<
From version < 167.1 >
edited by Dilisi S
on 2024/11/07 23:09
To version < 153.1 >
edited by Dilisi S
on 2024/11/01 04:38
>
Change comment: Uploaded new attachment "lt-22222-l-manually-p1.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1. Introduction =
20 += 1.Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degrees, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high-efficiency PA.
81 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remotely configure parameters via LoRaWAN Downlink
101 +* Remote configure parameters via LoRa Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering the LT-22222-L ==
172 +== 2.3 Powering ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options are available:
208 +* Register LT-22222-L with that application. Two registration options available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches your device.
216 +** Select the **Frequency plan** that matches with your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 220  *
221 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -229,26 +229,19 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specifies manually** option as the input method.
233 -** Select the **Frequency plan** that matches your device.
232 +** Select the **Enter end device specified manually** option.
233 +** Select the **Frequency plan** that matches with your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 -** Select **Over the air activation (OTAA)** option under the **Activation mode**
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
239 239  
240 -[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 -
242 -
243 -* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 -* Enter **DevEUI** in the **DevEUI** field.
245 -* Enter **AppKey** in the **AppKey** field.
246 -* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 -* Under **After registration**, select the **View registered end device** option.
248 -
249 -[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 -
251 -
252 252  ==== Joining ====
253 253  
254 254  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -256,12 +256,12 @@
256 256  [[image:1653298044601-602.png||height="405" width="709"]]
257 257  
258 258  
259 -== 3.3 Work Modes and their Uplink Payload formats ==
252 +== 3.3 Uplink Payload ==
260 260  
261 261  
262 -The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
255 +There are five working modes + one interrupt mode on LT for different type application:
263 263  
264 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
257 +* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 265  
266 266  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 267  
... ... @@ -275,8 +275,9 @@
275 275  
276 276  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277 277  
271 +
278 278  (((
279 -The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
273 +The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 280  
281 281  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
282 282  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -288,29 +288,29 @@
288 288  ACI1 Current
289 289  )))|(((
290 290  ACI2 Current
291 -)))|**DIDORO***|(((
285 +)))|DIDORO*|(((
292 292  Reserve
293 293  )))|MOD
294 294  )))
295 295  
296 296  (((
297 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
291 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 298  
299 299  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
300 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 -|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
294 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 +|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
302 302  )))
303 303  
304 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 -* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
299 +* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
307 307  
308 -(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
302 +(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 309  
310 -For example, if the payload is: [[image:image-20220523175847-2.png]]
304 +For example if payload is: [[image:image-20220523175847-2.png]]
311 311  
312 312  
313 -**The interface values can be calculated as follows:  **
307 +**The value for the interface is:  **
314 314  
315 315  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
316 316  
... ... @@ -320,32 +320,35 @@
320 320  
321 321  ACI2 channel current is 0x1300/1000=4.864mA
322 322  
323 -The last byte 0xAA= **10101010**(b) means,
317 +The last byte 0xAA= 10101010(B) means
324 324  
325 -* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 -* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 -* [1] DI3 - not used for LT-22222-L.
328 -* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 -* [1] DI1 channel input state:
330 -** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 -** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 -** DI1 LED is ON in both cases.
333 -* [0] DO3 - not used for LT-22222-L.
334 -* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 -* [0] DO1 channel output state:
336 -** DO1 is FLOATING when there is no load between DO1 and V+.
337 -** DO1 is HIGH when there is a load between DO1 and V+.
338 -** DO1 LED is OFF in both cases.
319 +* [1] RO1 relay channel is close and the RO1 LED is ON.
320 +* [0] RO2 relay channel is open and RO2 LED is OFF;
339 339  
322 +**LT22222-L:**
323 +
324 +* [1] DI2 channel is high input and DI2 LED is ON;
325 +* [0] DI1 channel is low input;
326 +
327 +* [0] DO3 channel output state
328 +** DO3 is float in case no load between DO3 and V+.;
329 +** DO3 is high in case there is load between DO3 and V+.
330 +** DO3 LED is off in both case
331 +* [1] DO2 channel output is low and DO2 LED is ON.
332 +* [0] DO1 channel output state
333 +** DO1 is float in case no load between DO1 and V+.;
334 +** DO1 is high in case there is load between DO1 and V+.
335 +** DO1 LED is off in both case
336 +
340 340  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341 341  
342 342  
343 343  (((
344 -**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
341 +**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 345  )))
346 346  
347 347  (((
348 -The uplink payload is 11 bytes long.
345 +Total : 11 bytes payload
349 349  
350 350  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 351  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -355,26 +355,26 @@
355 355  )))
356 356  
357 357  (((
358 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
355 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 359  
360 360  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
358 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
363 363  
364 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
365 365  )))
366 366  
367 -* FIRST: Indicates that this is the first packet after joining the network.
368 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
364 +* FIRST: Indicate this is the first packet after join network.
365 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369 369  
370 370  (((
371 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
368 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 372  
373 373  
374 374  )))
375 375  
376 376  (((
377 -**To activate this mode, run the following AT commands:**
374 +**To use counting mode, please run:**
378 378  )))
379 379  
380 380  (((
... ... @@ -395,17 +395,17 @@
395 395  (((
396 396  **For LT22222-L:**
397 397  
398 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
395 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 399  
400 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
397 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 401  
402 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 403  
404 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 405  
406 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
403 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 407  
408 -(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
405 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 409  )))
410 410  
411 411  
... ... @@ -412,7 +412,7 @@
412 412  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413 413  
414 414  
415 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
412 +**LT22222-L**: This mode the DI1 is used as a counting pin.
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 418  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -423,24 +423,24 @@
423 423  )))|DIDORO*|Reserve|MOD
424 424  
425 425  (((
426 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
423 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 427  
428 428  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
426 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
431 431  )))
432 432  
433 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 -* FIRST: Indicates that this is the first packet after joining the network.
435 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
431 +* FIRST: Indicate this is the first packet after join network.
432 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
436 436  
437 437  (((
438 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
435 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 439  )))
440 440  
441 441  
442 442  (((
443 -**To activate this mode, run the following AT commands:**
440 +**To use counting mode, please run:**
444 444  )))
445 445  
446 446  (((
... ... @@ -453,9 +453,7 @@
453 453  )))
454 454  
455 455  (((
456 -AT Commands for counting:
457 -
458 -The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
453 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
459 459  )))
460 460  
461 461  
... ... @@ -463,11 +463,11 @@
463 463  
464 464  
465 465  (((
466 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
461 +**LT22222-L**: This mode the DI1 is used as a counting pin.
467 467  )))
468 468  
469 469  (((
470 -The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
465 +The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 471  
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 473  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -477,25 +477,25 @@
477 477  )))
478 478  
479 479  (((
480 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
475 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
478 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
485 485  )))
486 486  
487 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 -* FIRST: Indicates that this is the first packet after joining the network.
489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
483 +* FIRST: Indicate this is the first packet after join network.
484 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
490 490  
491 491  (((
492 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
487 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 493  
494 494  
495 495  )))
496 496  
497 497  (((
498 -**To activate this mode, run the following AT commands:**
493 +**To use this mode, please run:**
499 499  )))
500 500  
501 501  (((
... ... @@ -508,19 +508,19 @@
508 508  )))
509 509  
510 510  (((
511 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 512  )))
513 513  
514 514  (((
515 -**In addition to that, below are the commands for AVI1 Counting:**
510 +**Plus below command for AVI1 Counting:**
516 516  
517 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
512 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 518  
519 519  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
520 520  
521 521  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
522 522  
523 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
518 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 524  )))
525 525  
526 526  
... ... @@ -527,7 +527,7 @@
527 527  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
528 528  
529 529  
530 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 +**LT22222-L**: This mode the DI1 is used as a counting pin.
531 531  
532 532  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 533  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -542,25 +542,25 @@
542 542  )))|MOD
543 543  
544 544  (((
545 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
540 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 546  
547 547  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
543 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 549  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
550 550  )))
551 551  
552 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 -* FIRST: Indicates that this is the first packet after joining the network.
547 +* RO is for relay. ROx=1 : close, ROx=0 always open.
548 +* FIRST: Indicate this is the first packet after join network.
554 554  * (((
555 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
550 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 556  )))
557 557  
558 558  (((
559 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
554 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 560  )))
561 561  
562 562  (((
563 -**To activate this mode, run the following AT commands:**
558 +**To use this mode, please run:**
564 564  )))
565 565  
566 566  (((
... ... @@ -573,7 +573,7 @@
573 573  )))
574 574  
575 575  (((
576 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
571 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 577  )))
578 578  
579 579  
... ... @@ -580,46 +580,49 @@
580 580  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
581 581  
582 582  
583 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
578 +(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 584  
585 -For example, if you configured the following commands:
580 +For example, if user has configured below commands:
586 586  
587 587  * **AT+MOD=1 ** **~-~->**  The normal working mode
588 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
583 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 589  
590 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
585 +LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 591  
592 -1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 -1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
587 +1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 +1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
594 594  
595 595  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
596 596  
597 -(% style="color:#4f81bd" %)**Trigger based on voltage**:
598 598  
593 +(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 +
599 599  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
600 600  
601 601  
602 602  **Example:**
603 603  
604 -AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
600 +AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 605  
606 -AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
602 +AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 607  
608 608  
609 -(% style="color:#4f81bd" %)**Trigger based on current**:
610 610  
606 +(% style="color:#4f81bd" %)**Trigger base on current**:
607 +
611 611  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
612 612  
613 613  
614 614  **Example:**
615 615  
616 -AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
613 +AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 617  
618 618  
619 -(% style="color:#4f81bd" %)**Trigger based on DI status**:
620 620  
621 -DI status triggers Flag.
617 +(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 622  
619 +DI status trigger Flag.
620 +
623 623  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
624 624  
625 625  
... ... @@ -628,38 +628,39 @@
628 628  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
629 629  
630 630  
631 -(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
629 +(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 632  
633 633  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
634 634  
635 635  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
636 636  
637 - AA: Type Code for this downlink Command:
635 + AA: Code for this downlink Command:
638 638  
639 - xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
637 + xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 640  
641 - yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
639 + yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 642  
643 - yy2 yy2: AC1 or AV1 HIGH limit.
641 + yy2 yy2: AC1 or AV1 high limit.
644 644  
645 - yy3 yy3: AC2 or AV2 LOW limit.
643 + yy3 yy3: AC2 or AV2 low limit.
646 646  
647 - Yy4 yy4: AC2 or AV2 HIGH limit.
645 + Yy4 yy4: AC2 or AV2 high limit.
648 648  
649 649  
650 -**Example 1**: AA 00 13 88 00 00 00 00 00 00
648 +**Example1**: AA 00 13 88 00 00 00 00 00 00
651 651  
652 -Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
650 +Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 653  
654 654  
655 -**Example 2**: AA 02 01 00
653 +**Example2**: AA 02 01 00
656 656  
657 -Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
655 +Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 658  
659 659  
658 +
660 660  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661 661  
662 -MOD6 Payload: total of 11 bytes
661 +MOD6 Payload : total 11 bytes payload
663 663  
664 664  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 665  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -673,10 +673,10 @@
673 673  MOD(6)
674 674  )))
675 675  
676 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
675 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 677  
678 678  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
679 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
678 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 680  |(((
681 681  AV1_LOW
682 682  )))|(((
... ... @@ -695,17 +695,17 @@
695 695  AC2_HIGH
696 696  )))
697 697  
698 -* Each bit shows if the corresponding trigger has been configured.
697 +* Each bits shows if the corresponding trigger has been configured.
699 699  
700 700  **Example:**
701 701  
702 -10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
701 +10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 703  
704 704  
705 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
704 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 706  
707 707  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
708 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
707 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 709  |(((
710 710  AV1_LOW
711 711  )))|(((
... ... @@ -724,11 +724,11 @@
724 724  AC2_HIGH
725 725  )))
726 726  
727 -* Each bit shows which status has been triggered on this uplink.
726 +* Each bits shows which status has been trigger on this uplink.
728 728  
729 729  **Example:**
730 730  
731 -10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
730 +10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 732  
733 733  
734 734  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -737,7 +737,7 @@
737 737  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 738  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
739 739  
740 -* Each bits shows which status has been triggered on this uplink.
739 +* Each bits shows which status has been trigger on this uplink.
741 741  
742 742  **Example:**
743 743  
... ... @@ -764,11 +764,11 @@
764 764  )))
765 765  
766 766  
767 -== 3.4 ​Configure LT via AT Commands or Downlinks ==
766 +== 3.4 ​Configure LT via AT or Downlink ==
768 768  
769 769  
770 770  (((
771 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
770 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
772 772  )))
773 773  
774 774  (((
... ... @@ -783,8 +783,9 @@
783 783  
784 784  === 3.4.1 Common Commands ===
785 785  
785 +
786 786  (((
787 -These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
787 +They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
788 788  )))
789 789  
790 790  
... ... @@ -792,37 +792,34 @@
792 792  
793 793  ==== 3.4.2.1 Set Transmit Interval ====
794 794  
795 -Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
796 796  
797 -* (% style="color:#037691" %)**AT command:**
796 +Set device uplink interval.
798 798  
799 -(% style="color:blue" %)**AT+TDC=N**
798 +* (% style="color:#037691" %)**AT Command:**
800 800  
801 -where N is the time in milliseconds.
800 +(% style="color:blue" %)**AT+TDC=N **
802 802  
803 -**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
804 804  
803 +**Example: **AT+TDC=30000. Means set interval to 30 seconds
805 805  
806 -* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
807 807  
806 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
807 +
808 808  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
809 809  
810 810  
811 811  
812 -==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set Work Mode (AT+MOD) ====
813 813  
814 814  
815 -Sets the work mode.
815 +Set work mode.
816 816  
817 -* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
818 818  
819 -Where N is the work mode.
819 +**Example**: AT+MOD=2. Set work mode to Double DI counting mode
820 820  
821 -**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
821 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
822 822  
823 -
824 -* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
825 -
826 826  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
827 827  
828 828  
... ... @@ -830,12 +830,10 @@
830 830  ==== 3.4.2.3 Poll an uplink ====
831 831  
832 832  
833 -Asks the device to send an uplink.
830 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
834 834  
835 -* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
832 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
836 836  
837 -* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
838 -
839 839  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
840 840  
841 841  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -842,16 +842,16 @@
842 842  
843 843  
844 844  
845 -==== 3.4.2.4 Enable/Disable Trigger Mode ====
840 +==== 3.4.2.4 Enable Trigger Mode ====
846 846  
847 847  
848 -Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
843 +Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
849 849  
850 850  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
851 851  
852 -(% style="color:red" %)**1:** (%%)Enable the trigger mode
847 +(% style="color:red" %)**1:** (%%)Enable Trigger Mode
853 853  
854 -(% style="color:red" %)**0: **(%%)Disable the trigger mode
849 +(% style="color:red" %)**0: **(%%)Disable Trigger Mode
855 855  
856 856  
857 857  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -863,7 +863,7 @@
863 863  ==== 3.4.2.5 Poll trigger settings ====
864 864  
865 865  
866 -Polls the trigger settings
861 +Poll trigger settings
867 867  
868 868  * (% style="color:#037691" %)**AT Command:**
869 869  
... ... @@ -871,7 +871,7 @@
871 871  
872 872  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
873 873  
874 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
869 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
875 875  
876 876  
877 877  
... ... @@ -878,11 +878,11 @@
878 878  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
879 879  
880 880  
881 -Enable or Disable DI1/DI2/DI2 as trigger,
876 +Enable Disable DI1/DI2/DI2 as trigger,
882 882  
883 883  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
884 884  
885 -**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
880 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
886 886  
887 887  
888 888  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -914,15 +914,15 @@
914 914  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
915 915  
916 916  
917 -Sets DI2 trigger.
912 +Set DI2 trigger.
918 918  
919 919  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
920 920  
921 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
916 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
922 922  
923 923  (% style="color:red" %)**b :** (%%)delay timing.
924 924  
925 -**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
920 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
926 926  
927 927  
928 928  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -960,7 +960,7 @@
960 960  ==== 3.4.2.11 Trigger – Set minimum interval ====
961 961  
962 962  
963 -Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
958 +Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
964 964  
965 965  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
966 966  
... ... @@ -1108,7 +1108,7 @@
1108 1108  )))
1109 1109  
1110 1110  (((
1111 -00: Closed ,  01: Open , 11: No action
1106 +00: Close ,  01: Open , 11: No action
1112 1112  
1113 1113  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1114 1114  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1230,7 +1230,7 @@
1230 1230  
1231 1231  
1232 1232  
1233 -==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1228 +==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1234 1234  
1235 1235  
1236 1236  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1355,127 +1355,87 @@
1355 1355  
1356 1356  If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1357 1357  
1358 -=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1353 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1359 1359  
1360 -* In **The Things Stack Sandbox**, select your application under **Applications**.
1361 -* Select **MQTT** under **Integrations**.
1362 -* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1363 -* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button.
1355 +* Go to your Application and select MQTT under Integrations.
1356 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1357 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1364 1364  
1365 1365  [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1366 1366  
1367 1367  === 3.5.2 Configuring ThingsEye.io ===
1368 1368  
1369 -* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1370 -* Under the **Integrations center**, click **Integrations**.
1371 -* Click the **Add integration** button (the button with the **+** symbol).
1363 +* Login to your thingsEye.io account.
1364 +* Under the Integrations center, click Integrations.
1365 +* Click the Add integration button (the button with the + symbol).
1372 1372  
1373 1373  [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1374 1374  
1375 1375  
1376 -On the **Add integration** window, configure the following:
1370 +On the Add integration page configure the following:
1377 1377  
1378 -~1. **Basic settings:**
1372 +Basic settings:
1379 1379  
1380 -* Select **The Things Stack Community** from the **Integration type** list.
1381 -* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1382 -* Ensure the following options are turned on.
1383 -** Enable integration
1384 -** Debug mode
1385 -** Allow create devices or assets
1386 -* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1374 +* Select The Things Stack Community from the Integration type list.
1375 +* Enter a suitable name for your integration in the Name box or keep the default name.
1376 +* Click the Next button.
1387 1387  
1388 1388  [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1389 1389  
1380 +Uplink Data converter:
1390 1390  
1391 -2. **Uplink data converter:**
1382 +* Click the Create New button if it is not selected by default.
1383 +* Click the JavaScript button.
1384 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1385 +* Click the Next button.
1392 1392  
1393 -* Click the **Create new** button if it is not selected by default.
1394 -* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1395 -* Click the **JavaScript** button.
1396 -* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1397 -* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1398 -
1399 1399  [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1400 1400  
1401 -3.** Downlink data converter (this is an optional step):**
1389 +Downlink Data converter (this is an optional step):
1402 1402  
1403 -* Click the **Create new** button if it is not selected by default.
1404 -* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1405 -* Click the **JavaScript** button.
1391 +* Click the Create new button if it is not selected by default.
1392 +* Click the JavaScript button.
1406 1406  * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1407 -* Click the **Next** button. You will be navigated to the **Connection** tab.
1394 +* Click the Next button.
1408 1408  
1409 1409  [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1410 1410  
1411 -4. **Connection:**
1398 +Connection:
1412 1412  
1413 -* Choose **Region** from the **Host type**.
1414 -* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1415 -* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1416 -* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**.
1417 -* Click the **Add** button.
1400 +* Choose Region from the Host type.
1401 +* Enter the cluster of your The Things Stack in the Region textbox.
1402 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1403 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1404 +* Click the Add button.
1418 1418  
1419 1419  [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1420 1420  
1421 1421  
1422 -Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again.
1409 +Your integration is added to the integrations list and it will display on the Integrations page.
1423 1423  
1424 1424  [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1425 1425  
1426 1426  
1427 -Viewing integration details:
1414 +== 3.6 Interface Detail ==
1428 1428  
1429 -Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1430 -
1431 -[add image here]
1432 -
1433 -If you want to edit the settings you have provided, click on the Toggle edit mode button.
1434 -
1435 -[add image here]
1436 -
1437 -Once you have done click on the Apply changes button.
1438 -
1439 -Note: See also ThingsEye documentation.
1440 -
1441 -Click on the Events tab.
1442 -
1443 -- Select Debug from the Event type dropdown.
1444 -
1445 -- Select the time frame from the time window.
1446 -
1447 -[insert image]
1448 -
1449 -- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1450 -
1451 -[insert image]
1452 -
1453 -
1454 -Deleting the integration:
1455 -
1456 -If you want to delete this integration, click the Delete integration button.
1457 -
1458 -
1459 -== 3.6 Interface Details ==
1460 -
1461 1461  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1462 1462  
1463 1463  
1464 -Support NPN-type sensor
1419 +Support NPN Type sensor
1465 1465  
1466 1466  [[image:1653356991268-289.png]]
1467 1467  
1468 1468  
1469 -=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 +=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1470 1470  
1471 1471  
1472 1472  (((
1473 -The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 +The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1474 1474  )))
1475 1475  
1476 1476  (((
1477 1477  (((
1478 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 +Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1479 1479  
1480 1480  
1481 1481  )))
... ... @@ -1485,7 +1485,7 @@
1485 1485  
1486 1486  (((
1487 1487  (((
1488 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 +When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1489 1489  )))
1490 1490  )))
1491 1491  
... ... @@ -1494,22 +1494,22 @@
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 +(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1498 1498  )))
1499 1499  
1500 1500  (((
1501 -This type of sensor outputs a low (GND) signal when active.
1456 +This type of sensor will output a low signal GND when active.
1502 1502  )))
1503 1503  
1504 1504  * (((
1505 -Connect the sensor's output to DI1-
1460 +Connect sensor's output to DI1-
1506 1506  )))
1507 1507  * (((
1508 -Connect the sensor's VCC to DI1+.
1463 +Connect sensor's VCC to DI1+.
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 +So when sensor active, the current between NEC2501 pin1 and pin2 is
1513 1513  )))
1514 1514  
1515 1515  (((
... ... @@ -1517,7 +1517,7 @@
1517 1517  )))
1518 1518  
1519 1519  (((
1520 -For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 +If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1521 1521  )))
1522 1522  
1523 1523  (((
... ... @@ -1525,22 +1525,22 @@
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 +(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1529 1529  )))
1530 1530  
1531 1531  (((
1532 -This type of sensor outputs a high signal (e.g., 24V) when active.
1487 +This type of sensor will output a high signal (example 24v) when active.
1533 1533  )))
1534 1534  
1535 1535  * (((
1536 -Connect the sensor's output to DI1+
1491 +Connect sensor's output to DI1+
1537 1537  )))
1538 1538  * (((
1539 -Connect the sensor's GND DI1-.
1494 +Connect sensor's GND DI1-.
1540 1540  )))
1541 1541  
1542 1542  (((
1543 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1544 1544  )))
1545 1545  
1546 1546  (((
... ... @@ -1548,7 +1548,7 @@
1548 1548  )))
1549 1549  
1550 1550  (((
1551 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 +If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1552 1552  )))
1553 1553  
1554 1554  (((
... ... @@ -1556,22 +1556,22 @@
1556 1556  )))
1557 1557  
1558 1558  (((
1559 -(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 +(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1560 1560  )))
1561 1561  
1562 1562  (((
1563 -Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 +Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1564 1564  )))
1565 1565  
1566 1566  * (((
1567 -Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 +Connect sensor's output to DI1+ with a serial 50K resistor
1568 1568  )))
1569 1569  * (((
1570 -Connect the sensor's GND DI1-.
1525 +Connect sensor's GND DI1-.
1571 1571  )))
1572 1572  
1573 1573  (((
1574 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1575 1575  )))
1576 1576  
1577 1577  (((
... ... @@ -1579,37 +1579,37 @@
1579 1579  )))
1580 1580  
1581 1581  (((
1582 -If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 +If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1583 1583  )))
1584 1584  
1585 1585  
1586 -(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 +(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1587 1587  
1588 -From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1543 +From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1589 1589  
1590 -To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1545 +To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1591 1591  
1592 1592  [[image:image-20230616235145-1.png]]
1593 1593  
1594 -(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1549 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1595 1595  
1596 1596  [[image:image-20240219115718-1.png]]
1597 1597  
1598 1598  
1599 -=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1554 +=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1600 1600  
1601 1601  
1602 -(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1557 +(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1603 1603  
1604 -(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1559 +(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1605 1605  
1606 1606  [[image:1653357531600-905.png]]
1607 1607  
1608 1608  
1609 -=== 3.6.4 Analog Input Interfaces ===
1564 +=== 3.6.4 Analog Input Interface ===
1610 1610  
1611 1611  
1612 -The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1567 +The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1613 1613  
1614 1614  
1615 1615  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1616,14 +1616,14 @@
1616 1616  
1617 1617  [[image:1653357592296-182.png]]
1618 1618  
1619 -Example: Connecting a 4~~20mA sensor
1574 +Example to connect a 4~~20mA sensor
1620 1620  
1621 -We will use the wind speed sensor as an example for reference only.
1576 +We take the wind speed sensor as an example for reference only.
1622 1622  
1623 1623  
1624 1624  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1625 1625  
1626 -(% style="color:red" %)**Red:  12~~24V**
1581 +(% style="color:red" %)**Red:  12~~24v**
1627 1627  
1628 1628  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1629 1629  
... ... @@ -1636,7 +1636,7 @@
1636 1636  [[image:1653357648330-671.png||height="155" width="733"]]
1637 1637  
1638 1638  
1639 -Example: Connecting to a regulated power supply to measure voltage
1594 +Example connected to a regulated power supply to measure voltage
1640 1640  
1641 1641  [[image:image-20230608101532-1.png||height="606" width="447"]]
1642 1642  
... ... @@ -1645,7 +1645,7 @@
1645 1645  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1646 1646  
1647 1647  
1648 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1603 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1649 1649  
1650 1650  (% style="color:red" %)**Red:  12~~24v**
1651 1651  
... ... @@ -1656,9 +1656,9 @@
1656 1656  
1657 1657  
1658 1658  (((
1659 -The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1614 +The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1660 1660  
1661 -**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1616 +**Note**: RO pins go to Open(NO) when device is power off.
1662 1662  )))
1663 1663  
1664 1664  [[image:image-20220524100215-9.png]]
... ... @@ -1686,25 +1686,25 @@
1686 1686  Transmit a LoRa packet: TX blinks once
1687 1687  )))
1688 1688  )))
1689 -|**RX**|RX blinks once when receiving a packet.
1690 -|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1691 -|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1644 +|**RX**|RX blinks once when receive a packet.
1645 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1692 1692  |**DI1**|(((
1693 -For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1648 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1694 1694  )))
1695 1695  |**DI2**|(((
1696 -For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1651 +For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1697 1697  )))
1698 -|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1699 -|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1653 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1700 1700  
1701 -= 4. Using AT Command =
1656 += 4. Use AT Command =
1702 1702  
1703 -== 4.1 Connecting the LT-22222-L to a computer ==
1658 +== 4.1 Access AT Command ==
1704 1704  
1705 1705  
1706 1706  (((
1707 -The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1662 +LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1708 1708  )))
1709 1709  
1710 1710  [[image:1653358238933-385.png]]
... ... @@ -1711,7 +1711,7 @@
1711 1711  
1712 1712  
1713 1713  (((
1714 -On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1669 +In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1715 1715  )))
1716 1716  
1717 1717  [[image:1653358355238-883.png]]
... ... @@ -1718,12 +1718,10 @@
1718 1718  
1719 1719  
1720 1720  (((
1721 -You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1676 +More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1722 1722  )))
1723 1723  
1724 1724  (((
1725 -The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1726 -
1727 1727  AT+<CMD>?        : Help on <CMD>
1728 1728  )))
1729 1729  
... ... @@ -2048,10 +2048,10 @@
2048 2048  
2049 2049  = 5. Case Study =
2050 2050  
2051 -== 5.1 Counting how many objects pass through the flow Line ==
2004 +== 5.1 Counting how many objects pass in Flow Line ==
2052 2052  
2053 2053  
2054 -Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2007 +Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2055 2055  
2056 2056  
2057 2057  = 6. FAQ =
... ... @@ -2059,26 +2059,26 @@
2059 2059  == 6.1 How to upgrade the image? ==
2060 2060  
2061 2061  
2062 -The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2015 +The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2063 2063  
2064 -* Support new features.
2065 -* Fix bugs.
2017 +* Support new features
2018 +* For bug fix
2066 2066  * Change LoRaWAN bands.
2067 2067  
2068 -Below is the hardware connection setup for uploading an image to the LT:
2021 +Below shows the hardware connection for how to upload an image to the LT:
2069 2069  
2070 2070  [[image:1653359603330-121.png]]
2071 2071  
2072 2072  
2073 2073  (((
2074 -(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 -(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 -(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2027 +(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2028 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2029 +(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2077 2077  
2078 2078  
2079 2079  (((
2080 2080  (% style="color:blue" %)**For LT-22222-L**(%%):
2081 -Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2034 +Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2082 2082  )))
2083 2083  
2084 2084  
... ... @@ -2093,7 +2093,7 @@
2093 2093  [[image:image-20220524104033-15.png]]
2094 2094  
2095 2095  
2096 -(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2049 +(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2097 2097  
2098 2098  [[image:1653360054704-518.png||height="186" width="745"]]
2099 2099  
... ... @@ -2107,13 +2107,13 @@
2107 2107  )))
2108 2108  
2109 2109  (((
2110 -You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2063 +User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2111 2111  )))
2112 2112  
2113 2113  (((
2114 2114  
2115 2115  
2116 -== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2069 +== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2117 2117  
2118 2118  
2119 2119  )))
... ... @@ -2120,13 +2120,13 @@
2120 2120  
2121 2121  (((
2122 2122  (((
2123 -In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2076 +In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2124 2124  )))
2125 2125  )))
2126 2126  
2127 2127  (((
2128 2128  (((
2129 -Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2082 +Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2130 2130  
2131 2131  
2132 2132  )))
... ... @@ -2133,7 +2133,7 @@
2133 2133  )))
2134 2134  
2135 2135  (((
2136 -(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2089 +(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2137 2137  
2138 2138  
2139 2139  )))
... ... @@ -2190,7 +2190,7 @@
2190 2190  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2191 2191  
2192 2192  
2193 -== 6.5 Can I see the counting event in Serial? ==
2146 +== 6.5 Can I see counting event in Serial? ==
2194 2194  
2195 2195  
2196 2196  (((
... ... @@ -2197,10 +2197,10 @@
2197 2197  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2198 2198  
2199 2199  
2200 -== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2153 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2201 2201  
2202 2202  
2203 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2156 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2204 2204  
2205 2205  
2206 2206  )))
lt-22222-l-manually-p1.png
Size
... ... @@ -1,1 +1,1 @@
1 -306.6 KB
1 +310.3 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -279.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0