Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -27,7 +27,7 @@ 27 27 **This manual is also applicable to the LT-33222-L.** 28 28 {{/info}} 29 29 30 -The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 31 31 32 32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 33 33 ))) ... ... @@ -40,21 +40,24 @@ 40 40 ((( 41 41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 42 42 43 -* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it. 44 44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 45 45 * Setup your own private LoRaWAN network. 46 46 47 47 {{info}} 48 - You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.48 + You can use a LoRaWAN gateway, such as the Dragino LPS8N, to expand or create LoRaWAN coverage in your area. 49 49 {{/info}} 50 50 ))) 51 51 52 52 ((( 53 -[[image:1653295757274-912.png]] 54 - 55 55 54 + 55 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network. 56 56 ))) 57 57 58 +(% class="wikigeneratedid" %) 59 +[[image:lorawan-nw.jpg||height="354" width="900"]] 60 + 58 58 == 1.2 Specifications == 59 59 60 60 (% style="color:#037691" %)**Hardware System:** ... ... @@ -115,6 +115,21 @@ 115 115 * Smart cities 116 116 * Smart factory 117 117 121 +== 1.5 Hardware Variants == 122 + 123 +(% style="width:524px" %) 124 +|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description** 125 +|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)((( 126 + 127 +)))|(% style="width:329px" %)((( 128 +* 2 x Digital Input (Bi-direction) 129 +* 2 x Digital Output 130 +* 2 x Relay Output (5A@250VAC / 30VDC) 131 +* 2 x 0~~20mA Analog Input (res:0.01mA) 132 +* 2 x 0~~30V Analog Input (res:0.01v) 133 +* 1 x Counting Port 134 +))) 135 + 118 118 == 2. Assembling the device == 119 119 120 120 == 2.1 Connecting the antenna == ... ... @@ -155,14 +155,12 @@ 155 155 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 156 156 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 157 157 158 -== 2.3 Powering thedevice ==176 +== 2.3 Connecting LT-22222-L to a Power Source == 159 159 160 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered. 178 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered. 161 161 162 -Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 163 - 164 164 {{warning}} 165 -We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail. 181 +**We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.** 166 166 {{/warning}} 167 167 168 168 ... ... @@ -169,36 +169,49 @@ 169 169 [[image:1653297104069-180.png]] 170 170 171 171 172 -= 3. Registering with a LoRaWAN Network Server = 188 += 3. Registering LT-22222-L with a LoRaWAN Network Server = 173 173 174 - By default, the LT-22222-Lisconfigured to operate in LoRaWAN ClassC mode. ItsupportsOTAA (Over-the-Air Activation),themostsecuremethodforactivating a devicewith a LoRaWANnetworkserver.TheLT-22222-Lcomeswithdeviceregistrationinformation that allowsyou to registeritwith a LoRaWANnetwork,enabling the deviceto performOTAA activation with thenetworkserverupon initialpower-upand after any subsequent reboots.190 +The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. 175 175 176 -After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 177 177 178 -In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 179 - 180 -The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network. 181 - 182 -[[image:image-20220523172350-1.png||height="266" width="864"]] 183 - 184 184 === 3.2.1 Prerequisites === 185 185 186 - Makesureyou have thedevice registration information such as DevEUI, AppEUI, and AppKeywith you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.195 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 187 187 188 188 [[image:image-20230425173427-2.png||height="246" width="530"]] 189 189 199 +{{info}} 200 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 201 +{{/info}} 202 + 190 190 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 191 191 192 -=== 3.2.2 The Things Stack Sandbox (TTSS)===205 +=== 3.2.2 The Things Stack === 193 193 207 +This section guides you through how to register your LT-22222-L with The Things Stack Sandbox. 208 + 209 +{{info}} 194 194 The Things Stack Sandbox was formally called The Things Stack Community Edition. 211 +{{/info}} 195 195 196 -* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 197 -* Create an application with The Things Stack if you do not have one yet. 198 -* Go to your application page and click on the **End devices** in the left menu. 213 + 214 +The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform. 215 + 216 + 217 +[[image:dragino-lorawan-nw-lt-22222-n.jpg]] 218 + 219 + 220 + 221 + 222 +==== 3.2.2.1 Setting up ==== 223 + 224 +* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet. 225 +* Log in to your The Things Stack Sandbox account. 226 +* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs). 227 +* Go to your application's page and click on the **End devices** in the left menu. 199 199 * On the End devices page, click on **+ Register end device**. Two registration options are available: 200 200 201 -==== 3.2.2. 1Using the LoRaWAN Device Repository ====230 +==== 3.2.2.2 Using the LoRaWAN Device Repository ==== 202 202 203 203 * On the **Register end device** page: 204 204 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**. ... ... @@ -224,7 +224,7 @@ 224 224 225 225 ==== ==== 226 226 227 -==== 3.2.2. 2Adding device manually ====256 +==== 3.2.2.3 Adding device manually ==== 228 228 229 229 * On the **Register end device** page: 230 230 ** Select the option **Enter end device specifies manually** under **Input method**. ... ... @@ -239,7 +239,7 @@ 239 239 240 240 241 241 * Register end device page continued... 242 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network' 271 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//' 243 243 ** In the **DevEUI** field, enter the **DevEUI**. 244 244 ** In the **AppKey** field, enter the **AppKey**. 245 245 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application. ... ... @@ -255,18 +255,21 @@ 255 255 [[image:lt-22222-device-overview.png||height="625" width="1000"]] 256 256 257 257 258 -==== 3.2.2. 3Joining ====287 +==== 3.2.2.4 Joining ==== 259 259 260 260 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display. 261 261 262 -Now power on your LT-22222-L. Itwill beginjoiningThe Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).291 +Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. 263 263 264 264 265 265 [[image:lt-22222-join-network.png||height="625" width="1000"]] 266 266 267 267 268 - Bydefault,you will receive an uplinkdata messagefrom the device every 10 minutes.297 +==== 3.2.2.5 Uplinks ==== 269 269 299 + 300 +After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes. 301 + 270 270 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 271 271 272 272 [[image:lt-22222-ul-payload-decoded.png]] ... ... @@ -281,6 +281,11 @@ 281 281 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]] 282 282 283 283 316 +==== 3.2.2.6 Downlinks ==== 317 + 318 +When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**. 319 + 320 + 284 284 == 3.3 Working Modes and Uplink Payload formats == 285 285 286 286 ... ... @@ -556,13 +556,13 @@ 556 556 ))) 557 557 558 558 ((( 559 - OtherAT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.596 +AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 560 560 ))) 561 561 562 562 ((( 563 563 **In addition to that, below are the commands for AVI1 Counting:** 564 564 565 -(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)** 602 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)** 566 566 567 567 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 568 568 ... ... @@ -790,9 +790,9 @@ 790 790 791 791 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below 792 792 793 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 515px" %)794 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 795 -|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 830 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %) 831 +|(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0** 832 +|(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG 796 796 797 797 * Each bits shows which status has been triggered on this uplink. 798 798 ... ... @@ -977,7 +977,7 @@ 977 977 (% border="2" style="width:500px" %) 978 978 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode> 979 979 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)((( 980 -**prefix** : 0x0A 06 1017 +**prefix** : 0x0A 06 (two bytes in hexadecimal) 981 981 982 982 **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal. 983 983 ))) ... ... @@ -997,9 +997,9 @@ 997 997 998 998 (% style="color:#037691" %)**Downlink Payload** 999 999 1000 -(% style="width:500px" %) 1037 +(% border="2" style="width:500px" %) 1001 1001 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix> 1002 -|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 1039 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal) 1003 1003 |(% style="width:95px" %)**Example**|(% style="width:403px" %)((( 1004 1004 AB 06 1005 1005 ... ... @@ -1012,7 +1012,7 @@ 1012 1012 1013 1013 (% style="color:#037691" %)**AT Command** 1014 1014 1015 -(% style="width:500px" %) 1052 +(% border="2" style="width:500px" %) 1016 1016 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger> 1017 1017 |(% style="width:98px" %)**Response**|(% style="width:400px" %) 1018 1018 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)((( ... ... @@ -1037,10 +1037,10 @@ 1037 1037 (% class="wikigeneratedid" %) 1038 1038 (% style="color:#037691" %)**Downlink Payload** 1039 1039 1040 -(% style="width:500px" %) 1077 +(% border="2" style="width:500px" %) 1041 1041 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger> 1042 1042 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)((( 1043 -**prefix :** AA 02 1080 +**prefix :** AA 02 (two bytes in hexadecimal) 1044 1044 1045 1045 **DI1_trigger:** 1046 1046 ... ... @@ -1064,23 +1064,10 @@ 1064 1064 1065 1065 Sets DI1 or DI3 (for LT-33222-L) as a trigger. 1066 1066 1067 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b** 1068 1068 1069 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 1070 - 1071 -(% style="color:red" %)**b :** (%%)delay timing. 1072 - 1073 -**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) 1074 - 1075 - 1076 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):** 1077 - 1078 -(% style="color:blue" %)**0x09 01 aa bb cc ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc) 1079 - 1080 - 1081 1081 (% style="color:#037691" %)**AT Command** 1082 1082 1083 -(% style="width:500px" %) 1107 +(% border="2" style="width:500px" %) 1084 1084 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration> 1085 1085 |(% style="width:101px" %)**Response**|(% style="width:397px" %) 1086 1086 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)((( ... ... @@ -1100,7 +1100,7 @@ 1100 1100 (% border="2" style="width:500px" %) 1101 1101 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration> 1102 1102 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)((( 1103 -**prefix** : 09 01 1127 +**prefix** : 09 01 (hexadecimal) 1104 1104 1105 1105 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal. 1106 1106 ... ... @@ -1112,25 +1112,11 @@ 1112 1112 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms. 1113 1113 ))) 1114 1114 1115 - 1116 1116 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ==== 1117 1117 1118 1118 Sets DI2 as a trigger. 1119 1119 1120 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 1121 1121 1122 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 1123 - 1124 -(% style="color:red" %)**b :** (%%)delay timing. 1125 - 1126 -**Example:** AT+TRIG2=0,100 (Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms) 1127 - 1128 - 1129 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** 1130 - 1131 -(% style="color:blue" %)**0x09 02 aa bb cc ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc) 1132 - 1133 - 1134 1134 (% style="color:#037691" %)**AT Command** 1135 1135 1136 1136 (% border="2" style="width:500px" %) ... ... @@ -1152,7 +1152,7 @@ 1152 1152 (% border="2" style="width:500px" %) 1153 1153 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration> 1154 1154 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)((( 1155 -**prefix** : 09 02 1165 +**prefix** : 09 02 (hexadecimal) 1156 1156 1157 1157 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal. 1158 1158 ... ... @@ -1160,94 +1160,170 @@ 1160 1160 ))) 1161 1161 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64** 1162 1162 1173 +==== ==== 1174 + 1163 1163 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ==== 1164 1164 1165 -Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1177 +Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1166 1166 1167 - *(% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**1179 +(% style="color:#037691" %)**AT Command** 1168 1168 1169 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )** 1170 - 1171 -(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1172 - 1173 - 1174 1174 (% border="2" style="width:500px" %) 1175 1175 |(% style="width:104px" %)**Command**|(% style="width:394px" %)((( 1176 1176 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 1177 1177 ))) 1178 1178 |(% style="width:104px" %)**Response**|(% style="width:394px" %) 1179 -|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)- 1186 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1187 +**AC1_LIMIT_LOW** : lower limit of the current to be checked 1188 + 1189 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked 1190 + 1191 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked 1192 + 1193 +**AC2_LIMIT_LOW** : higher limit of the current to be checked 1194 +))) 1180 1180 |(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1181 1181 AT+ACLIM=10000,15000,0,0 1182 1182 1183 1183 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA 1184 1184 ))) 1200 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1185 1185 1202 +(% style="color:#037691" %)**Downlink Payload** 1203 + 1186 1186 (% border="2" style="width:500px" %) 1187 1187 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 1188 1188 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1189 -**prefix **: AA 01 - two bytes inhexadecimal1207 +**prefix **: AA 01 (hexadecimal) 1190 1190 1191 -**AC1_LIMIT_LOW** : lower limit of the current to be checked / threshold, two bytes in hexadecimal1209 +**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal 1192 1192 1193 -**AC1_LIMIT_HIGH **: higher limit of the current to be checked / threshold, two bytes in hexadecimal1211 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal 1194 1194 1195 -**AC2_LIMIT_HIGH **: lower limit of the current to be checked / threshold, two bytes in hexadecimal1213 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal 1196 1196 1197 -**AC2_LIMIT_ HIGH**/ threshold, two bytes in hexadecimal1215 +**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal 1198 1198 ))) 1199 1199 |(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1200 -AA 01 27 10 3A 98 00 00 00 00 1218 +AA 01 **27** **10 3A** **98** 00 00 00 00 1201 1201 1202 -Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA 1220 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits. 1203 1203 ))) 1222 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1204 1204 1205 1205 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ==== 1206 1206 1207 -Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1226 +Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1208 1208 1209 - *(% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**1228 +(% style="color:#037691" %)**AT Command** 1210 1210 1211 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )** 1230 +(% border="2" style="width:500px" %) 1231 +|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 1232 +|(% style="width:104px" %)**Response**|(% style="width:387px" %) 1233 +|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)((( 1234 +**AC1_LIMIT_LOW** : lower limit of the current to be checked 1212 1212 1213 - (% style="color:blue" %)**0xAA 00 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+AVLIMSee[[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]1236 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked 1214 1214 1238 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked 1215 1215 1216 -==== 3.4.2.11 Trigger – Set minimum interval ==== 1240 +**AC2_LIMIT_LOW** : higher limit of the current to be checked 1241 +))) 1242 +|(% style="width:104px" %)**Example**|(% style="width:387px" %)((( 1243 +AT+AVLIM=3000,6000,0,2000 1217 1217 1218 -Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 1245 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V 1246 +))) 1247 +|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1219 1219 1220 - *(% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second triggerwithin5 minuteafter the first trigger.1249 +(% style="color:#037691" %)**Downlink Payload** 1221 1221 1222 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )** 1251 +(% border="2" style="width:500px" %) 1252 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 1253 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)((( 1254 +**prefix **: AA 00 (hexadecimal) 1223 1223 1224 - (%style="color:blue"%)**0xACaabb**(%%)~/~/sameasAT+ATDC=0x(aa bb) . Unit (min)1256 +**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal 1225 1225 1226 -((( 1227 -(% style="color:red" %)**Note: ATDC setting must be more than 5min** 1258 +**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal 1259 + 1260 +**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal 1261 + 1262 +**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal 1228 1228 ))) 1264 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)((( 1265 +AA 00 **0B B8 17 70 00 00 07 D0** 1229 1229 1267 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V. 1268 +))) 1269 +|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 1230 1230 1271 +==== 3.4.2.11 Trigger – Set minimum interval ==== 1231 1231 1273 +Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger. 1274 + 1275 +(% style="color:#037691" %)**AT Command** 1276 + 1277 +(% border="2" style="width:500px" %) 1278 +|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time> 1279 +|(% style="width:113px" %)**Response**|(% style="width:385px" %) 1280 +|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)((( 1281 +**time** : in minutes 1282 +))) 1283 +|(% style="width:113px" %)**Example**|(% style="width:385px" %)((( 1284 +AT+ATDC=5 1285 + 1286 +The device won't respond to the second trigger within 5 minutes after the first trigger. 1287 +))) 1288 +|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1289 + 1290 +(% style="color:#037691" %)**Downlink Payload** 1291 + 1292 +(% border="2" style="width:500px" %) 1293 +|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time> 1294 +|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)((( 1295 +**prefix** : AC (hexadecimal) 1296 + 1297 +**time **: in minutes (two bytes in hexadecimal) 1298 +))) 1299 +|(% style="width:112px" %)**Example**|(% style="width:386px" %)((( 1300 +AC **00 05** 1301 + 1302 +The device won't respond to the second trigger within 5 minutes after the first trigger. 1303 +))) 1304 +|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.** 1305 + 1232 1232 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ==== 1233 1233 1234 1234 Controls the digital outputs DO1, DO2, and DO3 1235 1235 1236 - *(% style="color:#037691" %)**AT Command**1310 +(% style="color:#037691" %)**AT Command** 1237 1237 1238 -There is no AT Command to control Digital Output 1312 +There is no AT Command to control the Digital Output. 1239 1239 1240 1240 1241 - *(% style="color:#037691" %)**Downlink Payload(prefix 0x02)**1315 +(% style="color:#037691" %)**Downlink Payload** 1242 1242 1243 -(% style="color:blue" %)**0x02 aa bb cc ** (%%)~/~/ Set DO1/DO2/DO3 output 1317 +(% border="2" style="width:500px" %) 1318 +|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3> 1319 +|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)((( 1320 +**prefix** : 02 (hexadecimal) 1244 1244 1245 -((( 1246 -If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low. 1322 +**DOI** : 01: Low, 00: High, 11: No action (1 byte in hex) 1323 + 1324 +**DO2** : 01: Low, 00: High, 11: No action (1 byte in hex) 1325 + 1326 +**DO3 **: 01: Low, 00: High, 11: No action (1 byte in hex) 1247 1247 ))) 1328 +|(% style="width:115px" %)**Examples**|(% style="width:383px" %)((( 1329 +02 **01 00 01** 1248 1248 1331 +If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low. 1332 + 1333 +**More examples:** 1334 + 1249 1249 ((( 1250 -01: Low, 00: High 1336 +01: Low, 00: High, 11: No action 1251 1251 1252 1252 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1253 1253 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** ... ... @@ -1257,15 +1257,18 @@ 1257 1257 ))) 1258 1258 1259 1259 ((( 1260 -(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.** 1346 +((( 1347 +(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.** 1261 1261 ))) 1262 1262 1263 1263 ((( 1264 -(% style="color:red" %)** Device will upload a packet if downlink code executes successfully.**1351 +(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.** 1265 1265 ))) 1353 +))) 1354 +))) 1266 1266 1356 +==== ==== 1267 1267 1268 - 1269 1269 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ==== 1270 1270 1271 1271 ... ... @@ -1290,7 +1290,7 @@ 1290 1290 00: DO pins will change to an inverter state after timeout 1291 1291 1292 1292 1293 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port sstatus:1382 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status: 1294 1294 1295 1295 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1296 1296 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1298,7 +1298,7 @@ 1298 1298 |0x00|DO1 set to high 1299 1299 |0x11|DO1 NO Action 1300 1300 1301 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port sstatus:1390 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status: 1302 1302 1303 1303 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1304 1304 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1306,7 +1306,7 @@ 1306 1306 |0x00|DO2 set to high 1307 1307 |0x11|DO2 NO Action 1308 1308 1309 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port sstatus:1398 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status: 1310 1310 1311 1311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1312 1312 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** ... ... @@ -1314,16 +1314,16 @@ 1314 1314 |0x00|DO3 set to high 1315 1315 |0x11|DO3 NO Action 1316 1316 1317 -(% style="color:#4f81bd" %)**Sixth andSeventhandEighth and Ninth Byte**:(%%) Latching time.Unit: ms1406 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms) 1318 1318 1319 1319 1320 1320 (% style="color:red" %)**Note: ** 1321 1321 1322 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes1411 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes 1323 1323 1324 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.1413 + Before firmware v1.6.0, the latch time only supported 2 bytes. 1325 1325 1326 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1415 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.** 1327 1327 1328 1328 1329 1329 **Example payload:** ... ... @@ -1330,22 +1330,21 @@ 1330 1330 1331 1331 **~1. A9 01 01 01 01 07 D0** 1332 1332 1333 -DO1 pin &DO2 pin&DO3 pin will be set toLow, last 2 seconds, thenchangebackto original state.1422 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state. 1334 1334 1335 1335 **2. A9 01 00 01 11 07 D0** 1336 1336 1337 -DO1 pin set high, DO2 pin set low, DO3 pin no action ,last 2 seconds,thenchangebackto original state.1426 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state. 1338 1338 1339 1339 **3. A9 00 00 00 00 07 D0** 1340 1340 1341 -DO1 pin &DO2 pin&DO3 pin will be set to high, last 2 seconds, thenbothchange to low.1430 +DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low. 1342 1342 1343 1343 **4. A9 00 11 01 00 07 D0** 1344 1344 1345 -DO1 pin no action, DO2 pin set low, DO3 pin set high ,last 2 seconds, thenDO1 pin no action, DO2 pin set high, DO3 pin set low1434 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low. 1346 1346 1347 1347 1348 - 1349 1349 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1350 1350 1351 1351 ... ... @@ -1360,11 +1360,11 @@ 1360 1360 1361 1361 1362 1362 ((( 1363 -If payload =0x030100, it means set RO1 to close and RO2 to open.1451 +If payload is 0x030100, it means setting RO1 to close and RO2 to open. 1364 1364 ))) 1365 1365 1366 1366 ((( 1367 -00: Close d, 01: Open , 11: No action1455 +00: Close , 01: Open , 11: No action 1368 1368 1369 1369 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1370 1370 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** ... ... @@ -1381,9 +1381,9 @@ 1381 1381 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1382 1382 1383 1383 1384 - 1385 1385 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ==== 1386 1386 1474 +Controls the relay output time. 1387 1387 1388 1388 * (% style="color:#037691" %)**AT Command:** 1389 1389 ... ... @@ -1395,15 +1395,15 @@ 1395 1395 (% style="color:blue" %)**0x05 aa bb cc dd ** (%%)~/~/ Set RO1/RO2 relay with time control 1396 1396 1397 1397 1398 -This is to control the relay output time of relay. Include four bytes:1486 +This is to control the relay output time. It includes four bytes: 1399 1399 1400 1400 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05) 1401 1401 1402 1402 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode 1403 1403 1404 -01: Relays will change back to original state after timeout. 1492 +01: Relays will change back to their original state after timeout. 1405 1405 1406 -00: Relays will change to aninverter state after timeout1494 +00: Relays will change to the inverter state after timeout. 1407 1407 1408 1408 1409 1409 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status: ... ... @@ -1416,12 +1416,12 @@ 1416 1416 1417 1417 (% style="color:red" %)**Note:** 1418 1418 1419 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes1507 + Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes. 1420 1420 1421 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.1509 + Before firmware v1.6.0, the latch time only supported 2 bytes. 1422 1422 1423 1423 1424 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1512 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.** 1425 1425 1426 1426 1427 1427 **Example payload:** ... ... @@ -1428,19 +1428,19 @@ 1428 1428 1429 1429 **~1. 05 01 11 07 D0** 1430 1430 1431 -Relay1 and Relay changebackto original state.1519 +Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state 1432 1432 1433 1433 **2. 05 01 10 07 D0** 1434 1434 1435 -Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both changebackto original state.1523 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state. 1436 1436 1437 1437 **3. 05 00 01 07 D0** 1438 1438 1439 -Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.1527 +Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO. 1440 1440 1441 1441 **4. 05 00 00 07 D0** 1442 1442 1443 -Relay &relay2 will change to NO, last 2 seconds, then both change to NC.1531 +Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC. 1444 1444 1445 1445 1446 1446 ... ... @@ -1447,7 +1447,7 @@ 1447 1447 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ==== 1448 1448 1449 1449 1450 -When voltage exceed the threshold, count. F eature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]1538 +When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1451 1451 1452 1452 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1453 1453 ... ... @@ -1456,15 +1456,76 @@ 1456 1456 (% style="color:blue" %)**0xA5 aa bb cc ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc 1457 1457 1458 1458 1547 +(% style="color:#037691" %)**AT Command** 1459 1459 1549 +(% border="2" style="width:500px" %) 1550 +|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic> 1551 +|(% style="width:137px" %)**Response**|(% style="width:361px" %) 1552 +|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)((( 1553 +**voltage** : voltage threshold in mV 1554 + 1555 +**logic**: 1556 + 1557 +0 : lower than 1558 + 1559 +1: higher than 1560 + 1561 +if you leave logic parameter blank, it is considered 0 1562 +))) 1563 +|(% style="width:137px" %)**Examples**|(% style="width:361px" %)((( 1564 +AT+VOLMAX=20000 1565 + 1566 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1567 + 1568 +AT+VOLMAX=20000,0 1569 + 1570 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1 1571 + 1572 +AT+VOLMAX=20000,1 1573 + 1574 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1575 +))) 1576 + 1577 +(% style="color:#037691" %)**Downlink Payload** 1578 + 1579 +(% border="2" style="width:500px" %) 1580 +|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic> 1581 +|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)((( 1582 +**prefix** : A5 (hex) 1583 + 1584 +**voltage** : voltage threshold in mV (2 bytes in hex) 1585 + 1586 +**logic**: (1 byte in hexadecimal) 1587 + 1588 +0 : lower than 1589 + 1590 +1: higher than 1591 + 1592 +if you leave logic parameter blank, it is considered 1 (higher than) 1593 +))) 1594 +|(% style="width:140px" %)**Example**|(% style="width:358px" %)((( 1595 +A5 **4E 20** 1596 + 1597 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1598 + 1599 +A5 **4E 20 00** 1600 + 1601 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1 1602 + 1603 +A5 **4E 20 01** 1604 + 1605 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1 1606 +))) 1607 + 1460 1460 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ==== 1461 1461 1610 +This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration. 1462 1462 1463 1463 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) ** 1464 1464 1465 1465 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count 1466 1466 1467 -(% style="color:red" %)**bb cc dd ee: **(%%)number to be set 1616 +(% style="color:red" %)**bb cc dd ee: **(%%)The number to be set 1468 1468 1469 1469 1470 1470 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):** ... ... @@ -1472,12 +1472,55 @@ 1472 1472 (% style="color:blue" %)**0x A8 aa bb cc dd ee ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee) 1473 1473 1474 1474 1624 +(% style="color:#037691" %)**AT Command** 1475 1475 1476 -==== 3.4.2.18 Counting ~-~- Clear Counting ==== 1626 +(% border="2" style="width:500px" %) 1627 +|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number> 1628 +|(% style="width:134px" %)**Response**|(% style="width:364px" %) 1629 +|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)((( 1630 +**counting_parameter** : 1477 1477 1632 +1: COUNT1 1478 1478 1479 - Clearcounting for counting mode1634 +2: COUNT2 1480 1480 1636 +3: AVI1 Count 1637 + 1638 +**number** : Start number 1639 +))) 1640 +|(% style="width:134px" %)**Example**|(% style="width:364px" %)((( 1641 +AT+SETCNT=1,10 1642 + 1643 +Sets the COUNT1 to 10. 1644 +))) 1645 + 1646 +(% style="color:#037691" %)**Downlink Payload** 1647 + 1648 +(% border="2" style="width:500px" %) 1649 +|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number> 1650 +|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)((( 1651 +prefix : A8 (hex) 1652 + 1653 +**counting_parameter** : (1 byte in hexadecimal) 1654 + 1655 +1: COUNT1 1656 + 1657 +2: COUNT2 1658 + 1659 +3: AVI1 Count 1660 + 1661 +**number** : Start number, 4 bytes in hexadecimal 1662 +))) 1663 +|(% style="width:135px" %)**Example**|(% style="width:363px" %)((( 1664 +A8 **01 00 00 00 0A** 1665 + 1666 +Sets the COUNT1 to 10. 1667 +))) 1668 + 1669 +==== 3.4.2.18 Counting ~-~- Clear Counting ==== 1670 + 1671 +This command clears the counting in counting mode. 1672 + 1481 1481 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting 1482 1482 1483 1483 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):** ... ... @@ -1484,14 +1484,30 @@ 1484 1484 1485 1485 (% style="color:blue" %)**0x A6 01 ** (%%)~/~/ clear all counting 1486 1486 1679 +(% style="color:#037691" %)**AT Command** 1487 1487 1681 +(% border="2" style="width:500px" %) 1682 +|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT 1683 +|(% style="width:142px" %)**Response**|(% style="width:356px" %)- 1488 1488 1685 +(% style="color:#037691" %)**Downlink Payload** 1686 + 1687 +(% border="2" style="width:500px" %) 1688 +|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?> 1689 +|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)((( 1690 +prefix : A6 (hex) 1691 + 1692 +clear? : 01 (hex) 1693 +))) 1694 +|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01** 1695 + 1489 1489 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1490 1490 1698 +This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds. 1491 1491 1492 1492 * (% style="color:#037691" %)**AT Command:** 1493 1493 1494 -(% style="color:blue" %)**AT+COUTIME=60 **(%%)~/~/ Device will save the counting result in internal flash every 60 seconds. (min value: 30)1702 +(% style="color:blue" %)**AT+COUTIME=60 **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds) 1495 1495 1496 1496 1497 1497 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):** ... ... @@ -1499,19 +1499,46 @@ 1499 1499 (% style="color:blue" %)**0x A7 aa bb cc ** (%%)~/~/ same as AT+COUTIME =aa bb cc, 1500 1500 1501 1501 ((( 1502 - range: aa bb cc:0 to 16777215, (unit:second)1710 +Range: aa bb cc:0 to 16777215, (unit: seconds) 1503 1503 ))) 1504 1504 1505 1505 1714 +(% style="color:#037691" %)**AT Command** 1506 1506 1716 +(% border="2" style="width:500px" %) 1717 +|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time> 1718 +|(% style="width:124px" %)**Response**|(% style="width:374px" %) 1719 +|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215) 1720 +|(% style="width:124px" %)**Example**|(% style="width:374px" %)((( 1721 +AT+COUTIME=60 1722 + 1723 +Sets the device to save its counting results to the memory every 60 seconds. 1724 +))) 1725 + 1726 +(% style="color:#037691" %)**Downlink Payload** 1727 + 1728 +(% border="2" style="width:500px" %) 1729 +|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time> 1730 +|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)((( 1731 +prefix : A7 1732 + 1733 +time : seconds, 3 bytes in hexadecimal 1734 +))) 1735 +|(% style="width:123px" %)**Example**|(% style="width:375px" %)((( 1736 +A7 **00 00 3C** 1737 + 1738 +Sets the device to save its counting results to the memory every 60 seconds. 1739 +))) 1740 + 1507 1507 ==== 3.4.2.20 Reset save RO DO state ==== 1508 1508 1743 +This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network. 1509 1509 1510 1510 * (% style="color:#037691" %)**AT Command:** 1511 1511 1512 1512 (% style="color:blue" %)**AT+RODORESET=1 **(%%)~/~/ RODO will close when the device joining the network. (default) 1513 1513 1514 -(% style="color:blue" %)**AT+RODORESET=0 **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state i snot changedwhenit isreconnectedto the network.1749 +(% style="color:blue" %)**AT+RODORESET=0 **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network. 1515 1515 1516 1516 1517 1517 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):** ... ... @@ -1519,9 +1519,50 @@ 1519 1519 (% style="color:blue" %)**0x AD aa ** (%%)~/~/ same as AT+RODORET =aa 1520 1520 1521 1521 1757 +(% border="2" style="width:500px" %) 1758 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state> 1759 +|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1760 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1761 +**state** : 1522 1522 1763 +**0** : RODO will close when the device joins the network. (default) 1764 + 1765 +**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1766 +))) 1767 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1768 +(% style="color:blue" %)**AT+RODORESET=1 ** 1769 + 1770 +RODO will close when the device joins the network. (default) 1771 + 1772 +(% style="color:blue" %)**AT+RODORESET=0 ** 1773 + 1774 +After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1775 +))) 1776 + 1777 +(% border="2" style="width:500px" %) 1778 +|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state> 1779 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1780 +**prefix** : AD 1781 + 1782 +**state** : 1783 + 1784 +**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal. 1785 + 1786 +**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal 1787 +))) 1788 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1789 +AD **01** 1790 + 1791 +RODO will close when the device joins the network. (default) 1792 + 1793 +AD **00** 1794 + 1795 +After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. 1796 +))) 1797 + 1523 1523 ==== 3.4.2.21 Encrypted payload ==== 1524 1524 1800 +This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption. 1525 1525 1526 1526 * (% style="color:#037691" %)**AT Command:** 1527 1527 ... ... @@ -1530,21 +1530,67 @@ 1530 1530 (% style="color:blue" %)**AT+DECRYPT=0 **(%%)~/~/ Encrypt when uploading payload (default) 1531 1531 1532 1532 1809 +(% border="2" style="width:500px" %) 1810 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state> 1811 +|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1812 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1813 +state : 1533 1533 1815 +1 : The payload is uploaded without encryption 1816 + 1817 +0 : The payload is encrypted when uploaded (default) 1818 +))) 1819 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1820 +AT+DECRYPT=1 1821 + 1822 +The payload is uploaded without encryption 1823 + 1824 +AT+DECRYPT=0 1825 + 1826 +The payload is encrypted when uploaded (default) 1827 +))) 1828 + 1829 +There is no downlink payload for this configuration. 1830 + 1831 + 1534 1534 ==== 3.4.2.22 Get sensor value ==== 1535 1535 1834 +This command allows you to retrieve and optionally uplink sensor readings through the serial port. 1536 1536 1537 1537 * (% style="color:#037691" %)**AT Command:** 1538 1538 1539 -(% style="color:blue" %)**AT+GETSENSORVALUE=0 **(%%)~/~/ The serial port gets the reading of the current sensor1838 +(% style="color:blue" %)**AT+GETSENSORVALUE=0 **(%%)~/~/ The serial port retrieves the reading of the current sensor. 1540 1540 1541 -(% style="color:blue" %)**AT+GETSENSORVALUE=1 **(%%)~/~/ The serial port gets the current sensor reading and uploads it.1840 +(% style="color:blue" %)**AT+GETSENSORVALUE=1 **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it. 1542 1542 1543 1543 1843 +(% border="2" style="width:500px" %) 1844 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state> 1845 +|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1846 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1847 +**state** : 1544 1544 1545 - ====3.4.2.23Resets thedownlinkpacketcount====1849 +**0 **: Retrieves the current sensor reading via the serial port. 1546 1546 1851 +**1 **: Retrieves and uploads the current sensor reading via the serial port. 1852 +))) 1853 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1854 +AT+GETSENSORVALUE=0 1547 1547 1856 +Retrieves the current sensor reading via the serial port. 1857 + 1858 +AT+GETSENSORVALUE=1 1859 + 1860 +Retrieves and uplinks the current sensor reading via the serial port. 1861 +))) 1862 + 1863 +There is no downlink payload for this configuration. 1864 + 1865 + 1866 +==== 3.4.2.23 Resetting the downlink packet count ==== 1867 + 1868 +This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication. 1869 + 1548 1548 * (% style="color:#037691" %)**AT Command:** 1549 1549 1550 1550 (% style="color:blue" %)**AT+DISFCNTCHECK=0 **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default) ... ... @@ -1552,10 +1552,37 @@ 1552 1552 (% style="color:blue" %)**AT+DISFCNTCHECK=1 **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count. 1553 1553 1554 1554 1877 +(% border="2" style="width:500px" %) 1878 +|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state> 1879 +|(% style="width:130px" %)**Response**|(% style="width:368px" %)((( 1880 + 1881 +))) 1882 +|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)((( 1883 +**state **: 1555 1555 1885 +**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default). 1886 + 1887 + 1888 +**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency. 1889 +))) 1890 +|(% style="width:130px" %)**Example**|(% style="width:368px" %)((( 1891 +AT+DISFCNTCHECK=0 1892 + 1893 +When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default). 1894 + 1895 +AT+DISFCNTCHECK=1 1896 + 1897 +When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency. 1898 +))) 1899 + 1900 +There is no downlink payload for this configuration. 1901 + 1902 + 1556 1556 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ==== 1557 1557 1558 1558 1906 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow. 1907 + 1559 1559 * (% style="color:#037691" %)**AT Command:** 1560 1560 1561 1561 (% style="color:blue" %)**AT+DISMACANS=0** (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default) ... ... @@ -1567,10 +1567,51 @@ 1567 1567 1568 1568 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set the DISMACANS=1 1569 1569 1919 +(% style="color:#037691" %)**AT Command** 1570 1570 1921 +(% border="2" style="width:500px" %) 1922 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state> 1923 +|(% style="width:127px" %)**Response**|(% style="width:371px" %) 1924 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)((( 1925 +**state** : 1571 1571 1927 +**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1928 + 1929 +**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1930 +))) 1931 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)((( 1932 +AT+DISMACANS=0 1933 + 1934 +When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1935 + 1936 +AT+DISMACANS=1 1937 + 1938 +When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1939 +))) 1940 + 1941 +(% style="color:#037691" %)**Downlink Payload** 1942 + 1943 +(% border="2" style="width:500px" %) 1944 +|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state> 1945 +|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)((( 1946 +**prefix** : 21 1947 + 1948 +**state** : (2 bytes in hexadecimal) 1949 + 1950 +**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default) 1951 + 1952 +**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload. 1953 +))) 1954 +|(% style="width:126px" %)**Example**|(% style="width:372px" %)((( 1955 +21 **00 01** 1956 + 1957 +Set DISMACANS=1 1958 +))) 1959 + 1960 + 1572 1572 ==== 3.4.2.25 Copy downlink to uplink ==== 1573 1573 1963 +This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100. 1574 1574 1575 1575 * (% style="color:#037691" %)**AT Command**(%%)**:** 1576 1576 ... ... @@ -1583,8 +1583,32 @@ 1583 1583 1584 1584 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77. 1585 1585 1976 +(% border="2" style="width:500px" %) 1977 +|(% style="width:122px" %)Command|(% style="width:376px" %)((( 1978 +AT+RPL=5 1586 1586 1980 +After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100. 1981 +))) 1982 +|(% style="width:122px" %)Uplink payload|(% style="width:376px" %)((( 1983 +aa xx xx xx xx 1587 1587 1985 +aa : indicates whether the configuration has changed. 1986 + 1987 +00 : YES 1988 + 1989 +01 : NO 1990 +))) 1991 +|(% style="width:122px" %)Example|(% style="width:376px" %)((( 1992 +Downlink: 1993 + 1994 +11 22 33 44 55 66 77 1995 + 1996 +Uplink: 1997 + 1998 +00 11 22 33 44 55 66 77 1999 +))) 2000 + 2001 + 1588 1588 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]] 1589 1589 1590 1590 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned. ... ... @@ -1728,7 +1728,7 @@ 1728 1728 1729 1729 == 3.6 Interface Details == 1730 1730 1731 -=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active 2145 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) === 1732 1732 1733 1733 1734 1734 Supports NPN-type sensors.
- dragino-lorawan-nw-lt-22222-n.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +267.3 KB - Content
- dragino-ttn-te.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +273.8 KB - Content
- lorawan-nw.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +250.6 KB - Content