<
From version < 208.1 >
edited by Dilisi S
on 2024/11/22 05:35
To version < 199.1 >
edited by Dilisi S
on 2024/11/17 20:25
>
Change comment: Nov 17 edits - set 2

Summary

Details

Page properties
Content
... ... @@ -27,7 +27,7 @@
27 27  **This manual is also applicable to the LT-33222-L.**
28 28  {{/info}}
29 29  
30 -The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 32  The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 33  )))
... ... @@ -40,24 +40,21 @@
40 40  (((
41 41  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42 42  
43 -* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
44 44  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 45  * Setup your own private LoRaWAN network.
46 46  
47 47  {{info}}
48 - You can use a LoRaWAN gateway, such as the Dragino LPS8N, to expand or create LoRaWAN coverage in your area.
48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 49  {{/info}}
50 50  )))
51 51  
52 52  (((
53 -
53 +[[image:1653295757274-912.png]]
54 54  
55 -The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
55 +
56 56  )))
57 57  
58 -(% class="wikigeneratedid" %)
59 -[[image:lorawan-nw.jpg||height="354" width="900"]]
60 -
61 61  == 1.2 Specifications ==
62 62  
63 63  (% style="color:#037691" %)**Hardware System:**
... ... @@ -118,21 +118,6 @@
118 118  * Smart cities
119 119  * Smart factory
120 120  
121 -== 1.5 Hardware Variants ==
122 -
123 -(% style="width:524px" %)
124 -|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
125 -|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
126 -
127 -)))|(% style="width:329px" %)(((
128 -* 2 x Digital Input (Bi-direction)
129 -* 2 x Digital Output
130 -* 2 x Relay Output (5A@250VAC / 30VDC)
131 -* 2 x 0~~20mA Analog Input (res:0.01mA)
132 -* 2 x 0~~30V Analog Input (res:0.01v)
133 -* 1 x Counting Port
134 -)))
135 -
136 136  == 2. Assembling the device ==
137 137  
138 138  == 2.1 Connecting the antenna ==
... ... @@ -173,12 +173,14 @@
173 173  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 174  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175 175  
176 -== 2.3 Connecting LT-22222-L to a Power Source ==
158 +== 2.3 Powering the device ==
177 177  
178 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
160 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179 179  
162 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
163 +
180 180  {{warning}}
181 -**We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
165 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
182 182  {{/warning}}
183 183  
184 184  
... ... @@ -185,49 +185,36 @@
185 185  [[image:1653297104069-180.png]]
186 186  
187 187  
188 -= 3. Registering LT-22222-L with a LoRaWAN Network Server =
172 += 3. Registering with a LoRaWAN Network Server =
189 189  
190 -The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
174 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
191 191  
176 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
192 192  
178 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
179 +
180 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
181 +
182 +[[image:image-20220523172350-1.png||height="266" width="864"]]
183 +
193 193  === 3.2.1 Prerequisites ===
194 194  
195 -The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
186 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196 196  
197 197  [[image:image-20230425173427-2.png||height="246" width="530"]]
198 198  
199 -{{info}}
200 -In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 -{{/info}}
202 -
203 203  The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204 204  
205 -=== 3.2.2 The Things Stack ===
192 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
206 206  
207 -This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208 -
209 -{{info}}
210 210  The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 -{{/info}}
212 212  
213 -
214 -The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215 -
216 -
217 -[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
218 -
219 -
220 -
221 -
222 -==== 3.2.2.1 Setting up ====
223 -
224 -* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
225 -* Log in to your The Things Stack Sandbox account.
226 -* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
227 -* Go to your application's page and click on the **End devices** in the left menu.
196 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
197 +* Create an application with The Things Stack if you do not have one yet.
198 +* Go to your application page and click on the **End devices** in the left menu.
228 228  * On the End devices page, click on **+ Register end device**. Two registration options are available:
229 229  
230 -==== 3.2.2.2 Using the LoRaWAN Device Repository ====
201 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
231 231  
232 232  * On the **Register end device** page:
233 233  ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
... ... @@ -253,7 +253,7 @@
253 253  
254 254  ==== ====
255 255  
256 -==== 3.2.2.3 Adding device manually ====
227 +==== 3.2.2.2 Adding device manually ====
257 257  
258 258  * On the **Register end device** page:
259 259  ** Select the option **Enter end device specifies manually** under **Input method**.
... ... @@ -268,7 +268,7 @@
268 268  
269 269  
270 270  * Register end device page continued...
271 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
242 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
272 272  ** In the **DevEUI** field, enter the **DevEUI**.
273 273  ** In the **AppKey** field, enter the **AppKey**.
274 274  ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
... ... @@ -284,21 +284,18 @@
284 284  [[image:lt-22222-device-overview.png||height="625" width="1000"]]
285 285  
286 286  
287 -==== 3.2.2.4 Joining ====
258 +==== 3.2.2.3 Joining ====
288 288  
289 289  On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
290 290  
291 -Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
262 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
292 292  
293 293  
294 294  [[image:lt-22222-join-network.png||height="625" width="1000"]]
295 295  
296 296  
297 -==== 3.2.2.5 Uplinks ====
268 +By default, you will receive an uplink data message from the device every 10 minutes.
298 298  
299 -
300 -After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
301 -
302 302  Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
303 303  
304 304  [[image:lt-22222-ul-payload-decoded.png]]
... ... @@ -313,11 +313,6 @@
313 313  [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
314 314  
315 315  
316 -==== 3.2.2.6 Downlinks ====
317 -
318 -When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
319 -
320 -
321 321  == 3.3 Working Modes and Uplink Payload formats ==
322 322  
323 323  
... ... @@ -593,13 +593,13 @@
593 593  )))
594 594  
595 595  (((
596 -AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
559 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
597 597  )))
598 598  
599 599  (((
600 600  **In addition to that, below are the commands for AVI1 Counting:**
601 601  
602 -(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
565 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
603 603  
604 604  (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
605 605  
... ... @@ -1014,7 +1014,7 @@
1014 1014  (% border="2" style="width:500px" %)
1015 1015  |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1016 1016  |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1017 -**prefix** : 0x0A 06 (two bytes in hexadecimal)
980 +**prefix** : 0x0A 06
1018 1018  
1019 1019  **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1020 1020  )))
... ... @@ -1036,7 +1036,7 @@
1036 1036  
1037 1037  (% border="2" style="width:500px" %)
1038 1038  |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1039 -|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1002 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06
1040 1040  |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1041 1041  AB 06
1042 1042  
... ... @@ -1077,7 +1077,7 @@
1077 1077  (% border="2" style="width:500px" %)
1078 1078  |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1079 1079  |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1080 -**prefix :** AA 02 (two bytes in hexadecimal)
1043 +**prefix :** AA 02
1081 1081  
1082 1082  **DI1_trigger:**
1083 1083  
... ... @@ -1101,7 +1101,20 @@
1101 1101  
1102 1102  Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1103 1103  
1067 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1104 1104  
1069 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1070 +
1071 +(% style="color:red" %)**b :** (%%)delay timing.
1072 +
1073 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1074 +
1075 +
1076 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1077 +
1078 +(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1079 +
1080 +
1105 1105  (% style="color:#037691" %)**AT Command**
1106 1106  
1107 1107  (% border="2" style="width:500px" %)
... ... @@ -1124,7 +1124,7 @@
1124 1124  (% border="2" style="width:500px" %)
1125 1125  |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1126 1126  |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1127 -**prefix** : 09 01 (hexadecimal)
1103 +**prefix** : 09 01
1128 1128  
1129 1129  **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1130 1130  
... ... @@ -1140,7 +1140,20 @@
1140 1140  
1141 1141  Sets DI2 as a trigger.
1142 1142  
1119 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1143 1143  
1121 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1122 +
1123 +(% style="color:red" %)**b :** (%%)delay timing.
1124 +
1125 +**Example:** AT+TRIG2=0,100 (Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms)
1126 +
1127 +
1128 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1129 +
1130 +(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1131 +
1132 +
1144 1144  (% style="color:#037691" %)**AT Command**
1145 1145  
1146 1146  (% border="2" style="width:500px" %)
... ... @@ -1162,7 +1162,7 @@
1162 1162  (% border="2" style="width:500px" %)
1163 1163  |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1164 1164  |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1165 -**prefix** : 09 02 (hexadecimal)
1154 +**prefix** : 09 02
1166 1166  
1167 1167  **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1168 1168  
... ... @@ -1170,12 +1170,16 @@
1170 1170  )))
1171 1171  |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1172 1172  
1173 -==== ====
1174 -
1175 1175  ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1176 1176  
1177 1177  Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1178 1178  
1166 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1167 +
1168 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1169 +
1170 +(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1171 +
1179 1179  (% style="color:#037691" %)**AT Command**
1180 1180  
1181 1181  (% border="2" style="width:500px" %)
... ... @@ -1184,13 +1184,13 @@
1184 1184  )))
1185 1185  |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1186 1186  |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1187 -**AC1_LIMIT_LOW** : lower limit of the current to be checked
1180 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold
1188 1188  
1189 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1182 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold
1190 1190  
1191 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1184 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold
1192 1192  
1193 -**AC2_LIMIT_LOW** : higher limit of the current to be checked
1186 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold
1194 1194  )))
1195 1195  |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1196 1196  AT+ACLIM=10000,15000,0,0
... ... @@ -1197,7 +1197,6 @@
1197 1197  
1198 1198  Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1199 1199  )))
1200 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1201 1201  
1202 1202  (% style="color:#037691" %)**Downlink Payload**
1203 1203  
... ... @@ -1204,15 +1204,15 @@
1204 1204  (% border="2" style="width:500px" %)
1205 1205  |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1206 1206  |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1207 -**prefix **: AA 01 (hexadecimal)
1199 +**prefix **: AA 01 - two bytes in hexadecimal
1208 1208  
1209 -**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1201 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold, two bytes in hexadecimal
1210 1210  
1211 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1203 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold, two bytes in hexadecimal
1212 1212  
1213 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1205 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold, two bytes in hexadecimal
1214 1214  
1215 -**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1207 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold, two bytes in hexadecimal
1216 1216  )))
1217 1217  |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1218 1218  AA 01 **27** **10 3A** **98** 00 00 00 00
... ... @@ -1219,121 +1219,69 @@
1219 1219  
1220 1220  Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1221 1221  )))
1222 -|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1223 1223  
1224 1224  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1225 1225  
1226 1226  Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1227 1227  
1228 -(% style="color:#037691" %)**AT Command**
1219 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1229 1229  
1230 -(% border="2" style="width:500px" %)
1231 -|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1232 -|(% style="width:104px" %)**Response**|(% style="width:387px" %)
1233 -|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1234 -**AC1_LIMIT_LOW** : lower limit of the current to be checked
1221 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1235 1235  
1236 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1223 +(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1237 1237  
1238 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1239 1239  
1240 -**AC2_LIMIT_LOW** : higher limit of the current to be checked
1241 -)))
1242 -|(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1243 -AT+AVLIM=3000,6000,0,2000
1244 -
1245 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1246 -)))
1247 -|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1248 -
1249 -(% style="color:#037691" %)**Downlink Payload**
1250 -
1251 1251  (% border="2" style="width:500px" %)
1252 -|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1253 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1254 -**prefix **: AA 00 (hexadecimal)
1227 +|(% style="width:104px" %)Command|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1228 +|(% style="width:104px" %)Response|(% style="width:387px" %)
1229 +|(% style="width:104px" %)Parameters|(% style="width:387px" %)(((
1230 +**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold, two bytes in hexadecimal
1255 1255  
1256 -**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1232 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold, two bytes in hexadecimal
1257 1257  
1258 -**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1234 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold, two bytes in hexadecimal
1259 1259  
1260 -**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1261 -
1262 -**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1236 +**AC2_LIMIT_LOW** : higher limit of the current to be checked / threshold, two bytes in hexadecimal
1263 1263  )))
1264 -|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1265 -AA 00 **0B B8 17 70 00 00 07 D0**
1238 +|(% style="width:104px" %)Example|(% style="width:387px" %)
1266 1266  
1267 -Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1268 -)))
1269 -|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1270 1270  
1241 +
1271 1271  ==== 3.4.2.11 Trigger – Set minimum interval ====
1272 1272  
1273 -Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1244 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1274 1274  
1275 -(% style="color:#037691" %)**AT Command**
1246 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1276 1276  
1277 -(% border="2" style="width:500px" %)
1278 -|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1279 -|(% style="width:113px" %)**Response**|(% style="width:385px" %)
1280 -|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1281 -**time** : in minutes
1282 -)))
1283 -|(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1284 -AT+ATDC=5
1248 +* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1285 1285  
1286 -The device won't respond to the second trigger within 5 minutes after the first trigger.
1287 -)))
1288 -|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1250 +(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1289 1289  
1290 -(% style="color:#037691" %)**Downlink Payload**
1291 -
1292 -(% border="2" style="width:500px" %)
1293 -|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1294 -|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1295 -**prefix** : AC (hexadecimal)
1296 -
1297 -**time **: in minutes (two bytes in hexadecimal)
1252 +(((
1253 +(% style="color:red" %)**Note: ATDC setting must be more than 5min**
1298 1298  )))
1299 -|(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1300 -AC **00 05**
1301 1301  
1302 -The device won't respond to the second trigger within 5 minutes after the first trigger.
1303 -)))
1304 -|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1305 1305  
1257 +
1306 1306  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1307 1307  
1308 1308  Controls the digital outputs DO1, DO2, and DO3
1309 1309  
1310 -(% style="color:#037691" %)**AT Command**
1262 +* (% style="color:#037691" %)**AT Command**
1311 1311  
1312 -There is no AT Command to control the Digital Output.
1264 +There is no AT Command to control Digital Output
1313 1313  
1314 1314  
1315 -(% style="color:#037691" %)**Downlink Payload**
1267 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1316 1316  
1317 -(% border="2" style="width:500px" %)
1318 -|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1319 -|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1320 -**prefix** : 02 (hexadecimal)
1269 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1321 1321  
1322 -**DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1323 -
1324 -**DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1325 -
1326 -**DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1271 +(((
1272 +If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1327 1327  )))
1328 -|(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1329 -02 **01 00 01**
1330 1330  
1331 -If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1332 -
1333 -**More examples:**
1334 -
1335 1335  (((
1336 -01: Low,  00: High,  11: No action
1276 +01: Low,  00: High ,  11: No action
1337 1337  
1338 1338  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1339 1339  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
... ... @@ -1343,18 +1343,15 @@
1343 1343  )))
1344 1344  
1345 1345  (((
1346 -(((
1347 -(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1286 +(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1348 1348  )))
1349 1349  
1350 1350  (((
1351 -(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1290 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1352 1352  )))
1353 -)))
1354 -)))
1355 1355  
1356 -==== ====
1357 1357  
1294 +
1358 1358  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1359 1359  
1360 1360  
... ... @@ -1379,7 +1379,7 @@
1379 1379  00: DO pins will change to an inverter state after timeout 
1380 1380  
1381 1381  
1382 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1319 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1383 1383  
1384 1384  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1385 1385  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1387,7 +1387,7 @@
1387 1387  |0x00|DO1 set to high
1388 1388  |0x11|DO1 NO Action
1389 1389  
1390 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1327 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1391 1391  
1392 1392  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1393 1393  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1395,7 +1395,7 @@
1395 1395  |0x00|DO2 set to high
1396 1396  |0x11|DO2 NO Action
1397 1397  
1398 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1335 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1399 1399  
1400 1400  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1401 1401  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1403,16 +1403,16 @@
1403 1403  |0x00|DO3 set to high
1404 1404  |0x11|DO3 NO Action
1405 1405  
1406 -(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1343 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1407 1407  
1408 1408  
1409 1409  (% style="color:red" %)**Note: **
1410 1410  
1411 - Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1348 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1412 1412  
1413 - Before firmware v1.6.0, the latch time only supported 2 bytes.
1350 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1414 1414  
1415 -(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1352 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1416 1416  
1417 1417  
1418 1418  **Example payload:**
... ... @@ -1419,21 +1419,22 @@
1419 1419  
1420 1420  **~1. A9 01 01 01 01 07 D0**
1421 1421  
1422 -DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1359 +DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1423 1423  
1424 1424  **2. A9 01 00 01 11 07 D0**
1425 1425  
1426 -DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1363 +DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1427 1427  
1428 1428  **3. A9 00 00 00 00 07 D0**
1429 1429  
1430 -DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1367 +DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1431 1431  
1432 1432  **4. A9 00 11 01 00 07 D0**
1433 1433  
1434 -DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1371 +DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1435 1435  
1436 1436  
1374 +
1437 1437  ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1438 1438  
1439 1439  
... ... @@ -1448,11 +1448,11 @@
1448 1448  
1449 1449  
1450 1450  (((
1451 -If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1389 +If payload = 0x030100, it means set RO1 to close and RO2 to open.
1452 1452  )))
1453 1453  
1454 1454  (((
1455 -00: Close ,  01: Open , 11: No action
1393 +00: Closed ,  01: Open , 11: No action
1456 1456  
1457 1457  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1458 1458  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1469,9 +1469,9 @@
1469 1469  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1470 1470  
1471 1471  
1410 +
1472 1472  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1473 1473  
1474 -Controls the relay output time.
1475 1475  
1476 1476  * (% style="color:#037691" %)**AT Command:**
1477 1477  
... ... @@ -1483,15 +1483,15 @@
1483 1483  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1484 1484  
1485 1485  
1486 -This is to control the relay output time. It includes four bytes:
1424 +This is to control the relay output time of relay. Include four bytes:
1487 1487  
1488 1488  (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1489 1489  
1490 1490  (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1491 1491  
1492 -01: Relays will change back to their original state after timeout.
1430 +01: Relays will change back to original state after timeout.
1493 1493  
1494 -00: Relays will change to the inverter state after timeout.
1432 +00: Relays will change to an inverter state after timeout
1495 1495  
1496 1496  
1497 1497  (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
... ... @@ -1504,12 +1504,12 @@
1504 1504  
1505 1505  (% style="color:red" %)**Note:**
1506 1506  
1507 - Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1445 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1508 1508  
1509 - Before firmware v1.6.0, the latch time only supported 2 bytes.
1447 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1510 1510  
1511 1511  
1512 -(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1450 +(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1513 1513  
1514 1514  
1515 1515  **Example payload:**
... ... @@ -1516,19 +1516,19 @@
1516 1516  
1517 1517  **~1. 05 01 11 07 D0**
1518 1518  
1519 -Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1457 +Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1520 1520  
1521 1521  **2. 05 01 10 07 D0**
1522 1522  
1523 -Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1461 +Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1524 1524  
1525 1525  **3. 05 00 01 07 D0**
1526 1526  
1527 -Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1465 +Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1528 1528  
1529 1529  **4. 05 00 00 07 D0**
1530 1530  
1531 -Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1469 +Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1532 1532  
1533 1533  
1534 1534  
... ... @@ -1535,7 +1535,7 @@
1535 1535  ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1536 1536  
1537 1537  
1538 -When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1476 +When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1539 1539  
1540 1540  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1541 1541  
... ... @@ -1544,76 +1544,15 @@
1544 1544  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1545 1545  
1546 1546  
1547 -(% style="color:#037691" %)**AT Command**
1548 1548  
1549 -(% border="2" style="width:500px" %)
1550 -|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1551 -|(% style="width:137px" %)**Response**|(% style="width:361px" %)
1552 -|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1553 -**voltage** : voltage threshold in mV
1554 -
1555 -**logic**:
1556 -
1557 -0 : lower than
1558 -
1559 -1: higher than
1560 -
1561 -if you leave logic parameter blank, it is considered 0
1562 -)))
1563 -|(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1564 -AT+VOLMAX=20000
1565 -
1566 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1567 -
1568 -AT+VOLMAX=20000,0
1569 -
1570 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1571 -
1572 -AT+VOLMAX=20000,1
1573 -
1574 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1575 -)))
1576 -
1577 -(% style="color:#037691" %)**Downlink Payload**
1578 -
1579 -(% border="2" style="width:500px" %)
1580 -|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1581 -|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1582 -**prefix** : A5 (hex)
1583 -
1584 -**voltage** : voltage threshold in mV (2 bytes in hex)
1585 -
1586 -**logic**: (1 byte in hexadecimal)
1587 -
1588 -0 : lower than
1589 -
1590 -1: higher than
1591 -
1592 -if you leave logic parameter blank, it is considered 1 (higher than)
1593 -)))
1594 -|(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1595 -A5 **4E 20**
1596 -
1597 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1598 -
1599 -A5 **4E 20 00**
1600 -
1601 -If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1602 -
1603 -A5 **4E 20 01**
1604 -
1605 -If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1606 -)))
1607 -
1608 1608  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1609 1609  
1610 -This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1611 1611  
1612 1612  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1613 1613  
1614 1614  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1615 1615  
1616 -(% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1493 +(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1617 1617  
1618 1618  
1619 1619  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
... ... @@ -1621,55 +1621,12 @@
1621 1621  (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1622 1622  
1623 1623  
1624 -(% style="color:#037691" %)**AT Command**
1625 1625  
1626 -(% border="2" style="width:500px" %)
1627 -|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1628 -|(% style="width:134px" %)**Response**|(% style="width:364px" %)
1629 -|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1630 -**counting_parameter** :
1631 -
1632 -1: COUNT1
1633 -
1634 -2: COUNT2
1635 -
1636 -3: AVI1 Count
1637 -
1638 -**number** : Start number
1639 -)))
1640 -|(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1641 -AT+SETCNT=1,10
1642 -
1643 -Sets the COUNT1 to 10.
1644 -)))
1645 -
1646 -(% style="color:#037691" %)**Downlink Payload**
1647 -
1648 -(% border="2" style="width:500px" %)
1649 -|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1650 -|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1651 -prefix : A8 (hex)
1652 -
1653 -**counting_parameter** : (1 byte in hexadecimal)
1654 -
1655 -1: COUNT1
1656 -
1657 -2: COUNT2
1658 -
1659 -3: AVI1 Count
1660 -
1661 -**number** : Start number, 4 bytes in hexadecimal
1662 -)))
1663 -|(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1664 -A8 **01 00 00 00 0A**
1665 -
1666 -Sets the COUNT1 to 10.
1667 -)))
1668 -
1669 1669  ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1670 1670  
1671 -This command clears the counting in counting mode.
1672 1672  
1505 +Clear counting for counting mode
1506 +
1673 1673  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1674 1674  
1675 1675  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
... ... @@ -1676,30 +1676,14 @@
1676 1676  
1677 1677  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1678 1678  
1679 -(% style="color:#037691" %)**AT Command**
1680 1680  
1681 -(% border="2" style="width:500px" %)
1682 -|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1683 -|(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1684 1684  
1685 -(% style="color:#037691" %)**Downlink Payload**
1686 -
1687 -(% border="2" style="width:500px" %)
1688 -|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1689 -|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1690 -prefix : A6 (hex)
1691 -
1692 -clear? : 01 (hex)
1693 -)))
1694 -|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1695 -
1696 1696  ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1697 1697  
1698 -This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1699 1699  
1700 1700  * (% style="color:#037691" %)**AT Command:**
1701 1701  
1702 -(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1520 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1703 1703  
1704 1704  
1705 1705  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
... ... @@ -1707,46 +1707,19 @@
1707 1707  (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1708 1708  
1709 1709  (((
1710 -Range: aa bb cc:0 to 16777215,  (unit: seconds)
1528 +range: aa bb cc:0 to 16777215,  (unit:second)
1711 1711  )))
1712 1712  
1713 1713  
1714 -(% style="color:#037691" %)**AT Command**
1715 1715  
1716 -(% border="2" style="width:500px" %)
1717 -|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1718 -|(% style="width:124px" %)**Response**|(% style="width:374px" %)
1719 -|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1720 -|(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1721 -AT+COUTIME=60
1722 -
1723 -Sets the device to save its counting results to the memory every 60 seconds.
1724 -)))
1725 -
1726 -(% style="color:#037691" %)**Downlink Payload**
1727 -
1728 -(% border="2" style="width:500px" %)
1729 -|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1730 -|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1731 -prefix : A7
1732 -
1733 -time : seconds, 3 bytes in hexadecimal
1734 -)))
1735 -|(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1736 -A7 **00 00 3C**
1737 -
1738 -Sets the device to save its counting results to the memory every 60 seconds.
1739 -)))
1740 -
1741 1741  ==== 3.4.2.20 Reset save RO DO state ====
1742 1742  
1743 -This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1744 1744  
1745 1745  * (% style="color:#037691" %)**AT Command:**
1746 1746  
1747 1747  (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1748 1748  
1749 -(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1540 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1750 1750  
1751 1751  
1752 1752  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
... ... @@ -1754,50 +1754,9 @@
1754 1754  (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1755 1755  
1756 1756  
1757 -(% border="2" style="width:500px" %)
1758 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1759 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1760 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1761 -**state** :
1762 1762  
1763 -**0** : RODO will close when the device joins the network. (default)
1764 -
1765 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1766 -)))
1767 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1768 -(% style="color:blue" %)**AT+RODORESET=1 **
1769 -
1770 -RODO will close when the device joins the network. (default)
1771 -
1772 -(% style="color:blue" %)**AT+RODORESET=0 **
1773 -
1774 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1775 -)))
1776 -
1777 -(% border="2" style="width:500px" %)
1778 -|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1779 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1780 -**prefix** : AD
1781 -
1782 -**state** :
1783 -
1784 -**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1785 -
1786 -**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1787 -)))
1788 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1789 -AD **01**
1790 -
1791 -RODO will close when the device joins the network. (default)
1792 -
1793 -AD **00**
1794 -
1795 -After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1796 -)))
1797 -
1798 1798  ==== 3.4.2.21 Encrypted payload ====
1799 1799  
1800 -This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1801 1801  
1802 1802  * (% style="color:#037691" %)**AT Command:**
1803 1803  
... ... @@ -1806,67 +1806,21 @@
1806 1806  (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1807 1807  
1808 1808  
1809 -(% border="2" style="width:500px" %)
1810 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1811 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1812 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1813 -state :
1814 1814  
1815 -1 : The payload is uploaded without encryption
1816 -
1817 -0 : The payload is encrypted when uploaded (default)
1818 -)))
1819 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1820 -AT+DECRYPT=1
1821 -
1822 -The payload is uploaded without encryption
1823 -
1824 -AT+DECRYPT=0
1825 -
1826 -The payload is encrypted when uploaded (default)
1827 -)))
1828 -
1829 -There is no downlink payload for this configuration.
1830 -
1831 -
1832 1832  ==== 3.4.2.22 Get sensor value ====
1833 1833  
1834 -This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1835 1835  
1836 1836  * (% style="color:#037691" %)**AT Command:**
1837 1837  
1838 -(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1565 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1839 1839  
1840 -(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1567 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1841 1841  
1842 1842  
1843 -(% border="2" style="width:500px" %)
1844 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1845 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1846 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1847 -**state** :
1848 1848  
1849 -**0 **: Retrieves the current sensor reading via the serial port.
1571 +==== 3.4.2.23 Resets the downlink packet count ====
1850 1850  
1851 -**1 **: Retrieves and uploads the current sensor reading via the serial port.
1852 -)))
1853 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1854 -AT+GETSENSORVALUE=0
1855 1855  
1856 -Retrieves the current sensor reading via the serial port.
1857 -
1858 -AT+GETSENSORVALUE=1
1859 -
1860 -Retrieves and uplinks the current sensor reading via the serial port.
1861 -)))
1862 -
1863 -There is no downlink payload for this configuration.
1864 -
1865 -
1866 -==== 3.4.2.23 Resetting the downlink packet count ====
1867 -
1868 -This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1869 -
1870 1870  * (% style="color:#037691" %)**AT Command:**
1871 1871  
1872 1872  (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
... ... @@ -1874,37 +1874,10 @@
1874 1874  (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1875 1875  
1876 1876  
1877 -(% border="2" style="width:500px" %)
1878 -|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1879 -|(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1880 -
1881 -)))
1882 -|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1883 -**state **:
1884 1884  
1885 -**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1886 -
1887 -
1888 -**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1889 -)))
1890 -|(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1891 -AT+DISFCNTCHECK=0
1892 -
1893 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1894 -
1895 -AT+DISFCNTCHECK=1
1896 -
1897 -When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1898 -)))
1899 -
1900 -There is no downlink payload for this configuration.
1901 -
1902 -
1903 1903  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1904 1904  
1905 1905  
1906 -This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1907 -
1908 1908  * (% style="color:#037691" %)**AT Command:**
1909 1909  
1910 1910  (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
... ... @@ -1916,51 +1916,10 @@
1916 1916  
1917 1917  (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1918 1918  
1919 -(% style="color:#037691" %)**AT Command**
1920 1920  
1921 -(% border="2" style="width:500px" %)
1922 -|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1923 -|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1924 -|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1925 -**state** :
1926 1926  
1927 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1928 -
1929 -**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1930 -)))
1931 -|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1932 -AT+DISMACANS=0
1933 -
1934 -When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1935 -
1936 -AT+DISMACANS=1
1937 -
1938 -When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1939 -)))
1940 -
1941 -(% style="color:#037691" %)**Downlink Payload**
1942 -
1943 -(% border="2" style="width:500px" %)
1944 -|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1945 -|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1946 -**prefix** : 21
1947 -
1948 -**state** : (2 bytes in hexadecimal)
1949 -
1950 -**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1951 -
1952 -**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1953 -)))
1954 -|(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1955 -21 **00 01**
1956 -
1957 -Set DISMACANS=1
1958 -)))
1959 -
1960 -
1961 1961  ==== 3.4.2.25 Copy downlink to uplink ====
1962 1962  
1963 -This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1964 1964  
1965 1965  * (% style="color:#037691" %)**AT Command**(%%)**:**
1966 1966  
... ... @@ -1973,32 +1973,8 @@
1973 1973  
1974 1974  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1975 1975  
1976 -(% border="2" style="width:500px" %)
1977 -|(% style="width:122px" %)Command|(% style="width:376px" %)(((
1978 -AT+RPL=5
1979 1979  
1980 -After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1981 -)))
1982 -|(% style="width:122px" %)Uplink payload|(% style="width:376px" %)(((
1983 -aa xx xx xx xx
1984 1984  
1985 -aa : indicates whether the configuration has changed.
1986 -
1987 -00 : YES
1988 -
1989 -01 : NO
1990 -)))
1991 -|(% style="width:122px" %)Example|(% style="width:376px" %)(((
1992 -Downlink:
1993 -
1994 -11 22 33 44 55 66 77
1995 -
1996 -Uplink:
1997 -
1998 -00 11 22 33 44 55 66 77
1999 -)))
2000 -
2001 -
2002 2002  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
2003 2003  
2004 2004  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
... ... @@ -2142,7 +2142,7 @@
2142 2142  
2143 2143  == 3.6 Interface Details ==
2144 2144  
2145 -=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
1757 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active ) ===
2146 2146  
2147 2147  
2148 2148  Supports NPN-type sensors.
dragino-lorawan-nw-lt-22222-n.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -267.3 KB
Content
dragino-ttn-te.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -273.8 KB
Content
lorawan-nw.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -250.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0