825 -
1826 -The payload is encrypted when uploaded (default)
1827 -)))
1828 -
1829 -There is no downlink payload for this configuration.
1830 -
1831 -
1832 1832  ==== 3.4.2.22 Get sensor value ====
1833 1833  
1834 -This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1835 1835  
1836 1836  * (% style="color:#037691" %)**AT Command:**
1837 1837  
... ... @@ -1840,33 +1840,10 @@
1840 1840  (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1841 1841  
1842 1842  
1843 -(% border="2" style="width:500px" %)
1844 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1845 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1846 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1847 -**state** :
1848 1848  
1849 -**0 **: Retrieves the current sensor reading via the serial port.
1735 +==== 3.4.2.23 Resets the downlink packet count ====
1850 1850  
1851 -**1 **: Retrieves and uploads the current sensor reading via the serial port.
1852 -)))
1853 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1854 -AT+GETSENSORVALUE=0
1855 1855  
1856 -Retrieves the current sensor reading via the serial port.
1857 -
1858 -AT+GETSENSORVALUE=1
1859 -
1860 -Retrieves and uplinks the current sensor reading via the serial port.
1861 -)))
1862 -
1863 -There is no downlink payload for this configuration.
1864 -
1865 -
1866 -==== 3.4.2.23 Resetting the downlink packet count ====
1867 -
1868 -This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1869 -
1870 1870  * (% style="color:#037691" %)**AT Command:**
1871 1871  
1872 1872  (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
... ... @@ -1874,37 +1874,10 @@
1874 1874  (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1875 1875  
1876 1876  
1877 -(% border="2" style="width:500px" %)
1878 -|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1879 -|(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1880 -
1881 -)))
1882 -|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1883 -**state **:
1884 1884  
1885 -**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1886 -
1887 -
1888 -**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1889 -)))
1890 -|(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1891 -AT+DISFCNTCHECK=0
1892 -
1893 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1894 -
1895 -AT+DISFCNTCHECK=1
1896 -
1897 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1898 -)))
1899 -
1900 -There is no downlink payload for this configuration.
1901 -
1902 -
1903 1903  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1904 1904  
1905 1905  
1906 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1907 -
1908 1908  * (% style="color:#037691" %)**AT Command:**
1909 1909  
1910 1910  (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
... ... @@ -1916,51 +1916,10 @@
1916 1916  
1917 1917  (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1918 1918  
1919 -(% style="color:#037691" %)**AT Command**
1920 1920  
1921 -(% border="2" style="width:500px" %)
1922 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1923 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1924 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1925 -**state** :
1926 1926  
1927 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1928 -
1929 -**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1930 -)))
1931 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1932 -AT+DISMACANS=0
1933 -
1934 -When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1935 -
1936 -AT+DISMACANS=1
1937 -
1938 -When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1939 -)))
1940 -
1941 -(% style="color:#037691" %)**Downlink Payload**
1942 -
1943 -(% border="2" style="width:500px" %)
1944 -|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1945 -|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1946 -**prefix** : 21
1947 -
1948 -**state** : (2 bytes in hexadecimal)
1949 -
1950 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1951 -
1952 -**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1953 -)))
1954 -|(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1955 -21 **00 01**
1956 -
1957 -Set DISMACANS=1
1958 -)))
1959 -
1960 -
1961 1961  ==== 3.4.2.25 Copy downlink to uplink ====
1962 1962  
1963 -This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1964 1964  
1965 1965  * (% style="color:#037691" %)**AT Command**(%%)**:**
1966 1966  
... ... @@ -1973,32 +1973,8 @@
1973 1973  
1974 1974  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1975 1975  
1976 -(% border="2" style="width:500px" %)
1977 -|(% style="width:122px" %)Command|(% style="width:376px" %)(((
1978 -AT+RPL=5
1979 1979  
1980 -After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1981 -)))
1982 -|(% style="width:122px" %)Uplink payload|(% style="width:376px" %)(((
1983 -aa xx xx xx xx
1984 1984  
1985 -aa : indicates whether the configuration has changed.
1986 -
1987 -00 : YES
1988 -
1989 -01 : NO
1990 -)))
1991 -|(% style="width:122px" %)Example|(% style="width:376px" %)(((
1992 -Downlink:
1993 -
1994 -11 22 33 44 55 66 77
1995 -
1996 -Uplink:
1997 -
1998 -00 11 22 33 44 55 66 77
1999 -)))
2000 -
2001 -
2002 2002  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
2003 2003  
2004 2004  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
dragino-lorawan-nw-lt-22222-n.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -267.3 KB
Content
dragino-ttn-te.jpg
Size
... ... @@ -1,1 +1,1 @@
1 -273.8 KB
1 +258.8 KB
Content
lorawan-nw.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -250.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0