<
From version < 179.1 >
edited by Dilisi S
on 2024/11/09 05:29
To version < 162.1 >
edited by Dilisi S
on 2024/11/05 03:38
>
Change comment: edits from section 3.6.3

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1. Introduction =
20 += 1.Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -33,6 +33,8 @@
33 33  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 34  )))
35 35  
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37 +
36 36  (((
37 37  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38 38  
... ... @@ -40,7 +40,7 @@
40 40  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 41  * Setup your own private LoRaWAN network.
42 42  
43 -> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
44 44  )))
45 45  
46 46  (((
... ... @@ -57,16 +57,16 @@
57 57  * SX1276/78 Wireless Chip 
58 58  * Power Consumption:
59 59  ** Idle: 4mA@12v
60 -** 20dB Transmit: 34mA@12V
61 -* Operating Temperature: -40 ~~ 85 Degrees, No Dew
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
62 62  
63 63  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
64 64  
65 65  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 -* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
67 67  * 2 x Relay Output (5A@250VAC / 30VDC)
68 68  * 2 x 0~~20mA Analog Input (res:0.01mA)
69 -* 2 x 0~~30V Analog Input (res:0.01V)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
70 70  * Power Input 7~~ 24V DC. 
71 71  
72 72  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -76,7 +76,7 @@
76 76  ** Band 2 (LF): 410 ~~ 528 Mhz
77 77  * 168 dB maximum link budget.
78 78  * +20 dBm - 100 mW constant RF output vs.
79 -* +14 dBm high-efficiency PA.
81 +* +14 dBm high efficiency PA.
80 80  * Programmable bit rate up to 300 kbps.
81 81  * High sensitivity: down to -148 dBm.
82 82  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -96,7 +96,7 @@
96 96  * Optional Customized LoRa Protocol
97 97  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
98 98  * AT Commands to change parameters
99 -* Remotely configure parameters via LoRaWAN Downlink
101 +* Remote configure parameters via LoRa Downlink
100 100  * Firmware upgradable via program port
101 101  * Counting
102 102  
... ... @@ -134,10 +134,10 @@
134 134  
135 135  * 1 x LT-22222-L I/O Controller
136 136  * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 -* 1 x bracket for DIN rail mounting
139 +* 1 x bracket for wall mounting
138 138  * 1 x programming cable
139 139  
140 -Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
141 141  
142 142  == 2.2 Terminals ==
143 143  
... ... @@ -167,9 +167,9 @@
167 167  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 168  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 169  
170 -== 2.3 Powering the LT-22222-L ==
172 +== 2.3 Powering ==
171 171  
172 -The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
173 173  
174 174  
175 175  [[image:1653297104069-180.png]]
... ... @@ -179,15 +179,15 @@
179 179  
180 180  == 3.1 How does it work? ==
181 181  
182 -By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
183 183  
184 -After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
185 185  
186 186  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
187 187  
188 188  == 3.2 Registering with a LoRaWAN network server ==
189 189  
190 -The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
191 191  
192 192  [[image:image-20220523172350-1.png||height="266" width="864"]]
193 193  
... ... @@ -203,23 +203,20 @@
203 203  
204 204  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 205  * Create an application if you do not have one yet.
206 -* Register LT-22222-L with that application. Two registration options are available:
208 +* Register LT-22222-L with that application. Two registration options available:
207 207  
208 -==== ====
210 +==== Using the LoRaWAN Device Repository: ====
209 209  
210 -==== 3.2.2.1 Using the LoRaWAN Device Repository ====
211 -
212 212  * Go to your application and click on the **Register end device** button.
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches your device.
216 +** Select the **Frequency plan** that matches with your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 -
221 -* Page continued...
222 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
223 223  ** Enter the **DevEUI** in the **DevEUI** field.
224 224  ** Enter the **AppKey** in the **AppKey** field.
225 225  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -227,68 +227,43 @@
227 227  
228 228  [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
229 229  
230 -==== ====
229 +==== Entering device information manually: ====
231 231  
232 -==== 3.2.2.2 Entering device information manually ====
233 -
234 234  * On the **Register end device** page:
235 235  ** Select the **Enter end device specifies manually** option as the input method.
236 -** Select the **Frequency plan** that matches your device.
233 +** Select the **Frequency plan** that matches with your device.
237 237  ** Select the **LoRaWAN version**.
238 238  ** Select the **Regional Parameters version**.
239 239  ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 -** Select **Over the air activation (OTAA)** option under the **Activation mode**
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
241 241  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
242 242  
243 243  [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
244 244  
245 245  
246 -* Page continued...
247 -** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 -** Enter **DevEUI** in the **DevEUI** field.
249 -** Enter **AppKey** in the **AppKey** field.
250 -** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 -** Under **After registration**, select the **View registered end device** option.
252 -** Click the **Register end device** button.
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
253 253  
254 254  [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
255 255  
256 256  
257 -You will be navigated to the **Device overview** page.
252 +==== Joining ====
258 258  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
259 259  
260 -[[image:lt-22222-device-overview.png||height="625" width="1000"]]
256 +[[image:1653298044601-602.png||height="405" width="709"]]
261 261  
262 262  
263 -==== 3.2.2.3 Joining ====
259 +== 3.3 Uplink Payload formats ==
264 264  
265 -Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 266  
267 -Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
268 268  
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
269 269  
270 -[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 -
272 -
273 -By default, you will receive an uplink data message every 10 minutes.
274 -
275 -Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 -
277 -[[image:lt-22222-ul-payload-decoded.png]]
278 -
279 -
280 -If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 -
282 -[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 -
284 -
285 -== 3.3 Work Modes and their Uplink Payload formats ==
286 -
287 -
288 -The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 -
290 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 -
292 292  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293 293  
294 294  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -299,15 +299,12 @@
299 299  
300 300  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
301 301  
302 -The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 -
304 304  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
305 305  
278 +
306 306  (((
307 -This is the default mode.
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
308 308  
309 -The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 -
311 311  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 312  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
313 313  |Value|(((
... ... @@ -318,13 +318,13 @@
318 318  ACI1 Current
319 319  )))|(((
320 320  ACI2 Current
321 -)))|**DIDORO***|(((
292 +)))|DIDORO*|(((
322 322  Reserve
323 323  )))|MOD
324 324  )))
325 325  
326 326  (((
327 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 330  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -331,9 +331,9 @@
331 331  |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
332 332  )))
333 333  
334 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 -* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
337 337  
338 338  (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
339 339  
... ... @@ -350,28 +350,31 @@
350 350  
351 351  ACI2 channel current is 0x1300/1000=4.864mA
352 352  
353 -The last byte 0xAA= **10101010**(b) means,
324 +The last byte 0xAA= 10101010(b) means,
354 354  
355 -* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 -* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 -* **[1] DI3 - not used for LT-22222-L.**
358 -* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
359 359  * [1] DI1 channel input state:
360 -** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 -** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
362 362  ** DI1 LED is ON in both cases.
363 -* **[0] DO3 - not used for LT-22222-L.**
364 -* [1] DO2 channel output is LOW, and the DO2 LED is ON.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
336 +** DO3 is high in case there is load between DO3 and V+.
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
365 365  * [0] DO1 channel output state:
366 -** DO1 is FLOATING when there is no load between DO1 and V+.
367 -** DO1 is HIGH when there is a load between DO1 and V+.
368 -** DO1 LED is OFF in both cases.
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
369 369  
370 370  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
371 371  
372 372  
373 373  (((
374 -**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
375 375  )))
376 376  
377 377  (((
... ... @@ -385,17 +385,17 @@
385 385  )))
386 386  
387 387  (((
388 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
389 389  
390 390  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
391 391  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 392  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
393 393  
394 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
395 395  )))
396 396  
397 397  * FIRST: Indicates that this is the first packet after joining the network.
398 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
399 399  
400 400  (((
401 401  (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
... ... @@ -404,7 +404,7 @@
404 404  )))
405 405  
406 406  (((
407 -**To activate this mode, run the following AT commands:**
381 +**To activate this mode, please run the following AT command:**
408 408  )))
409 409  
410 410  (((
... ... @@ -425,17 +425,17 @@
425 425  (((
426 426  **For LT22222-L:**
427 427  
428 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
429 429  
430 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
431 431  
432 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
433 433  
434 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
435 435  
436 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
437 437  
438 -(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
439 439  )))
440 440  
441 441  
... ... @@ -453,7 +453,7 @@
453 453  )))|DIDORO*|Reserve|MOD
454 454  
455 455  (((
456 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
457 457  
458 458  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
459 459  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -460,17 +460,17 @@
460 460  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
461 461  )))
462 462  
463 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
464 464  * FIRST: Indicates that this is the first packet after joining the network.
465 465  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
466 466  
467 467  (((
468 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
442 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
469 469  )))
470 470  
471 471  
472 472  (((
473 -**To activate this mode, run the following AT commands:**
447 +**To activate this mode, please run the following AT command:**
474 474  )))
475 475  
476 476  (((
... ... @@ -485,7 +485,7 @@
485 485  (((
486 486  AT Commands for counting:
487 487  
488 -The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
489 489  )))
490 490  
491 491  
... ... @@ -507,7 +507,7 @@
507 507  )))
508 508  
509 509  (((
510 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
511 511  
512 512  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 513  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -514,18 +514,18 @@
514 514  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
515 515  )))
516 516  
517 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
518 518  * FIRST: Indicates that this is the first packet after joining the network.
519 519  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
520 520  
521 521  (((
522 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
496 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
523 523  
524 524  
525 525  )))
526 526  
527 527  (((
528 -**To activate this mode, run the following AT commands:**
502 +**To activate this mode, please run the following AT command:**
529 529  )))
530 530  
531 531  (((
... ... @@ -538,19 +538,19 @@
538 538  )))
539 539  
540 540  (((
541 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
515 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
542 542  )))
543 543  
544 544  (((
545 545  **In addition to that, below are the commands for AVI1 Counting:**
546 546  
547 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
548 548  
549 549  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
550 550  
551 551  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
552 552  
553 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
527 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
554 554  )))
555 555  
556 556  
... ... @@ -557,7 +557,7 @@
557 557  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
558 558  
559 559  
560 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
534 +**LT22222-L**: This mode the DI1 is used as a counting pin.
561 561  
562 562  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 563  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -572,25 +572,25 @@
572 572  )))|MOD
573 573  
574 574  (((
575 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
549 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
576 576  
577 577  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
552 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
579 579  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
580 580  )))
581 581  
582 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 -* FIRST: Indicates that this is the first packet after joining the network.
556 +* RO is for relay. ROx=1 : close, ROx=0 always open.
557 +* FIRST: Indicate this is the first packet after join network.
584 584  * (((
585 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
559 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
586 586  )))
587 587  
588 588  (((
589 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
563 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
590 590  )))
591 591  
592 592  (((
593 -**To activate this mode, run the following AT commands:**
567 +**To use this mode, please run:**
594 594  )))
595 595  
596 596  (((
... ... @@ -603,7 +603,7 @@
603 603  )))
604 604  
605 605  (((
606 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
580 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
607 607  )))
608 608  
609 609  
... ... @@ -610,46 +610,49 @@
610 610  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
611 611  
612 612  
613 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
587 +(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
614 614  
615 -For example, if you configured the following commands:
589 +For example, if user has configured below commands:
616 616  
617 617  * **AT+MOD=1 ** **~-~->**  The normal working mode
618 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
592 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
619 619  
620 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
594 +LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
621 621  
622 -1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 -1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
596 +1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
597 +1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
624 624  
625 625  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
626 626  
627 -(% style="color:#4f81bd" %)**Trigger based on voltage**:
628 628  
602 +(% style="color:#4f81bd" %)**Trigger base on voltage**:
603 +
629 629  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
630 630  
631 631  
632 632  **Example:**
633 633  
634 -AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
609 +AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
635 635  
636 -AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
611 +AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
637 637  
638 638  
639 -(% style="color:#4f81bd" %)**Trigger based on current**:
640 640  
615 +(% style="color:#4f81bd" %)**Trigger base on current**:
616 +
641 641  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
642 642  
643 643  
644 644  **Example:**
645 645  
646 -AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
622 +AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
647 647  
648 648  
649 -(% style="color:#4f81bd" %)**Trigger based on DI status**:
650 650  
651 -DI status triggers Flag.
626 +(% style="color:#4f81bd" %)**Trigger base on DI status**:
652 652  
628 +DI status trigger Flag.
629 +
653 653  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
654 654  
655 655  
... ... @@ -658,38 +658,39 @@
658 658  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
659 659  
660 660  
661 -(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
638 +(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
662 662  
663 663  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
664 664  
665 665  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
666 666  
667 - AA: Type Code for this downlink Command:
644 + AA: Code for this downlink Command:
668 668  
669 - xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
646 + xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
670 670  
671 - yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
648 + yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
672 672  
673 - yy2 yy2: AC1 or AV1 HIGH limit.
650 + yy2 yy2: AC1 or AV1 high limit.
674 674  
675 - yy3 yy3: AC2 or AV2 LOW limit.
652 + yy3 yy3: AC2 or AV2 low limit.
676 676  
677 - Yy4 yy4: AC2 or AV2 HIGH limit.
654 + Yy4 yy4: AC2 or AV2 high limit.
678 678  
679 679  
680 -**Example 1**: AA 00 13 88 00 00 00 00 00 00
657 +**Example1**: AA 00 13 88 00 00 00 00 00 00
681 681  
682 -Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
659 +Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
683 683  
684 684  
685 -**Example 2**: AA 02 01 00
662 +**Example2**: AA 02 01 00
686 686  
687 -Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
664 +Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
688 688  
689 689  
667 +
690 690  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
691 691  
692 -MOD6 Payload: total of 11 bytes
670 +MOD6 Payload : total 11 bytes payload
693 693  
694 694  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 695  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -703,10 +703,10 @@
703 703  MOD(6)
704 704  )))
705 705  
706 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
684 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
707 707  
708 708  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
687 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
710 710  |(((
711 711  AV1_LOW
712 712  )))|(((
... ... @@ -725,17 +725,17 @@
725 725  AC2_HIGH
726 726  )))
727 727  
728 -* Each bit shows if the corresponding trigger has been configured.
706 +* Each bits shows if the corresponding trigger has been configured.
729 729  
730 730  **Example:**
731 731  
732 -10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
710 +10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
733 733  
734 734  
735 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
713 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
736 736  
737 737  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
716 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
739 739  |(((
740 740  AV1_LOW
741 741  )))|(((
... ... @@ -754,11 +754,11 @@
754 754  AC2_HIGH
755 755  )))
756 756  
757 -* Each bit shows which status has been triggered on this uplink.
735 +* Each bits shows which status has been trigger on this uplink.
758 758  
759 759  **Example:**
760 760  
761 -10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
739 +10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
762 762  
763 763  
764 764  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -767,7 +767,7 @@
767 767  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 768  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
769 769  
770 -* Each bits shows which status has been triggered on this uplink.
748 +* Each bits shows which status has been trigger on this uplink.
771 771  
772 772  **Example:**
773 773  
... ... @@ -794,11 +794,11 @@
794 794  )))
795 795  
796 796  
797 -== 3.4 ​Configure LT via AT Commands or Downlinks ==
775 +== 3.4 ​Configure LT via AT or Downlink ==
798 798  
799 799  
800 800  (((
801 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
779 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
802 802  )))
803 803  
804 804  (((
... ... @@ -813,8 +813,9 @@
813 813  
814 814  === 3.4.1 Common Commands ===
815 815  
794 +
816 816  (((
817 -These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
796 +They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
818 818  )))
819 819  
820 820  
... ... @@ -822,37 +822,34 @@
822 822  
823 823  ==== 3.4.2.1 Set Transmit Interval ====
824 824  
825 -Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
826 826  
827 -* (% style="color:#037691" %)**AT command:**
805 +Set device uplink interval.
828 828  
829 -(% style="color:blue" %)**AT+TDC=N**
807 +* (% style="color:#037691" %)**AT Command:**
830 830  
831 -where N is the time in milliseconds.
809 +(% style="color:blue" %)**AT+TDC=N **
832 832  
833 -**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
834 834  
812 +**Example: **AT+TDC=30000. Means set interval to 30 seconds
835 835  
836 -* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
837 837  
815 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
816 +
838 838  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
839 839  
840 840  
841 841  
842 -==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
821 +==== 3.4.2.2 Set Work Mode (AT+MOD) ====
843 843  
844 844  
845 -Sets the work mode.
824 +Set work mode.
846 846  
847 -* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
826 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
848 848  
849 -Where N is the work mode.
828 +**Example**: AT+MOD=2. Set work mode to Double DI counting mode
850 850  
851 -**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
830 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
852 852  
853 -
854 -* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 -
856 856  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
857 857  
858 858  
... ... @@ -860,12 +860,10 @@
860 860  ==== 3.4.2.3 Poll an uplink ====
861 861  
862 862  
863 -Asks the device to send an uplink.
839 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
864 864  
865 -* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
841 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
866 866  
867 -* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 -
869 869  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
870 870  
871 871  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -872,16 +872,16 @@
872 872  
873 873  
874 874  
875 -==== 3.4.2.4 Enable/Disable Trigger Mode ====
849 +==== 3.4.2.4 Enable Trigger Mode ====
876 876  
877 877  
878 -Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
852 +Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
879 879  
880 880  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
881 881  
882 -(% style="color:red" %)**1:** (%%)Enable the trigger mode
856 +(% style="color:red" %)**1:** (%%)Enable Trigger Mode
883 883  
884 -(% style="color:red" %)**0: **(%%)Disable the trigger mode
858 +(% style="color:red" %)**0: **(%%)Disable Trigger Mode
885 885  
886 886  
887 887  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -893,7 +893,7 @@
893 893  ==== 3.4.2.5 Poll trigger settings ====
894 894  
895 895  
896 -Polls the trigger settings
870 +Poll trigger settings
897 897  
898 898  * (% style="color:#037691" %)**AT Command:**
899 899  
... ... @@ -901,7 +901,7 @@
901 901  
902 902  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
903 903  
904 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
878 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
905 905  
906 906  
907 907  
... ... @@ -908,11 +908,11 @@
908 908  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
909 909  
910 910  
911 -Enable or Disable DI1/DI2/DI2 as trigger,
885 +Enable Disable DI1/DI2/DI2 as trigger,
912 912  
913 913  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
914 914  
915 -**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
889 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
916 916  
917 917  
918 918  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -944,15 +944,15 @@
944 944  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
945 945  
946 946  
947 -Sets DI2 trigger.
921 +Set DI2 trigger.
948 948  
949 949  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
950 950  
951 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
925 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
952 952  
953 953  (% style="color:red" %)**b :** (%%)delay timing.
954 954  
955 -**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
929 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
956 956  
957 957  
958 958  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -990,7 +990,7 @@
990 990  ==== 3.4.2.11 Trigger – Set minimum interval ====
991 991  
992 992  
993 -Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
967 +Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
994 994  
995 995  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
996 996  
... ... @@ -1138,7 +1138,7 @@
1138 1138  )))
1139 1139  
1140 1140  (((
1141 -00: Closed ,  01: Open , 11: No action
1115 +00: Close ,  01: Open , 11: No action
1142 1142  
1143 1143  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1144 1144  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1260,7 +1260,7 @@
1260 1260  
1261 1261  
1262 1262  
1263 -==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1237 +==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1264 1264  
1265 1265  
1266 1266  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1383,128 +1383,75 @@
1383 1383  
1384 1384  == 3.5 Integrating with ThingsEye.io ==
1385 1385  
1386 -The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1387 1387  
1388 -=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1389 1389  
1390 -We use The Things Stack Sandbox for demonstating the configuration but  other
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1391 1391  
1392 -* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 -* Select **MQTT** under **Integrations**.
1394 -* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 -* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1396 -
1397 -NOTE. The username and  password (API key) you created here are required in the next section.
1398 -
1399 1399  [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1400 1400  
1401 1401  === 3.5.2 Configuring ThingsEye.io ===
1402 1402  
1403 -This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1404 1404  
1405 -* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 -* Under the **Integrations center**, click **Integrations**.
1407 -* Click the **Add integration** button (the button with the **+** symbol).
1408 -
1409 1409  [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1410 1410  
1411 1411  
1412 -On the **Add integration** window, configure the following:
1379 +On the Add integration page configure the following:
1413 1413  
1414 -**Basic settings:**
1381 +Basic settings:
1415 1415  
1416 -* Select **The Things Stack Community** from the **Integration type** list.
1417 -* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 -* Ensure the following options are turned on.
1419 -** Enable integration
1420 -** Debug mode
1421 -** Allow create devices or assets
1422 -* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1423 1423  
1424 1424  [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1425 1425  
1389 +Uplink Data converter:
1426 1426  
1427 -**Uplink data converter:**
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1428 1428  
1429 -* Click the **Create new** button if it is not selected by default.
1430 -* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 -* Click the **JavaScript** button.
1432 -* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 -* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1434 -
1435 1435  [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436 1436  
1398 +Downlink Data converter (this is an optional step):
1437 1437  
1438 -**Downlink data converter (this is an optional step):**
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1439 1439  
1440 -* Click the **Create new** button if it is not selected by default.
1441 -* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 -* Click the **JavaScript** button.
1443 -* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 -* Click the **Next** button. You will be navigated to the **Connection** tab.
1445 -
1446 1446  [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1447 1447  
1407 +Connection:
1448 1448  
1449 -**Connection:**
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1450 1450  
1451 -* Choose **Region** from the **Host type**.
1452 -* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 -* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 -* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1455 -
1456 -[[image:message-1.png]]
1457 -
1458 -
1459 -* Click the **Add** button.
1460 -
1461 1461  [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 1462  
1463 1463  
1464 -Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1465 1465  
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1466 1466  
1467 -[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 1468  
1469 -
1470 -**Viewing integration details**:
1471 -
1472 -Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 -
1474 -[[image:integration-details.png||height="686" width="1000"]]
1475 -
1476 -
1477 -If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 -
1479 -Note: See also ThingsEye documentation.
1480 -
1481 -
1482 -**Viewing events:**
1483 -
1484 -This tab  displays all the uplink messages from the LT-22222-L.
1485 -
1486 -* Click on the **Events **tab.
1487 -* Select **Debug **from the **Event type** dropdown.
1488 -* Select the** time frame** from the **time window**.
1489 -
1490 -[insert image]
1491 -
1492 -- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 -
1494 -[insert image]
1495 -
1496 -
1497 -**Deleting the integration**:
1498 -
1499 -If you want to delete this integration, click the **Delete integratio**n button.
1500 -
1501 -
1502 1502  == 3.6 Interface Details ==
1503 1503  
1504 1504  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1505 1505  
1506 1506  
1507 -Support NPN-type sensor
1428 +Support NPN Type sensor
1508 1508  
1509 1509  [[image:1653356991268-289.png]]
1510 1510  
... ... @@ -1518,7 +1518,7 @@
1518 1518  
1519 1519  (((
1520 1520  (((
1521 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1522 1522  
1523 1523  
1524 1524  )))
... ... @@ -1537,11 +1537,11 @@
1537 1537  )))
1538 1538  
1539 1539  (((
1540 -(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1541 1541  )))
1542 1542  
1543 1543  (((
1544 -This type of sensor outputs a low (GND) signal when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1545 1545  )))
1546 1546  
1547 1547  * (((
... ... @@ -1568,11 +1568,11 @@
1568 1568  )))
1569 1569  
1570 1570  (((
1571 -(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1572 1572  )))
1573 1573  
1574 1574  (((
1575 -This type of sensor outputs a high signal (e.g., 24V) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1576 1576  )))
1577 1577  
1578 1578  * (((
... ... @@ -1591,7 +1591,7 @@
1591 1591  )))
1592 1592  
1593 1593  (((
1594 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1595 1595  )))
1596 1596  
1597 1597  (((
... ... @@ -1599,7 +1599,7 @@
1599 1599  )))
1600 1600  
1601 1601  (((
1602 -(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1603 1603  )))
1604 1604  
1605 1605  (((
... ... @@ -1622,13 +1622,13 @@
1622 1622  )))
1623 1623  
1624 1624  (((
1625 -If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1546 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1626 1626  )))
1627 1627  
1628 1628  
1629 1629  (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1630 1630  
1631 -From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1632 1632  
1633 1633  To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1634 1634  
... ... @@ -1644,7 +1644,7 @@
1644 1644  
1645 1645  (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 1646  
1647 -(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1648 1648  
1649 1649  [[image:1653357531600-905.png]]
1650 1650  
... ... @@ -1729,17 +1729,17 @@
1729 1729  Transmit a LoRa packet: TX blinks once
1730 1730  )))
1731 1731  )))
1732 -|**RX**|RX blinks once when receiving a packet.
1733 -|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 -|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1653 +|**RX**|RX blinks once when receive a packet.
1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1735 1735  |**DI1**|(((
1736 -For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1737 1737  )))
1738 1738  |**DI2**|(((
1739 -For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1660 +For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1740 1740  )))
1741 -|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 -|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1743 1743  
1744 1744  = 4. Using AT Command =
1745 1745  
... ... @@ -1754,7 +1754,7 @@
1754 1754  
1755 1755  
1756 1756  (((
1757 -On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1758 1758  )))
1759 1759  
1760 1760  [[image:1653358355238-883.png]]
... ... @@ -2091,49 +2091,37 @@
2091 2091  
2092 2092  = 5. Case Study =
2093 2093  
2094 -== 5.1 Counting how many objects pass through the flow Line ==
2015 +== 5.1 Counting how many objects pass in Flow Line ==
2095 2095  
2096 2096  
2097 -Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2018 +Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2098 2098  
2099 2099  
2100 2100  = 6. FAQ =
2101 2101  
2102 -== 6.1 How to update the firmware? ==
2023 +== 6.1 How to upgrade the image? ==
2103 2103  
2104 2104  
2105 -Dragino frequently releases firmware updates for the LT-22222-L.
2026 +The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2106 2106  
2107 -Updating your LT-22222-L with the latest firmware version helps to:
2108 -
2109 2109  * Support new features
2110 -* Fix bugs
2111 -* Change LoRaWAN frequency bands
2029 +* For bug fix
2030 +* Change LoRaWAN bands.
2112 2112  
2113 -You will need the following things before proceeding:
2032 +Below shows the hardware connection for how to upload an image to the LT:
2114 2114  
2115 -* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2116 -* USB to TTL adapter
2117 -* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2118 -* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2119 -
2120 -{{info}}
2121 -As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2122 -{{/info}}
2123 -
2124 -Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2125 -
2126 -
2127 2127  [[image:1653359603330-121.png]]
2128 2128  
2129 2129  
2130 -Start the STM32 Flash Loader and choose the correct COM port to update.
2037 +(((
2038 +(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2039 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2040 +(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2041 +
2131 2131  
2132 2132  (((
2133 -(((
2134 2134  (% style="color:blue" %)**For LT-22222-L**(%%):
2135 -
2136 -Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2045 +Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2137 2137  )))
2138 2138  
2139 2139  
... ... @@ -2148,7 +2148,7 @@
2148 2148  [[image:image-20220524104033-15.png]]
2149 2149  
2150 2150  
2151 -(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2060 +(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2152 2152  
2153 2153  [[image:1653360054704-518.png||height="186" width="745"]]
2154 2154  
... ... @@ -2155,7 +2155,7 @@
2155 2155  
2156 2156  (((
2157 2157  (((
2158 -== 6.2 How to change the LoRaWAN frequency band/region? ==
2067 +== 6.2 How to change the LoRa Frequency Bands/Region? ==
2159 2159  
2160 2160  
2161 2161  )))
... ... @@ -2162,13 +2162,13 @@
2162 2162  )))
2163 2163  
2164 2164  (((
2165 -You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2074 +User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2166 2166  )))
2167 2167  
2168 2168  (((
2169 2169  
2170 2170  
2171 -== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2080 +== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2172 2172  
2173 2173  
2174 2174  )))
... ... @@ -2175,13 +2175,13 @@
2175 2175  
2176 2176  (((
2177 2177  (((
2178 -In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2087 +In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2179 2179  )))
2180 2180  )))
2181 2181  
2182 2182  (((
2183 2183  (((
2184 -Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2093 +Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2185 2185  
2186 2186  
2187 2187  )))
... ... @@ -2188,7 +2188,7 @@
2188 2188  )))
2189 2189  
2190 2190  (((
2191 -(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2100 +(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2192 2192  
2193 2193  
2194 2194  )))
... ... @@ -2245,56 +2245,61 @@
2245 2245  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2246 2246  
2247 2247  
2248 -== 6.5 Can I see the counting event in the serial output? ==
2157 +== 6.5 Can I see counting event in Serial? ==
2249 2249  
2250 2250  
2251 2251  (((
2252 -You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2161 +User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2253 2253  
2254 2254  
2255 -== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2164 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2256 2256  
2257 2257  
2258 -Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2167 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2168 +
2169 +
2259 2259  )))
2260 2260  
2261 2261  (((
2262 -== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2173 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2263 2263  
2264 2264  
2265 -* If the device is not properly shut down and is directly powered off.
2266 -* It will default to a power-off state.
2267 -* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2268 -* After a restart, the status before the power failure will be read from flash.
2176 +If the device is not shut down, but directly powered off.
2269 2269  
2178 +It will default that this is a power-off state.
2270 2270  
2271 -== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2180 +In modes 2 to 5, DO RO status and pulse count are saved in flash.
2272 2272  
2182 +After restart, the status before power failure will be read from flash.
2273 2273  
2274 -The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2275 2275  
2185 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2276 2276  
2187 +
2188 +LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2189 +
2190 +
2277 2277  [[image:image-20221006170630-1.png||height="610" width="945"]]
2278 2278  
2279 2279  
2280 -== 6.9 Can the LT-22222-L save the RO state? ==
2194 +== 6.9 Can LT22222-L save RO state? ==
2281 2281  
2282 2282  
2283 -The firmware version must be at least 1.6.0.
2197 +Firmware version needs to be no less than 1.6.0.
2284 2284  
2285 2285  
2286 -== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2200 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2287 2287  
2288 2288  
2289 -It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2203 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2290 2290  
2291 2291  
2292 -= 7. Troubleshooting =
2206 += 7. Trouble Shooting =
2293 2293  )))
2294 2294  
2295 2295  (((
2296 2296  (((
2297 -== 7.1 Downlink isn't working. How can I solve this? ==
2211 +== 7.1 Downlink doesn't work, how to solve it? ==
2298 2298  
2299 2299  
2300 2300  )))
... ... @@ -2301,42 +2301,42 @@
2301 2301  )))
2302 2302  
2303 2303  (((
2304 -Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2218 +Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2305 2305  )))
2306 2306  
2307 2307  (((
2308 2308  
2309 2309  
2310 -== 7.2 Having trouble uploading an image? ==
2224 +== 7.2 Have trouble to upload image. ==
2311 2311  
2312 2312  
2313 2313  )))
2314 2314  
2315 2315  (((
2316 -Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2230 +See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2317 2317  )))
2318 2318  
2319 2319  (((
2320 2320  
2321 2321  
2322 -== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2236 +== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2323 2323  
2324 2324  
2325 2325  )))
2326 2326  
2327 2327  (((
2328 -It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2242 +It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2329 2329  )))
2330 2330  
2331 2331  
2332 -== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2246 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2333 2333  
2334 2334  
2335 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2336 -Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2249 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2250 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2337 2337  
2338 2338  
2339 -= 8. Ordering information =
2253 += 8. Order Info =
2340 2340  
2341 2341  
2342 2342  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2343,44 +2343,43 @@
2343 2343  
2344 2344  (% style="color:#4f81bd" %)**XXX:**
2345 2345  
2346 -* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2347 -* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2348 -* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2349 -* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2350 -* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2351 -* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2352 -* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2353 -* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2354 -* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2260 +* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2261 +* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2262 +* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2263 +* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2264 +* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2265 +* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2266 +* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2267 +* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2268 +* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2355 2355  
2270 += 9. Packing Info =
2356 2356  
2357 -= 9. Packing information =
2358 2358  
2273 +**Package Includes**:
2359 2359  
2360 -**Package includes**:
2361 -
2362 2362  * LT-22222-L I/O Controller x 1
2363 2363  * Stick Antenna for LoRa RF part x 1
2364 2364  * Bracket for controller x1
2365 -* 3.5mm Programming cable x 1
2278 +* Program cable x 1
2366 2366  
2367 2367  **Dimension and weight**:
2368 2368  
2369 2369  * Device Size: 13.5 x 7 x 3 cm
2370 -* Device Weight: 105 g
2283 +* Device Weight: 105g
2371 2371  * Package Size / pcs : 14.5 x 8 x 5 cm
2372 -* Weight / pcs : 170 g
2285 +* Weight / pcs : 170g
2373 2373  
2374 -
2375 2375  = 10. Support =
2376 2376  
2377 2377  
2378 2378  * (((
2379 -Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2291 +Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2380 2380  )))
2381 2381  * (((
2382 -Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2294 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2383 2383  
2296 +
2384 2384  
2385 2385  )))
2386 2386  
integration-details.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -340.6 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -438.6 KB
Content
message-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -20.1 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -302.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0